首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Loss by recombination of the charge separated state P(680+)Q(A-) limits the performance of Photosystem II (PS II) as a photochemical energy converter. Time constants reported in literature for this process are mostly either near 0.17 ms or near 1.4 ms. The shorter time is found in plant PS II when reduction of P(680+) by the secondary electron donor Tyrosine Z cannot occur because Y(Z) is already oxidized. The 1.4 ms recombination is seen in Y(Z)-less mutants of the cyanobacterium Synechocystis. However, the rate of P(680+)Q(A-) recombination that actually competes with the stabilization of the charge separation has not been previously reported. We have measured the kinetics of the flash-induced fluorescence yield changes in the microsecond time domain in Tris-washed spinach chloroplasts. In this way the kinetics and yield of P(680+) reduction by Y(Z) were obtained, and the rate of the competing P(680+)Q(A-) recombination could be evaluated. The recombination time was less than 0.5 ms; the best-fitting time constant was 0.1 ms. The presence of Y(Z)(ox) slightly decreased the efficiency of excitation trapping but did not seem to accelerate P(680+)Q(A-) recombination. The two P(680+)Q(A-) lifetimes in the literature probably reflect a significant difference between plant and cyanobacterial PS II.  相似文献   

2.
Loss by recombination of the charge separated state P680+QA limits the performance of Photosystem II (PS II) as a photochemical energy converter. Time constants reported in literature for this process are mostly either near 0.17 ms or near 1.4 ms. The shorter time is found in plant PS II when reduction of P680+ by the secondary electron donor Tyrosine Z cannot occur because YZ is already oxidized. The 1.4 ms recombination is seen in YZ-less mutants of the cyanobacterium Synechocystis. However, the rate of P680+QA recombination that actually competes with the stabilization of the charge separation has not been previously reported. We have measured the kinetics of the flash-induced fluorescence yield changes in the microsecond time domain in Tris-washed spinach chloroplasts. In this way the kinetics and yield of P680+ reduction by YZ were obtained, and the rate of the competing P680+QA recombination could be evaluated. The recombination time was less than 0.5 ms; the best-fitting time constant was 0.1 ms. The presence of YZox slightly decreased the efficiency of excitation trapping but did not seem to accelerate P680+QA recombination. The two P680+QA lifetimes in the literature probably reflect a significant difference between plant and cyanobacterial PS II.  相似文献   

3.
Primary charge separation in Photosystem II   总被引:3,自引:3,他引:0  
In this Minireview, we discuss a number of issues on the primary photosynthetic reactions of the green plant Photosystem II. We discuss the origin of the 683 and 679 nm absorption bands of the PS II RC complex and suggest that these forms may reflect the single-site spectrum with dominant contributions from the zero-phonon line and a pronounced ∼80 cm−1 phonon side band, respectively. The couplings between the six central RC chlorins are probably very similar and, therefore, a `multimer' model arises in which there is no `special pair' and in which for each realization of the disorder the excitation may be dynamically localized on basically any combination of neighbouring chlorins. The key features of our model for the primary reactions in PS II include ultrafast (<500 fs) energy transfer processes within the multimer, `slow' (∼20 ps) energy transfer processes from peripheral RC chlorophylls to the RC multimer, ultrafast charge separation (<500 fs) with a low yield starting from the singlet-excited `accessory' chlorophyll of the active branch, cation transfer from this `accessory' chlorophyll to a `special pair' chlorophyll and/or charge separation starting from this `special pair' chlorophyll (∼8 ps), and slow relaxation (∼50 ps) of the radical pair by conformational changes of the protein. The charge separation in the PS II RC can probably not be described as a simple trap-limited or diffusion-limited process, while for the PS II core and larger complexes the transfer of the excitation energy to the PS II RC may be rate limiting. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Electric field-induced charge recombination in Photosystem II (PS II) was studied in osmotically swollen spinach chloroplasts (blebs) by measurement of the concomitant chlorophyll luminescence emission (electroluminescence). A pronounced dependence on the redox state of the two-electron gate QB was observed and the earlier failure to detect it is explained. The influence of the QB/QB oscillation on electroluminescence was dependent on the redox state of the oxygen evolving complex; at times around one millisecond after flash illumination a large effect was observed in the states S2 and S3, but not in the state S4 (actually Z+S3). The presence of the oxidized secondary electron donor, tyrosine Z+, appeared to prevent expression of the QB/QB effect on electroluminescence, possibly because this effect is primarily due to a shift of the redox equilibrium between Z/Z+ and the oxygen evolving complex.Abbreviations BSA bovine serum albumin - EDTA ethylene-diaminetetraacetic acid - EL electroluminescence - FCCP carbonylcyanide p-trifluoromethyloxyphenyl-hydrazone - HEPESI 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - I primary electron acceptor - MOPS 3-(N-morpholino) propane sulfonic acid - P680 primary electron donor of Photosystem II - P700 primary electron donor of Photosystem I - QA and QB secondary and tertiary electron acceptors of Photosystem II - Z secondary electron donor (D1 Tyr 161)  相似文献   

