首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Abstract.  1. Dispersal and habitat detection are key factors for the colonisation of habitat fragments in heterogeneous landscapes. The ability to recognise a habitat from a certain distance should increase the survival chances of a dispersing individual; however, due to methodological problems there is little information on the perceptual range of most species.
2. In a field experiment, 44 individually marked grasshoppers of the species Oedipoda caerulescens (Orthoptera: Acrididae: Locustinae) were released into an unfamiliar, hostile environment at various distances from a patch of preferred habitat.
3. Whether individuals reached the habitat or not was measured, as well as the daily movement distances. The number of individuals that reached the habitat was tested against computer-generated predictions based on different underlying rules for the movement behaviour of individuals but not accounting for the ability to detect habitat from distance.
4. On the first day a significantly higher proportion of grasshoppers arrived in the habitat than predicted by any of the null models.
5. It was concluded that individuals of O. caerulescens are able to detect their preferred habitat from a distance.
6. Edge permeability was very low as none of the individuals left the habitat once they had reached it.
7. Additional analyses showed that individuals changed movement behaviour from a directed walk with great daily distances in unsuitable habitat to a walk with significantly shorter daily distances within the preferred habitat.
8. The problems that arose in the field experiment are discussed and recommendations are given for further studies.  相似文献   

2.
A major conclusion of studying metapopulation biology is that species conservation should favor regional rather than local population persistence. Regional persistence is tightly linked to size, spatial configuration and quality of habitat patches. Hence it is important for the management of endangered species that priority patches can be identified. We developed a predictive model of patch occupancy by capercaillie, a threatened grouse species, based on a single snapshot of data. We used logistic regression to predict patch occupancy as a function of patch size, isolation, connectivity, relative altitude, and biogeographical area. The probability of a patch being occupied increased with patch size and increasing altitude, and decreased with increasing distance to the next occupied patch. Patch size was the most important predictor although occupied patches varied considerably in size. Our model only uses data on the number, size and spatial configuration of habitat patches. It is a useful tool to designate priority areas for conservation, i.e. large core patches with high resilience in habitat quality, smaller island‐patches that still have high probability of being inhabited or becoming recolonised, and patches functioning as “stepping stones”. If capercaillie is to be preserved, habitat suitability needs to be maintained in a functional network of patches that account for size and inter‐patch distance thresholds as found in this study. We suggest that similar area‐isolation relationships are valid for almost any region within the distribution range of capercaillie. The thresholds for occupancy are however likely to depend on characteristics of the respective landscape. The outcome of our study emphasises the need for future investigations that explore the relationship between patch occupancy, matrix quality and its resistance to dispersing individuals.  相似文献   

3.
Stochastic patch occupancy models (SPOMs) are a class of discrete time Markov chains used to model the presence/absence of a population in a collection of habitat patches. This class of model is popular with ecologists due to its ability to incorporate important factors of the habitat patch network such as connectivity and distance between patches as well as heterogeneity in patch characteristics. We present an asymptotic examination of a simple type of SPOM called the mainland-island model. In this model a single patch called the mainland is connected to a large number of smaller patches called islands and each island is only connected to the mainland. We discuss the limiting behaviour of the SPOM as the number of islands increases and the size of the islands decrease relative to the mainland. We demonstrate that a variety of limiting behaviours is possible depending on the scaling of the island size and on the heterogeneity of habitat quality.  相似文献   

4.
《Global Change Biology》2018,24(7):3236-3253
Alpine and Arctic species are considered to be particularly vulnerable to climate change, which is expected to cause habitat loss, fragmentation and—ultimately—extinction of cold‐adapted species. However, the impact of climate change on glacial relict populations is not well understood, and specific recommendations for adaptive conservation management are lacking. We focused on the mountain hare (Lepus timidus) as a model species and modelled species distribution in combination with patch and landscape‐based connectivity metrics. They were derived from graph‐theory models to quantify changes in species distribution and to estimate the current and future importance of habitat patches for overall population connectivity. Models were calibrated based on 1,046 locations of species presence distributed across three biogeographic regions in the Swiss Alps and extrapolated according to two IPCC scenarios of climate change (RCP 4.5 & 8.5), each represented by three downscaled global climate models. The models predicted an average habitat loss of 35% (22%–55%) by 2100, mainly due to an increase in temperature during the reproductive season. An increase in habitat fragmentation was reflected in a 43% decrease in patch size, a 17% increase in the number of habitat patches and a 34% increase in inter‐patch distance. However, the predicted changes in habitat availability and connectivity varied considerably between biogeographic regions: Whereas the greatest habitat losses with an increase in inter‐patch distance were predicted at the southern and northern edges of the species’ Alpine distribution, the greatest increase in patch number and decrease in patch size is expected in the central Swiss Alps. Finally, both the number of isolated habitat patches and the number of patches crucial for maintaining the habitat network increased under the different variants of climate change. Focusing conservation action on the central Swiss Alps may help mitigate the predicted effects of climate change on population connectivity.  相似文献   

