首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Initiation of eukaryotic DNA replication is achieved by the sequential binding of different proteins to origins of DNA replication. Using EGFP-tagged initiator proteins and immunofluorescence techniques we found that most of the ORC and the MCM subunits are localised at centrosomes and are colocalised with the polo-like protein kinase, Plk1. Yeast two-hybrid studies revealed interactions of Plk1 with the Mcm2 as well as the Orc2 protein. Co-immunoprecipitations showed an interaction of Plk1 with Mcm2 as well as interactions of gamma-tubulin with Mcm3 and Orc2, respectively. An in vitro phosphorylation assay showed that the Orc2 protein is a substrate of Plk1. Depletion of Orc2 and Mcm3 by siRNA leads to an inhibition of cell proliferation, an altered cell cycle distribution as well as to multinucleated cells with insufficiently organised microtubules. These results indicate an important role of the MCM and ORC proteins in mitosis besides their described role in the establishment of the pre-replicative complex.  相似文献   

2.
Interaction of chromatin-associated Plk1 and Mcm7   总被引:3,自引:0,他引:3  
Plk1 is a multifunctional protein kinase involved in regulation of mitotic entry, chromosome segregation, centrosome maturation, and mitotic exit. Plk1 is a target of DNA damage checkpoints and aids resumption of the cell cycle during recovery from G2 arrest. The polo-box domain (PBD) of Plk1 interacts with phosphoproteins and localizes Plk1 to some mitotic structures. In a search for proteins that interact with the PBD of Plk1, we identified two of the minichromosome maintenance (MCM) proteins, Mcm2 and Mcm7. Co-immunoprecipitation and immunoblot analysis showed an interaction between full-length Plk1 and all other members of the MCM2-7 protein complex. Endogenous Plk1 co-immunoprecipitates with basal forms of Mcm7 as well as with slower migrating forms of Mcm7, induced in response to DNA damage. The strongest interaction between endogenous Plk1 and Mcm7 was detected in a soluble chromatin fraction. These findings suggest a new function for Plk1 in coordination of DNA replication and mitotic events.  相似文献   

3.
The Mini-chromosome maintenance (Mcm) proteins are essential as central components for the DNA unwinding machinery during eukaryotic DNA replication. DNA primase activity is required at the DNA replication fork to synthesize short RNA primers for DNA chain elongation on the lagging strand. Although direct physical and functional interactions between helicase and primase have been known in many prokaryotic and viral systems, potential interactions between helicase and primase have not been explored in eukaryotes. Using purified Mcm and DNA primase complexes, a direct physical interaction is detected in pull-down assays between the Mcm2∼7 complex and the hetero-dimeric DNA primase composed of the p48 and p58 subunits. The Mcm4/6/7 complex co-sediments with the primase and the DNA polymerase α-primase complex in glycerol gradient centrifugation and forms a Mcm4/6/7-primase-DNA ternary complex in gel-shift assays. Both the Mcm4/6/7 and Mcm2∼7 complexes stimulate RNA primer synthesis by DNA primase in vitro. However, primase inhibits the Mcm4/6/7 helicase activity and this inhibition is abolished by the addition of competitor DNA. In contrast, the ATP hydrolysis activity of Mcm4/6/7 complex is not affected by primase. Mcm and primase proteins mutually stimulate their DNA-binding activities. Our findings indicate that a direct physical interaction between primase and Mcm proteins may facilitate priming reaction by the former protein, suggesting that efficient DNA synthesis through helicase-primase interactions may be conserved in eukaryotic chromosomes.  相似文献   

4.
Direct interaction between cohesin complex and DNA replication machinery   总被引:2,自引:0,他引:2  
Structural maintenance of chromosome 1 (Smc1) is a multifunctional protein, which has been implicated in sister chromatid cohesion, DNA recombination and repair, and the activation of cell cycle checkpoints by ionizing radiation, ultraviolet light, and other genotoxic agents. In order to identify the proteins that interact with Smc1, we conducted the Tandem affinity purification (TAP) technique and analyzed the Smc1-interacting proteins via MALDI-TOF mass spectrometry. We identified minichromosome maintenance 7 (Mcm7), an essential component of the pre-replication complex, as a novel Smc1-interacting protein. Co-immunoprecipitation revealed an interaction occurring between Smc1 and Mcm7, both in vitro and in vivo. Using a GST pull-down assay, we determined that Smc1 interacts physically with Mcm7 via its N-terminal and hinge regions, and Mcm7 interacts with Smc1 via its middle region. Interestingly, we also discovered that Smc1 interacts with other DNA replication proteins, including Mcm6, RFC1, and DNA polymerase alpha. These results suggest that a functional link exists between the cohesin complex and DNA replication proteins.  相似文献   