5.
We studied the charge recombination characteristics of Photosystem II (PSII) redox components in whole cells of the chlorophyll (Chl) d-dominated cyanobacterium, Acaryochloris marina, by flash-induced chlorophyll fluorescence and thermoluminescence measurements. Flash-induced chlorophyll fluorescence decay was retarded in the mus and ms time ranges and accelerated in the s time range in Acaryochloris marina relative to that in the Chl a-containing cyanobacterium, Synechocystis PCC 6803. In the presence of 3-(3,4-dichlorophenyl)-1, 1-dimethylurea, which blocks the Q(B) site, the relaxation of fluorescence decay arising from S(2)Q(A)(-) recombination was somewhat faster in Acaryochloris marina than in Synechocystis PCC 6803. Thermoluminescence intensity of the so called B band, arising from the recombination of the S(2)Q(B)(-) charge separated state, was enhanced significantly (2.5 fold) on the basis of equal amounts of PSII in Acaryochloris marina as compared with Synechocystis 6803. Our data show that the energetics of charge recombination is modified in Acaryochloris marina leading to a approximately 15 meV decrease of the free energy gap between the Q(A) and Q(B) acceptors. In addition, the total free energy gap between the ground state and the excited state of the reaction center chlorophyll is at least approximately 25-30 meV smaller in Acaryochloris marina, suggesting that the primary donor species cannot consist entirely of Chl a in Acaryochloris marina, and there is a contribution from Chl d as well.  相似文献   

6.
《BBA》1985,809(3):369-378
The characteristics of the Zv and A thermoluminescence bands appearing in the glow curve at about -75 and -30°C, respectively, were investigated in spinach chloroplasts. Inhibitory concentrations of DCMU decreased the amplitude of the Zv band by half and completely abolished the A band. On the other hand, after two preflashes at +2°C before freezing, the A band could be charged by low-temperature illumination even when the electron transport was interrupted between QA and QB by DCMU addition after the preflashes. Two-flash preillumination greatly enhanced the amplitude of the A band, but diminished that of the Zv band. Tris washing and NH2OH treatment, which inactivated the oxygen-evolving system, almost completely abolished the Zv band, but did not affect the A band. Severe trypsin treatment, which also impaired the oxygen-evolving system, resulted in a very large intensification of the Zv band. The half-times of the A and Zv bands, determined by theoretical analysis of the thermoluminescence data, proved to be about 4 ms and 200–500 μs, respectively. These results, taken together with EPR data from the literature, suggest that the A band arises from charge recombination between a negatively charged acceptor located before the DCMU block (most probably QA) and the oxidized donor Z+ (which accounts for the EPR Signal IIvf and Signal IIf). The electron carrier responsible for the Zv band is also a component located prior to the inhibitory site of DCMU (QA); its interacting counterpart is an unidentified donor which is involved in charge exchange with the S states.  相似文献   