5.
Population abundance estimates using predictive models are important for describing habitat use and responses to population-level impacts, evaluating conservation status of a species, and for establishing monitoring programs. The golden-cheeked warbler (Setophaga chrysoparia) is a neotropical migratory bird that was listed as federally endangered in 1990 because of threats related to loss and fragmentation of its woodland habitat. Since listing, abundance estimates for the species have mainly relied on localized population studies on public lands and qualitative-based methods. Our goal was to estimate breeding population size of male warblers using a predictive model based on metrics for patches of woodland habitat throughout the species' breeding range. We first conducted occupancy surveys to determine range-wide distribution. We then conducted standard point-count surveys on a subset of the initial sampling locations to estimate density of males. Mean observed patch-specific density was 0.23 males/ha (95% CI = 0.197–0.252, n = 301). We modeled the relationship between patch-specific density of males and woodland patch characteristics (size and landscape composition) and predicted patch occupancy. The probability of patch occupancy, derived from a model that used patch size and landscape composition as predictor variables while addressing effects of spatial relatedness, best predicted patch-specific density. We predicted patch-specific densities as a function of occupancy probability and estimated abundance of male warblers across 63,616 woodland patches accounting for 1.678 million ha of potential warbler habitat. Using a Monte Carlo simulation, our approach yielded a range-wide male warbler population estimate of 263,339 (95% CI: 223,927–302,620). Our results provide the first abundance estimate using habitat and count data from a sampling design focused on range-wide inference. Managers can use the resulting model as a tool to support conservation planning and guide recovery efforts. © 2012 The Wildlife Society.  相似文献   

6.
Connectivity of habitat patches is crucial for wildlife dispersal and survival, and identifying patches with high importance for maintaining connectivity can aid effective wildlife management. Knowledge of the habitat distribution of the Tibetan antelope in the Altun Mountain National Nature Reserve, which is essential for connectivity analysis, remains limited. We analyzed potential habitat distribution and priority patches using GIS-based habitat suitability modeling with three weighting factors and evaluated the connectivity of habitat patches under four dispersal distance scenarios. Patches with high habitat suitability covered 25.39 % of the total area, and these patches were selected for connectivity analysis as resource patches. Connectivity analysis indicated that, although the overall probability of connectivity (PC) showed an upward trend with increasing dispersal distance, the importance of each patch varied considerably under different dispersal distance scenarios. Transfer analysis of patch numbers between different importance levels revealed that the number of patches becoming less important was higher than the number of patches becoming more important when dispersal distance increased. In addition, nine patches covering 38.49 % of the suitable habitat area were identified as priority patches, in particular the patches near the Kardun and the Karchuka inspection stations. We also found that the habitat distribution of the Tibetan antelope obtained from the suitability model matched the population distribution determined by a field survey. Correlation analysis between patch area and the percentage of PC index value loss (dPC) revealed that the larger patches in this region were more likely to be important for maintaining connectivity.  相似文献   

7.
In fragmented landscapes, changes in habitat availability, patch size, shape and isolation may affect survival of local populations. Proposing efficient conservation strategies for such species relies initially on distinguishing the particular effects of those factors. To address these issues, we investigated the occurrence of 3 bird species in fragmented Brazilian Atlantic Forest landscapes. Playback techniques were used to collect presence/absence data of these species inside 80 forest patches, and incidence models were used to infer their occupancy pattern from landscape spatial structure. The relative importance of patch size, shape and surrounding forest cover and isolation was assessed using a model selection approach based on maximum likelihood estimation. The presence of all species was in general positively affected by the amount of surrounding habitat and negatively affected by inter‐patch distances. The joint effects of patch size and the surrounding landscape characteristics were important determinants of occupancy for two species. The third species was affected only by forest cover and mean patch isolation. Our results suggest that local species presence is in general more influenced by the isolation from surrounding forests than by patch size alone. We found evidence that, in highly fragmented landscapes, birds that can not find patches large enough to settle may be able to overcome short distances through the matrix and include several nearby patches within their home‐ranges to complement their resource needs. In these cases, patches must be defined as functionally connected habitat networks rather than mere continuous forest segments. Bird conservation strategies in the Atlantic forest should focus on increasing patch density and connectivity, in order to implement forest networks that reduce the functional isolation between large remnants with remaining core habitat.  相似文献   