5.
MCM proteins are required for the proper regulation of DNA replication. There are six MCM proteins in all eukaryotes which interact to form a large complex. We report the cloning of fission yeast mcm3 +. mcm3 + is essential and spores carrying a Delta mcm3 disruption arrest with an apparently replicated DNA content. The protein is found constitutively in the nucleus and levels remain constant throughout the cell cycle. Mcm3p binds particularly tightly to Nda4p (Mcm5p), but is loosely associated with the other Schizosaccharomyces pombe MCM proteins. Thus, Mcm3p is a peripheral MCM subunit.  相似文献   

6.
Accurate DNA replication requires a complex interplay of many regulatory proteins at replication origins. The CMG (Cdc45·Mcm2-7·GINS) complex, which is composed of Cdc45, Mcm2-7, and the GINS (Go-Ichi-Ni-San) complex consisting of Sld5 and Psf1 to Psf3, is recruited by Cdc6 and Cdt1 onto origins bound by the heterohexameric origin recognition complex (ORC) and functions as a replicative helicase. Trypanosoma brucei, an early branched microbial eukaryote, appears to express an archaea-like ORC consisting of a single Orc1/Cdc6-like protein. However, unlike archaea, trypanosomes possess components of the eukaryote-like CMG complex, but whether they form an active helicase complex, associate with the ORC, and regulate DNA replication remains unknown. Here, we demonstrated that the CMG complex is formed in vivo in trypanosomes and that Mcm2-7 helicase activity is activated by the association with Cdc45 and the GINS complex in vitro. Mcm2-7 and GINS proteins are confined to the nucleus throughout the cell cycle, whereas Cdc45 is exported out of the nucleus after DNA replication, indicating that nuclear exclusion of Cdc45 constitutes one mechanism for preventing DNA re-replication in trypanosomes. With the exception of Mcm4, Mcm6, and Psf1, knockdown of individual CMG genes inhibits DNA replication and cell proliferation. Finally, we identified a novel Orc1-like protein, Orc1b, as an additional component of the ORC and showed that both Orc1b and Orc1/Cdc6 associate with Mcm2-7 via interactions with Mcm3. All together, we identified the Cdc45·Mcm2-7·GINS complex as the replicative helicase that interacts with two Orc1-like proteins in the unusual origin recognition complex in trypanosomes.  相似文献   

7.
Mcm10 (Dna43), first identified in Saccharomyces cerevisiae, is an essential protein which functions in the initiation of DNA synthesis. Mcm10 is a nuclear protein that is localized to replication origins and mediates the interaction of the Mcm2–7 complex with replication origins. We identified and cloned a human cDNA whose product was structurally homologous to the yeast Mcm10 protein. Human Mcm10 (HsMcm10) is a 98-kDa protein of 874 amino acids which shows 23 and 21% overall similarity to Schizosaccharomyces pombe Cdc23 and S.cerevisiae Mcm10, respectively. The messenger RNA level of HsMcm10 increased at the G1/S-boundary when quiescent human NB1–RGB cells were induced to proliferate as is the case of many replication factors. HsMcm10 associated with nuclease-resistant nuclear structures throughout S phase and dissociated from it in G2 phase. HsMcm10 associated with human Orc2 protein when overexpressed in COS-1 cells. HsMcm10 also interacted with Orc2, Mcm2 and Mcm6 proteins in the yeast two-hybrid system. These results suggest that HsMcm10 may function in DNA replication through the interaction with Orc and Mcm2–7 complexes.  相似文献   

8.
The yeast Saccharomyces cerevisiae Cdc7p/Dbf4p protein kinase complex was purified to near homogeneity from insect cells. The complex efficiently phosphorylated yeast Mcm2p and less efficiently the remaining Mcm proteins or other replication proteins. Significantly, when pretreated with alkaline phosphatase, Mcm2p became completely inactive as a substrate, suggesting that it must be phosphorylated by other protein kinase(s) to be a substrate for the Cdc7p/Dbf4p complex. Mutant Cdc7p/Dbf4p complexes containing either Cdc7-1p or Dbf4-1 approximately 5p were also partially purified from insect cells and characterized in vitro. Furthermore, the autonomously replicating sequence binding activity of various dbf4 mutants was also analyzed. These studies suggest that the autonomously replicating sequence-binding and Cdc7p protein kinase activation domains of Dbf4p collaborate to form an active Cdc7p/Dbf4p complex and function during S phase in S. cerevisiae. It is shown that Rad53p phosphorylates the Cdc7p/Dbf4p complex in vitro and that this phosphorylation greatly inhibits the kinase activity of Cdc7p/Dbf4p. This result suggests that Rad53p controls the initiation of chromosomal DNA replication by regulating the protein kinase activity associated with the Cdc7p/Dbf4p complex.  相似文献   