7.
Reactions occurring on the oxidizing side of Photosystem II have been studied in Tris-washed chloroplasts by monitoring the decay kinetics of EPR signal IIf, arising from the photoinduced oxidation of Z, an intermediate in the electron transport chain between P-680 and the water-splitting enzyme. Upon addition of electron donors, signal IIf follows pseudo-first order decay kinetics with rates dependent on the chemical nature of the donor. Negatively charged donors (I-, Fe(CN)6(4-), W(CN)8(4-) are poor reducing agents for Z.+ whereas neutral donors (benzidine, hydroquinone, diphenylcarbazide) are more efficient, their effectiveness paralleling their lipophilicity. The slow signal IIf reduction observed with the charged donors is consistent with the non-polar nature of the thylakoid membrane and a location for Z toward the inner membrane surface. It most probably exists in a hydrophobic site as indicated by the positive correlation between rate constant and lipophilicity for the neutral donors. A detailed study of the mechanism of Photosystem II reduction by ascorbic acid has been carried out. The pH dependence of the decay kinetics of signal IIf in the presence of this donor is consistent with a model in which both the neutral acid and the ascorbate mono-anion serve as reducing agents to Z.+. The second-order rate constant for reduction by the mono-anion is less than that of the neutral acid and is found to vary with the suspension pH. This observation is interpreted to indicate the occurrence of negative charge on the inner membrane surface in the vicinity of Z. Additional experiments, which assessed the effect of mono- and divalent cations and of cationic detergents on the signal IIf reaction rate constants, support both the presence of negative surface charge and its location on the membrane inner surface.  相似文献   

8.
Reactions occurring on the oxidizing side of Photosystem II have been studied in Tris-washed chloroplasts by monitoring the decay kinetics of EPR signal IIf, arising from the photoinduced oxidation of Z, an intermediate in the electron transport chain between P-680 and the water-splitting enzyme. Upon addition of electron donors, signal IIf follows pseudo-first order decay kinetics with rates dependent on the chemical nature of the donor. Negatively charged donors (I, Fe(CN)4−6, W(CN)4−8) are poor reducing agents for Z+· whereas neutral donors (benzidine, hydroquinone, diphenylcarbazide) are more efficient, their effectiveness paralleling their lipophilicity. The slow signal IIf reduction observed with the charged donors is consistent with the non-polar nature of the thylakoid membrane and a location for Z toward the inner membrane surface. It most probably exists in a hydrophobic site as indicated by the positive correlation between rate constant and lipophilicity for the neutral donors.

A detailed study of the mechanism of Photosystem II reduction by ascorbic acid has been carried out. The pH dependence of the decay kinetics of signal IIf in the presence of this donor is consistent with a model in which both the neutral acid and the ascorbate mono-anion serve as reducing agents to Z+·. The second-order rate constant for reduction by the mono-anion is less than that of the neutral acid and is found to vary with the suspension pH. This observation is interpreted to indicate the occurrence of negative charge on the inner membrane surface in the vicinity of Z. Additional experiments, which assessed the effect of mono- and divalent cations and of cationic detergents on the signal IIf reaction rate constants, support both the presence of negative surface charge and its location on the membrane inner surface.  相似文献   


9.
The mechanism of charge recombination was studied in Photosystem II by using flash induced chlorophyll fluorescence and thermoluminescence measurements. The experiments were performed in intact cells of the cyanobacterium Synechocystis 6803 in which the redox properties of the primary pheophytin electron acceptor, Phe, the primary electron donor, P(680), and the first quinone electron acceptor, Q(A), were modified. In the D1Gln130Glu or D1His198Ala mutants, which shift the free energy of the primary radical pair to more positive values, charge recombination from the S(2)Q(A)(-) and S(2)Q(B)(-) states was accelerated relative to the wild type as shown by the faster decay of chlorophyll fluorescence yield, and the downshifted peak temperature of the thermoluminescence Q and B bands. The opposite effect, i.e. strong stabilization of charge recombination from both the S(2)Q(A)(-) and S(2)Q(B)(-) states was observed in the D1Gln130Leu or D1His198Lys mutants, which shift the free energy level of the primary radical pair to more negative values, as shown by the retarded decay of flash induced chlorophyll fluorescence and upshifted thermoluminescence peak temperatures. Importantly, these mutations caused a drastic change in the intensity of thermoluminescence, manifested by 8- and 22-fold increase in the D1Gln130Leu and D1His198Lys mutants, respectively, as well as by a 4- and 2.5-fold decrease in the D1Gln130Glu and D1His198Ala mutants, relative to the wild type, respectively. In the presence of the electron transport inhibitor bromoxynil, which decreases the redox potential of Q(A)/Q(A)(-) relative to that observed in the presence of DCMU, charge recombination from the S(2)Q(A)(-) state was accelerated in the wild type and all mutant strains. Our data confirm that in PSII the dominant pathway of charge recombination goes through the P(680)(+)Phe(-) radical pair. This indirect recombination is branched into radiative and non-radiative pathways, which proceed via repopulation of P(680)(*) from (1)[P(680)(+)Ph(-)] and direct recombination of the (3)[P(680)(+)Ph(-)] and (1)[P(680)(+)Ph(-)] radical states, respectively. An additional non-radiative pathway involves direct recombination of P(680)(+)Q(A)(-). The yield of these charge recombination pathways is affected by the free energy gaps between the Photosystem II electron transfer components in a complex way: Increase of DeltaG(P(680)(*)<-->P(680)(+)Phe(-)) decreases the yield of the indirect radiative pathway (in the 22-0.2% range). On the other hand, increase of DeltaG(P(680)(+)Phe(-)<-->P(680)(+)Q(A)(-)) increases the yield of the direct pathway (in the 2-50% range) and decreases the yield of the indirect non-radiative pathway (in the 97-37% range).  相似文献   