8.
We studied population dynamics of red squirrels in a group of small forest fragments, that cover only 6.5% of the total study area (4664 ha) and where distances to the nearest source population were up to 2.2 km. We tested effects of patch size, quality and isolation and supplementary feeding on patch occupation during 1995–99. Larger patches and patches with supplementary feeding had a higher probability of being occupied. No patch <3.5 ha was ever occupied. No effects of isolation were found, suggesting that the forest habitat in the study area is not sufficiently fragmented to influence red squirrel distribution across patches. For medium sized patches (3.7–21 ha), that were occupied some years, there was an increase in patch occupation over the years, even though overall population size tended to decrease. These patches had a high turnover, especially of males. Patches in which the squirrel population went extinct were recolonized within a year. For patches that were at least some years occupied, squirrel density depended on patch quality only. No effects of patch size, isolation and winter temperature on population density were found. These data suggest that in our study area habitat fragmentation has no effect on local squirrel density and that the random sample hypothesis explains the distribution pattern across patches.  相似文献   

9.
In natural as well as in cultural landscapes, disturbance and succession are responsible for the emergence and subsequent disappearance of suitable habitat patches. The dynamics of habitat patches has important consequences for the spatial structure and dynamics of regional populations. However, there are only few studies quantifying both patch dynamics and incidence of insect species in a dynamic landscape over several years. I studied the incidence and population dynamics of the leaf beetle Gonioctena olivacea in a system of dynamic patches of the host plant Scotch broom Cytisus scoparius . The incidence of the beetle was most strongly affected by patch area, whereas connectivity, patch quality, patch age, and landscape context had no or only a minor effect when analysed with logistic regression. The size of local beetle populations was highly fluctuating between the years; however, the population dynamics of the local populations was not synchronous. Adjacent patches did not show higher degrees of synchrony than patches separated by large distances. In the three years of study, local populations became extinct through demographic or environmental stochasticity and patch destruction. Each year >10% of the patches disappeared. The extinction rate of beetles in persistent patches was decreasing with increasing patch area. On the other hand, patches newly emerged and were rapidly colonized by the beetle. The colonization rate depended on patch connectivity. Obviously, Gonioctena olivacea was capable of persisting in this system with high turnover of patches owing to its high dispersal power.  相似文献   

10.
Aim The mechanisms of initial dispersal and habitat occupancy by invasive alien species are fundamental ecological problems. Most tests of metapopulation theory are performed on local population systems that are stable or in decline. In the current study we were interested in the usefulness of metapopulation theory to study patch occupancy, local colonization, extinction and the abundance of the invasive Caspian gull (Larus cachinnans) in its initial invasion stages. Location Waterbodies in Poland. Methods Characteristics of the habitat patches (waterbodies, 35 in total) occupied by breeding pairs of Caspian gulls and an equal sample of randomly selected unoccupied patches were compared with t‐tests. Based on presence–absence data from 1989 to 2006 we analysed factors affecting the probability of local colonization, extinction and the size of local populations using generalized linear models. Results Occupied habitat patches were significantly larger and less isolated (from other habitat patches and other local populations) and were located closer to rivers than empty patches. The proximity of local food resources (fish ponds, refuse dumps) positively affected the occurrence of breeding pairs. The probability of colonization was positively affected by patch area, and negatively by distances to fish ponds, nearest habitat patch, nearest breeding colony and to a river, and by higher forest cover around the patch boundaries. The probability of extinction was lower in patches with a higher number of breeding pairs and with a greater area of islets. The extinction probability increased with distances to other local populations, other habitat patches, fish ponds and to refuse dumps and with a higher cover of forest around the patch boundaries. The size of the local population decreased with distances to the nearest habitat patch, local population, river, fish pond and refuse dump. Local abundance was also positively affected by the area of islets in the patch. Main conclusions During the initial stages of the invasion of Caspian gulls in Poland the species underwent metapopulation‐like dynamics with frequent extinctions from colonized habitat patches. The results prove that metapopulation theory may be a useful conceptual framework for predicting which habitats are more vulnerable to invasion.  相似文献   