9.
Deregulation of cyclin E expression has been associated with a broad spectrum of human malignancies. Analysis of DNA replication in cells constitutively expressing cyclin E at levels similar to those observed in a subset of tumor-derived cell lines indicates that initiation of replication and possibly fork movement are severely impaired. Such cells show a specific defect in loading of initiator proteins Mcm4, Mcm7, and to a lesser degree, Mcm2 onto chromatin during telophase and early G1 when Mcm2-7 are normally recruited to license origins of replication. Because minichromosome maintenance complex proteins are thought to function as a heterohexamer, loading of Mcm2-, Mcm4-, and Mcm7-depleted complexes is likely to underlie the S phase defects observed in cyclin E-deregulated cells, consistent with a role for minichromosome maintenance complex proteins in initiation of replication and fork movement. Cyclin E-mediated impairment of DNA replication provides a potential mechanism for chromosome instability observed as a consequence of cyclin E deregulation.  相似文献   

10.
Initiation of eukaryotic DNA replication is a complex process including the recognition of initiation sites on DNA, multi-step DNA preparation for duplication, and assembly of multi-protein complexes capable of beginning DNA synthesis at initiation sites. The process starts at the late M phase and lasts till the appropriate time of the S phase for each initiation site. A chain of interesting interactions between Orc1p-6p, Cdc6p, Mcm2p-7p, Mcm10p, Cdt1, Cdc45p, Dbf4/Cdc7p, RPA, and DNA polymerase takes place during this period. The sequence of these interactions is controlled by cyclin-dependent kinases, as well as by ubiquitin-dependent proteolysis in the proteasome. This review summarizes the data on proteins initiating DNA replication and factors controlling their activities.  相似文献   

11.
Liang DT  Forsburg SL 《Genetics》2001,159(2):471-486
MCM proteins are required for the proper regulation of DNA replication. We cloned fission yeast mcm7(+) and showed it is essential for viability; spores lacking mcm7(+) begin S phase later than wild-type cells and arrest with an apparent 2C DNA content. We isolated a novel temperature-sensitive allele, mcm7-98, and also characterized two temperature-sensitive alleles of the fission yeast homolog of MCM10, cdc23(+). mcm7-98 and both cdc23ts alleles arrest with damaged chromosomes and an S phase delay. We find that mcm7-98 is synthetically lethal with the other mcmts mutants but does not interact genetically with either cdc23ts allele. However, cdc23-M36 interacts with mcm4ts. Unlike other mcm mutants or cdc23, mcm7-98 is synthetically lethal with checkpoint mutants Deltacds1, Deltachk1, or Deltarad3, suggesting chromosomal defects even at permissive temperature. Mcm7p is a nuclear protein throughout the cell cycle, and its localization is dependent on the other MCM proteins. Our data suggest that the Mcm3p-Mcm5p dimer interacts with the Mcm4p-Mcm6p-Mcm7p core complex through Mcm7p.  相似文献   

12.
Mcm10 is essential for chromosome replication in eukaryotic cells and was previously thought to link the Mcm2-7 DNA helicase at replication forks to DNA polymerase alpha. Here, we show that yeast Mcm10 interacts preferentially with the fraction of the Mcm2-7 helicase that is loaded in an inactive form at origins of DNA replication, suggesting a role for Mcm10 during the initiation of chromosome replication, but Mcm10 is not a stable component of the replisome subsequently. Studies with budding yeast and human cells indicated that Mcm10 chaperones the catalytic subunit of polymerase alpha and preserves its stability. We used a novel degron allele to inactivate Mcm10 efficiently and this blocked the initiation of chromosome replication without causing degradation of DNA polymerase alpha. Strikingly, the other essential helicase subunits Cdc45 and GINS were still recruited to Mcm2-7 when cells entered S-phase without Mcm10, but origin unwinding was blocked. These findings indicate that Mcm10 is required for a novel step during activation of the Cdc45-MCM-GINS helicase at DNA replication origins.  相似文献   