10.
In Photosystem II (PSII), the Mn4CaO5-cluster of the active site advances through five sequential oxidation states (S0 to S4) before water is oxidized and O2 is generated. The V185 of the D1 protein has been shown to be an important amino acid in PSII function (Dilbeck et al. Biochemistry 52 (2013) 6824–6833). Here, we have studied its role by making a V185T site-directed mutant in the thermophilic cyanobacterium Thermosynechococcus elongatus. The properties of the V185T-PSII have been compared to those of the WT*3-PSII by using EPR spectroscopy, polarography, thermoluminescence and time-resolved UV–visible absorption spectroscopy. It is shown that the V185 and the chloride binding site very likely interact via the H-bond network linking TyrZ and the halide. The V185 contributes to the stabilization of S2 into the low spin (LS), S?=?1/2, configuration. Indeed, in the V185T mutant a high proportion of S2 exhibits a high spin (HS), S?=?5/2, configuration. By using bromocresol purple as a dye, a proton release was detected in the S1TyrZ?→?S2HSTyrZ transition in the V185T mutant in contrast to the WT*3-PSII in which there is no proton release in this transition. Instead, in WT*3-PSII, a proton release kinetically much faster than the S2LSTyrZ?→?S3TyrZ transition was observed and we propose that it occurs in the S2LSTyrZ?→?S2HSTyrZ intermediate step before the S2HSTyrZ?→?S3TyrZ transition occurs. The dramatic slowdown of the S3TyrZ?→?S0TyrZ transition in the V185T mutant does not originate from a structural modification of the Mn4CaO5 cluster since the spin S?=?3?S3 EPR signal is not modified in the mutant. More probably, it is indicative of the strong implication of V185 in the tuning of an efficient relaxation processes of the H-bond network and/or of the protein.  相似文献   

11.
Patrick M. Kelley  S. Izawa 《BBA》1978,502(2):198-210
1. Chloroplasts washed with Cl?-free, low-salt media (pH 8) containing EDTA, show virtually no DCMU-insensitive silicomolybdate reduction. The activity is readily restored when 10 mM Cl? is added to the reaction mixture. Very similar results were obtained with the other Photosystem II electron acceptor 2,5-dimethylquinone (with dibromothymoquinone), with the Photosystem I electron acceptor FMN, and also with ferricyanide which accepts electrons from both photosystems.2. Strong Cl?-dependence of Hill activity was observed invariably at all pH values tested (5.5–8.3) and in chloroplasts from three different plants: spinach, tobacco and corn (mesophyll).3. In the absence of added Cl? the functionally Cl?-depleted chloroplasts are able to oxidize, through Photosystem II, artificial reductants such as catechol, diphenylcarbazide, ascorbate and H2O2 at rates which are 4–12 times faster than the rate of the residual Hill reaction.4. The Cl?-concentration dependence of Hill activity with dimethylquinone as an electron acceptor is kinetically consistent with the typical enzyme activation mechanism: E(inactive) + Cl?ag E · Cl? (active), and the apparent activation constant (0.9 mM at pH 7.2) is unchanged by chloroplast fragmentation.5. The initial phase of the development of inhibition of water oxidation in Cl?-depleted chloroplasts during the dark incubation with NH2OH (12 H2SO4) is 5 times slower when the incubation medium contains Cl? than when the medium contains NH2OH alone or NH2OH plus acetate ion. (Acetate is shown to be ineffective in stimulating O2 evolution.)6. We conclude that the Cl?-requiring step is one which is specifically associated with the water-splitting reaction, and suggests that Cl? probably acts as a cofactor (ligand) of the NH2OH-sensitive, Mn-containing O2-evolving enzyme.  相似文献   