11.
Modelling metapopulation dynamics is a potentially very powerful tool for conservation biologists. In recent years, scientists have broadened the range of variables incorporated into metapopulation modelling from using almost exclusively habitat patch size and isolation, to the inclusion of attributes of the matrix and habitat patch quality. We investigated the influence of habitat patch and matrix characteristics on the metapopulation parameters of a highly endangered lizard species, the New Zealand endemic grand skink (Oligosoma grande) taking into account incomplete detectability. The predictive ability of the developed zxmetapopulation model was assessed through cross-validation of the data and with an independent data-set. Grand skinks occur on scattered rock-outcrops surrounded by indigenous tussock (bunch) and pasture grasslands therefore implying a metapopulation structure. We found that the type of matrix surrounding the habitat patch was equally as important as the size of habitat patch for estimating occupancy, colonisation and extinction probabilities. Additionally, the type of matrix was more important than the physical distance between habitat patches for colonisation probabilities. Detection probability differed between habitat patches in the two matrix types and between habitat patches with different attributes such as habitat patch composition and abundance of vegetation on the outcrop. The developed metapopulation models can now be used for management decisions on area protection, monitoring, and the selection of translocation sites for the grand skink. Our study showed that it is important to incorporate not only habitat patch size and distance between habitat patches, but also those matrix type and habitat patch attributes which are vital in the ecology of the target species.  相似文献   

12.
Summary The model of exploitation ecosystems was re-analysed, assuming that habitat patches are so small that they form only parts of the home range of an individual predator. For habitat complexes where productive patches abound, the results suggested that predation will strongly spill over from productive patches, which set the tune for population dynamics within the whole landscape, to barren ones. This result conforms to the one obtained by T. Oksanen by assuming despotic habitat choice and essentially larger patch sizes. For habitat complexes heavily dominated by the barren habitat, spillover predation was predicted to be weak, as was the case in her large patch model. Unlike in her analysis, however, predation pressure was substantially reduced also within the productive habitat. In habitat complexes where patches are so small that they are exploited in a fine-grained manner, predation pressure was always found to be more intense in the barren habitat, contrary to the predictions of the original model of exploitation ecosystems. This analysis thus suggests that their model is applicable mainly on the landscape level. On the level of individual habitats, the applicability of their results depends on the habitat configuration (at its best for the prevailing habitat of the landscape and for moderate-sized patches of an essentially more productive habitat) and generally decreases with decreasing patch sizes.  相似文献   

13.
Habitat fragmentation has become one of the major threats to biodiversity worldwide, particularly in the case of forests, which have suffered enormous losses during the past decades. We analyzed how changes in patch configuration and habitat quality derived from the fragmentation of austral temperate rainforests affect the distribution of six species of forest-dwelling climbing and epiphytic angiosperms. Epiphyte and vine abundance is primarily affected by the internal characteristics of patches (such as tree size, the presence of logging gaps or the proximity to patch edges) rather than patch and landscape features (such as patch size, shape or connectivity). These responses were intimately related to species-specific characteristics such as drought- or shade-tolerance. Our study therefore suggests that plant responses to fragmentation are contingent on both the species'' ecology and the specific pathways through which the study area is being fragmented, (i.e. extensive logging that shaped the boundaries of current forest patches plus recent, unregulated logging that creates gaps within patches). Management practices in fragmented landscapes should therefore consider habitat quality within patches together with other spatial attributes at landscape or patch scales.  相似文献   

14.
Ability to predict species distribution in a landscape is of crucial importance for natural resource management and species conservation. Therefore, the understanding of species habitat requirements and spatio-temporal dynamics in occurrence is needed. We examined patch occupancy patterns of the Siberian flying squirrel Pteromys volans in northern Finland across a seven year study period. Forest patches dominated by mature spruce ( Picea abies ) in a study area (375 km2) were surveyed to monitor the presence or absence of the flying squirrel. The patch occupancy pattern was dynamic: about half of the habitat patches were occupied at least once during the study period and more patches were colonised than were abandoned. Patches that were continuously occupied (i.e. occupied during all sample periods) were typically of high quality (based on habitat and landscape characteristics), continuously unoccupied patches were usually of low quality, and intermediate quality patches were occupied intermittently. The variables explaining patch occupancy were similar each year, and a statistical model based on data from the year 2000 also predicted occupancy in 2004 with similar accuracy. However, data from a single survey were inadequate for identifying patches used intermittently by flying squirrels. Despite inconsistent occupancy, these patches may be important for the local persistence of flying squirrels. The dynamic occupancy pattern may thus affect estimates of suitable habitat area and identification of functional patch networks for landscape planning. These results emphasise the need for follow-up studies to better understand population patterns and processes in time.  相似文献   

15.
Currently, many rare and endangered species occur in fragmented habitats. Habitat patch size is often used as an easily measured surrogate of habitat quality and local population size. We investigated whether habitat patch size affects the presence and density of larvae of the endangered dragonfly Aeshna viridis, which for a large part of their life history depend on the macrophyte Stratiotes aloides rosette. The study was performed in four populations, two from Finland and two from Latvia. Our main result was that density of A. viridis and patch occupation increased with area of S. aloides patch. The results may be due to larvae actively avoiding enemies (higher survival) and/or to the possibility that females laid higher number of eggs in the large S. aloides patches. Our results indicate that local abundance and persistence of A. viridis population may depend on the few, large S. aloides patches rather than several small patches of equal total area.  相似文献   

16.
Most studies dealing with species distribution patterns on fragmented landscapes focus on the characteristics of habitat patches that influence local occurrence and abundance, but they tend to neglect the question of what drives colonization of previously unoccupied patches. In a study of the dryad butterfly, we combined classical approaches derived from metapopulation theory and landscape ecology to investigate the factors driving colonization from a recent refugium. In three consecutive transect surveys, we recorded the presence and numbers of imagos in 27 patches of xerothermic grassland and 26 patches of wet meadow. Among the predictors affecting the occurrence and abundance of the dryad, we considered environmental variables reflecting (i) habitat patch quality (e.g., goldenrod cover, shrub density, vegetation height); (ii) factors associated with habitat spatial structure (patch size, patch isolation and fragmentation); and (iii) features of patch surroundings (100-m buffers around patches) that potentially pose barriers or provide corridors. Patch colonization by the dryad was strongly limited by the distance from the species refugium in the region; there was a slight positive effect of shrub density in this respect. Butterfly abundance increased in smaller and more fragmented habitat patches; it was negatively impacted by invasive goldenrod cover, and positively influenced by the density of watercourses in patch surroundings. Nectar plant availability was positively related to species abundance in xerothermic grassland, while in wet meadow the effect was the reverse. We conclude that dryad colonization of our study area is very recent, since the most important factor limiting colonization was distance from the refugium, while the habitat quality of target patches had less relevance. In order to preserve the species, conservation managers should focus on enhancing the quality of large patches and should also direct their efforts on smaller and more fragmented ones, including those with relatively low resource availability, because such habitat fragments have an important role to play for specialist species.  相似文献   

17.
Avian species persistence in a forest patch is strongly related to the degree of isolation and size of a forest patch and the vegetation structure within a patch and its matrix are important predictors of bird habitat suitability. A combination of space‐borne optical (Landsat), ALOS‐PALSAR (radar), and airborne Light Detection and Ranging (LiDAR) data was used for assessing variation in forest structure across forest patches that had undergone different levels of forest degradation in a logged forest—agricultural landscape in Southern Laos. The efficacy of different remote sensing (RS) data sources in distinguishing forest patches that had different seizes, configurations, and vegetation structure was examined. These data were found to be sensitive to the varying levels of degradation of the different patch categories. Additionally, the role of local scale forest structure variables (characterized using the different RS data and patch area) and landscape variables (characterized by distance from different forest patches) in influencing habitat preferences of International Union for Conservation of Nature (IUCN) Red listed birds found in the study area was examined. A machine learning algorithm, MaxEnt, was used in conjunction with these data and field collected geographical locations of the avian species to identify the factors influencing habitat preference of the different bird species and their suitable habitats. Results show that distance from different forest patches played a more important role in influencing habitat suitability for the different avian species than local scale factors related to vegetation structure and health. In addition to distance from forest patches, LiDAR‐derived forest structure and Landsat‐derived spectral variables were important determinants of avian habitat preference. The models derived using MaxEnt were used to create an overall habitat suitability map (HSM) which mapped the most suitable habitat patches for sustaining all the avian species. This work also provides insight that retention of forest patches, including degraded and isolated forest patches in addition to large contiguous forest patches, can facilitate bird species retention within tropical agricultural landscapes. It also demonstrates the effective use of RS data in distinguishing between forests that have undergone varying levels of degradation and identifying the habitat preferences of different bird species. Practical conservation management planning endeavors can use such data for both landscape scale monitoring and habitat mapping.  相似文献   