12.
Kinetics and pathways of charge recombination in photosystem II   总被引:8,自引:0,他引:8  
The mechanism of charge recombination of the S(2)Q(A)(-) state in photosystem II was investigated by modifying the free energy gap between the quinone acceptor Q(A) and the primary pheophytin acceptor Ph. This was done either by changing the midpoint potential of Ph (using mutants of the cyanobacterium Synechocystis with a modified hydrogen bond to this cofactor), or that of Q(A) (using different inhibitors of the Q(B) pocket). The results show that the recombination rate is dependent on the free energy gap between Ph and Q(A), which confirms that the indirect recombination pathway involving formation of Ph(-) has a significant contribution. In the mutant with the largest free energy gap, direct electron transfer from Q(A)(-) to P(+) predominates. The temperature dependence of the recombination rate was investigated, showing a lower activation enthalpy in this mutant compared with the WT. The data allow the determination of the rate of the direct route and of its relative weight in the various strains. The set of currently accepted values for the midpoint potentials of the Q(A)/Q(A)(-), Ph/Ph(-), and P(+)/P* couples is not consistent with the relatively rapid rate of the indirect recombination pathway found here, nor with the 3% yield of delayed fluorescence as previously estimated by de Grooth and van Gorkom (1981, Biochim. Biophys. Acta 635, 445-456). It is argued that a likely explanation is that the midpoint potentials of the two latter couples are more positive than believed due to electrostatic interactions. If such is the case, the estimation of the midpoint potential of the P(+)/P and S(2)/S(1) couples must also be revised upward, with values of 1260 and 1020 mV, respectively.  相似文献   

13.
The temperature dependence of the electric field-induced chlorophyll luminescence in photosystem II was studied in Tris-washed, osmotically swollen spinach chloroplasts (blebs). The system II reaction centers were brought in the state Z+P+-QA -QB - by preillumination and the charge recombination to the state Z+PQAQB - was measured at various temperatures and electrical field strengths. It was found that the activation enthalpy of this back reaction was 0.16 eV in the absence of an electrical field and diminished with increasing field strength. It is argued that this energy is the enthalpy difference between the states IQA - and I-QA and accounts for about half of the free energy difference between these states. The redox state of QB does not influence this free energy difference within 150 s after the photoreduction of QA. The consequences for the interpretation of thermodynamic properties of QA are discussed.Abbreviations DCMU 3(3,4-dichlorophenyl)-1,1-dimethylurea - I intermediary electron acceptor - Mops 3-(N-morpholino)propanesulphonic acid - P (P680) primary electron donor - PS II photosystem II - QA and QB first and second quinone electron acceptors - Tricine N-tris(hydroxymethyl)methylglycine - Tris tris-(hydroxymethyl)aminomethane - Z secondary electron donor Dedicated to Professor L.N.M. Duysens on the occasion of his retirement  相似文献   

14.
《BBA》1985,809(3):379-387
The oscillations of the ZV and A thermoluminescence bands were investigated in spinach chloroplasts which had been dark-adapted for various time periods and subjected to a series of flashes at +2°C before continuous illumination at various low temperatures. When excited with continuous light below −65°C, the ZV band exhibited period-4 oscillation, with maxima on preflashes 0, 4 and 8. Above −65°C, the oscillation pattern depended greatly on the dark-adaptation period of the chloroplasts. In preilluminated samples (15 s light followed by 3 min dark), when the QB pool is half oxidized, the oscillation of the thermoluminescence intensity measured at −50°C was similar to that observed below −65°C. However, after the thorough dark-adaptation of the chloroplasts (6 h), when the major fraction of the QB pool is assumed to be oxidized, a binary oscillation appeared in the oscillation pattern, with maxima at odd flash numbers. Below −65°C, period-2 oscillation of the ZV band could not be induced by the dark-adaptation of the chloroplasts, suggesting an inhibition of electron exchange between QA and QB. Upon excitation of the chloroplasts with continuous light at −30°C, the A band oscillated with a periodicity of 4 with maxima at preflash numbers 2 and 6. At pH 7.5, the period-4 oscillation was converted into a period-2 oscillation by thorough dark-adaptation of the chloroplasts (24 h). Model calculations of the oscillatory patterns suggest that the period-4 oscillations of the ZV and A bands are determined by the concentrations [S0] + [S1] and [S2] + [S3], respectively, which are present after the preflashes prior to the low-temperature continuous illumination. The period-2 oscillations in the amplitudes of the ZV and A bands reflect the changes occurring in the redox state of the QB pool in a sequence of flashes. The possible relationship between the characteristics of the ZV and A bands and the temperature-dependence of the S state transitions was investigated. Comparison of the amplitudal changes of the B (S2QB and S3QB recombination) and Q (S2QA recombination) thermoluminescence bands as a function of the excitation temperature suggests that the S2 → S3 and S3 → S4 transitions are blocked at about −65 and −40°C, respectively. It is also concluded that the thermoluminescence intensity emitted by the reaction center is about twice as high in the S3 state as in the S2 state.  相似文献   

15.
The functional site of ChlZ, an auxiliary electron donor to P680+, was determined by pulsed ELDOR applied to a radical pair of YD and Chlz+ in oriented PS II membranes from spinach. The radical-radical distance was determined to be 29.5 Å and its direction was 50° from the membrane normal, indicating that a chlorophyll on the D2 protein is responsible for the EPR Chlz+ signal. Spin polarized ESEEM (Electronin Spin Echo Envelop Modulation) of a 3Chl and QA radical pair induced by a laser flash was observed in reaction center D1D2Cytb559 complex, in which QA was functionally reconstituted with DBMIB and reduced chemically. QAESEEM showed a characteristic oscillating time profile due to dipolar coupling with 3Chl. By fitting with the dipolar interaction parameters, the distance between 3Chl and QA was determined to be 25.9 Å, indicating that the accessory chlorophyll on the D1 protein is responsible for the 3Chl signal.  相似文献   

16.
Krisztián Cser 《BBA》2007,1767(3):233-243
The mechanism of charge recombination was studied in Photosystem II by using flash induced chlorophyll fluorescence and thermoluminescence measurements. The experiments were performed in intact cells of the cyanobacterium Synechocystis 6803 in which the redox properties of the primary pheophytin electron acceptor, Phe, the primary electron donor, P680, and the first quinone electron acceptor, QA, were modified. In the D1Gln130Glu or D1His198Ala mutants, which shift the free energy of the primary radical pair to more positive values, charge recombination from the S2QA and S2QB states was accelerated relative to the wild type as shown by the faster decay of chlorophyll fluorescence yield, and the downshifted peak temperature of the thermoluminescence Q and B bands. The opposite effect, i.e. strong stabilization of charge recombination from both the S2QA and S2QB states was observed in the D1Gln130Leu or D1His198Lys mutants, which shift the free energy level of the primary radical pair to more negative values, as shown by the retarded decay of flash induced chlorophyll fluorescence and upshifted thermoluminescence peak temperatures. Importantly, these mutations caused a drastic change in the intensity of thermoluminescence, manifested by 8- and 22-fold increase in the D1Gln130Leu and D1His198Lys mutants, respectively, as well as by a 4- and 2.5-fold decrease in the D1Gln130Glu and D1His198Ala mutants, relative to the wild type, respectively. In the presence of the electron transport inhibitor bromoxynil, which decreases the redox potential of QA/QA relative to that observed in the presence of DCMU, charge recombination from the S2QA state was accelerated in the wild type and all mutant strains. Our data confirm that in PSII the dominant pathway of charge recombination goes through the P680+Phe radical pair. This indirect recombination is branched into radiative and non-radiative pathways, which proceed via repopulation of P680* from 1[P680+Ph] and direct recombination of the 3[P680+Ph] and 1[P680+Ph] radical states, respectively. An additional non-radiative pathway involves direct recombination of P680+QA. The yield of these charge recombination pathways is affected by the free energy gaps between the Photosystem II electron transfer components in a complex way: Increase of ΔG(P680* ↔ P680+Phe) decreases the yield of the indirect radiative pathway (in the 22-0.2% range). On the other hand, increase of ΔG(P680+Phe ↔ P680+QA) increases the yield of the direct pathway (in the 2-50% range) and decreases the yield of the indirect non-radiative pathway (in the 97-37% range).  相似文献   