18.
We formulated a mathematical model in order to study the joint influence of demographic and genetic processes on metapopulation viability. Moreover, we explored the influence of habitat structure, matrix quality and disturbance on the interplay of these processes. We showed that the conditions that allow metapopulation persistence under the synergistic action of genetic and demographic processes depart significantly from predictions based on a mere superposition of the effects of each process separately. Moreover, an optimal dispersal rate exists that maximizes the range of survival rates of dispersers under which metapopulation persists and at the same time allows the largest sustainable patch removal and patch‐size reduction. The relative impact of patch removal and patch‐size reduction depends both on matrix quality and the dispersal strategy of the species: metapopulation persistence is more affected by patch‐size reduction (patch removal) for low (high)‐dispersing species, in presence of a low (high) quality matrix. Avoidance of inbreeding, through increased dispersal when the rate of inbreeding in a population is large, has positive effects on low‐dispersing species, but impairs the persistence of high‐dispersing species. Finally, size heterogeneity between patches largely influences metapopulation dynamics; the presence of large patches, even at the expense of other patches being smaller, can have positive effects on persistence in particular for species of low dispersing ability.  相似文献   

19.
Despite increasing awareness of the theoretical importance of habitat dynamics on metapopulations, only a few empirical studies have been conducted. We aimed to increase our understanding of how patch size, dynamics and connectivity affect colonization–extinction dynamics and the occurrence patterns of a beetle (Stephanopachys linearis), which breeds only in burned trees, existing as dynamic habitat patches that have become rare in managed forest landscapes. We assessed species’ presence/absence twice in all known habitat patches (i.e. > 1 ha sites where forest fires had occurred during the previous 2–15 yr) in a 200 × 150 km region of central Sweden, dominated by managed boreal forest. Evaluated over six years, the colonization rate was 47% and the local extinction risk was 65%. Probability of colonization increased with patch size (number of suitable trees in a site) and connectivity to occupied patches within 30 km, and decreased with increasing time since fire. Local extinction risk decreased with habitat patch size but increased, unexpectedly, with connectivity. Occurrence increased with patch size and decreased with increasing time since fire. At a regional scale, S. linearis tracks the fire dynamics by colonising sites with burned trees and by becoming extinct at rates which make the species rare at sites where burnt trees are more than eight years old. In managed boreal forest landscapes, a large proportion of sites may be created by prescribed burning (in our study area: 82%), and consequently human decisions strongly affect the future amount of habitat for fire‐dependent species and its spatial distribution. Stephanopachys linearis uses burned sites more often if more trees are retained and, to some extent, if sites are concentrated in those parts of a region that already support high population densities of the species.  相似文献   

20.
《Ecological monographs》2011,81(4):581-598
The complexity of mathematical models of ecological dynamics varies greatly, and it is often difficult to judge what would be the optimal level of complexity in a particular case. Here we compare the parameter estimates, model fits, and predictive abilities of two models of metapopulation dynamics: a detailed individual-based model (IBM) and a population-based stochastic patch occupancy model (SPOM) derived from the IBM. The two models were fitted to a 17-year time series of data for the Glanville fritillary butterfly (Melitaea cinxia) inhabiting a network of 72 small meadows. The data consisted of biannual counts of larval groups (IBM) and the annual presence or absence of local populations (SPOM). The models were fitted using a Bayesian state-space approach with a hierarchical random effect structure to account for observational, demographic, and environmental stochasticities. The detection probability of larval groups (IBM) and the probability of false zeros of local populations (SPOM) in the observation models were simultaneously estimated from the time-series data and independent control data. Prior distributions for dispersal parameters were obtained from a separate analysis of mark–recapture data. Both models fitted the data about equally, but the results were more precise for the IBM than for the SPOM. The two models yielded similar estimates for a random effect parameter describing habitat quality in each patch, which were correlated with independent empirical measures of habitat quality. The modeling results showed that variation in habitat quality influenced patch occupancy more through the effects on movement behavior at patch edges than on carrying capacity, whereas the latter influenced the mean population size in occupied patches. The IBM and the SPOM explained 63% and 45%, respectively, of the observed variation in the fraction of occupied habitat area among 75 independent patch networks not used in parameter estimation. We conclude that, while carefully constructed, detailed models can have better predictive ability than simple models, this advantage comes with the cost of greatly increased data requirements and computational challenges. Our results illustrate how complex models can be helpful in facilitating the construction of effective simpler models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号