17.
pH-dependent inactivation of Photosystem (PS) II and related quenching of chlorophyll-a-fluorescence have been investigated in isolated thylakoids and PS II-particles and related to calcium release at the donor side of PS II. The capacity of oxygen evolution (measured under light saturation) decreases when the pH is high and the pH in the thylakoid lumen decreases below 5.5. Oxygen evolution recovers upon uncoupling. The pH-response of inactivation can be described by a 1 H+-transition with an apparent pK-value of about 4.7. The yield of variable fluorescence decreases in parallel to the inactivation of oxygen evolution. pH-dependent quenching requires light and can be inhibited by DCMU. In PS II-particles, inactivation is accompanied by a reversible release of Ca2+-ions (one Ca2+ released per 200 Chl). In isolated thylakoids, where a pH was created by ATP-hydrolysis, both inactivation of oxygen evolution (and related fluorescence quenching) by internal acidification and the recovery of that inactivation can be suppressed by calcium-channel blockers. In the presence of the Ca2+-ionophore A23187, recovery of Chl-fluorescence (after relaxation of the pH) is stimulated by external Ca2+ and retarded by EGTA. As shown previously (Krieger and Weis 1993), inactivation of oxygen evolution at low pH is accompanied by an upward shift of the midpoint redox-potential, Em, of QA. Here, we show that in isolated PS II particles the pH-dependent redox-shift (about 160 mV, as measured from redox titration of Chl-fluorescence) is suppressed by Ca2+-channel blockers and DCMU. When a redox potential of –80 to –120mV was established in a suspension of isolated thylakoids, the primary quinone acceptor, QA, was largely reduced in presence of a pH (created by ATP-hydrolysis) but oxidized in presence of an uncoupler. Ca2+-binding at the lumen side seems to control redox processes at the lumen- and stroma-side of PS II. We discuss Ca2+-release to be involved in the physiological process of high energy quenching.  相似文献   

18.
Redox-active tyrosine (Tyr) D is indirectly involved in controlling the primary electron transfer in PSII. The presence of the oxidized TyrD renders P680+ more oxidizing by localizing the charge more on PD1 and thus facilitates trapping of the excitation energy in PSII. We also conclude that the mechanism of the primary charge separation and stabilization is altered upon QA reduction.  相似文献   

19.
In this minireview we discuss effects of excitation stress on the molecular organization and function of PS II as induced by high light or low temperature in the cyanobacterium Synechococcus sp. PCC 7942. Synechococcus displays PS II plasticity by transiently replacing the constitutive D1 form (D1:1) with another form (D1:2) upon exposure to excitation stress. The cells thereby counteract photoinhibition by increasing D1 turn over and modulating PS II function. A comparison between the cyanobacterium Synechococcus and plants shows that in cyanobacteria, with their large phycobilisomes, resistance to photoinhibition is mainly through the dynamic properties (D1 turnover and quenching) of the reaction centre. In contrast, plants use antenna quenching in the light-harvesting complex as an important means to protect the reaction center from excessive excitation.Abbreviations D1 reaction center protein of Photosystem II - P680 the reaction center of Photosystem II - QA the primary quinone acceptor of Photosystem II - TyrZ tyrosine electron donor to P680  相似文献   

20.
Incubation of spinach thylakoids with HgCl2 selectively destroys Fe–S center B (FB). The function of electron acceptors in FB-less PS I particles was studied by following the decay kinetics of P700+ at room temperature after multiple flash excitation in the absence of a terminal electron acceptor. In untreated particles, the decay kinetics of the signal after the first and the second flashes were very similar (t 1/22.5 ms), and were principally determined by the concentration of the artificial electron donor added. The decay after the third flash was fast (t 1/20.25 ms). In FB-less particles, although the decay after the first flash was slow, fast decay was observed already after the second flash. We conclude that in FB-less particles, electron transfer can proceed normally at room temperature from FX to FA and that the charge recombination between P700+ and FX -/A1 - predominated after the second excitation. The rate of this recombination process is not significantly affected by the destruction of FB. Even in the presence of 60% glycerol, FB-less particles can transfer electrons to FA at room temperature as efficiently as untreated particles.Abbreviations DCIP 2, 6-dichlorophenol indophenol - FA, FB, FX iron-sulfur center A, B and X, respectively - PMS phenazine methosulfate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号