13.
Irelan JT  Gutkin GI  Clarke L 《Genetics》2001,157(3):1191-1203
Several members of protein families that are conserved in higher eukaryotes are known to play a role in centromere function in the fission yeast Schizosaccharomyces pombe, including two homologs of the mammalian centromere protein CENP-B, Abp1p and Cbh1p. Here we characterize a third S. pombe CENP-B homolog, Cbh2p (CENP-B homolog 2). cbh2Delta strains exhibited a modest elevation in minichromosome loss, similar to cbh1Delta or abp1Delta strains. cbh2Delta cbh1Delta strains showed little difference in growth or minichromosome loss rate when compared to single deletion strains. In contrast, cbh2Delta abp1Delta strains displayed dramatic morphological and chromosome segregation defects, as well as enhancement of the slow-growth phenotype of abp1Delta strains, indicating partial functional redundancy between these proteins. Both cbh2Delta abp1Delta and cbh1Delta abp1Delta strains also showed strongly enhanced sensitivity to a microtubule-destabilizing drug, consistent with a mitotic function for these proteins. Cbh2p was localized to the central core and core-associated repeat regions of centromeric heterochromatin, but not at several other centromeric and arm locations tested. Thus, like its mammalian counterpart, Cbh2p appeared to be localized exclusively to a portion of centromeric heterochromatin. In contrast, Abp1p was detected in both centromeric heterochromatin and in chromatin at two of three replication origins tested. Cbh2p and Abp1p homodimerized in the budding yeast two-hybrid assay, but did not interact with each other. These results suggest that indirect cooperation between different CENP-B-like DNA binding proteins with partially overlapping chromatin distributions helps to establish a functional centromere.  相似文献   

14.
Minichromosome maintenance proteins (Mcm) are essential in all eukaryotes and are absolutely required for initiation of DNA replication. The eukaryotic and archaeal Mcm proteins have conserved helicase motifs and exhibit DNA helicase and ATP hydrolysis activities in vitro. Although the Mcm proteins have been proposed to be the replicative helicase, the enzyme that melts the DNA helix at the replication fork, their function during cellular DNA replication elongation is still unclear. Using nucleoplasmic extract (NPE) from Xenopus laevis eggs and six purified polyclonal antibodies generated against each of the Xenopus Mcm proteins, we have demonstrated that Mcm proteins are required during DNA replication and DNA unwinding after initiation of replication. Quantitative depletion of Mcms from the NPE results in normal replication and unwinding, confirming that Mcms are required before pre-replicative complex assembly and dispensable thereafter. Replication and unwinding are inhibited when pooled neutralizing antibodies against the six different Mcm2-7 proteins are added during NPE incubation. Furthermore, replication is blocked by the addition of the Mcm antibodies after an initial period of replication in the NPE, visualized by a pulse of radiolabeled nucleotide at the same time as antibody addition. Addition of the cyclin-dependent kinase 2 inhibitor p21(cip1) specifically blocks origin firing but does not prevent helicase action. When p21(cip1) is added, followed by the non-hydrolyzable analog ATPgammaS to block helicase function, unwinding is inhibited, demonstrating that plasmid unwinding is specifically attributable to an ATP hydrolysis-dependent function. These data support the hypothesis that the Mcm protein complex functions as the replicative helicase.  相似文献   

15.
DNA replication is a stringently regulated cellular process. In proliferating cells, DNA replication-initiation proteins (RIPs) are sequentially loaded onto replication origins during the M-to-G1 transition to form the pre-replicative complex (pre-RC), a process known as replication licensing. Subsequently, additional RIPs are recruited to form the pre-initiation complex (pre-IC). RIPs and their regulators ensure that chromosomal DNA is replicated exactly once per cell cycle. Origin recognition complex (ORC) binds to, and marks replication origins throughout the cell cycle and recruits other RIPs including Noc3p, Ipi1-3p, Cdt1p, Cdc6p and Mcm2-7p to form the pre-RC. The detailed mechanisms and regulation of the pre-RC and its exact architecture still remain unclear. In this study, pairwise protein-protein interactions among 23 budding yeast and 16 human RIPs were systematically and comprehensively examined by yeast two-hybrid analysis. This study tested 470 pairs of yeast and 196 pairs of human RIPs, from which 113 and 96 positive interactions, respectively, were identified. While many of these interactions were previously reported, some were novel, including various ORC and MCM subunit interactions, ORC self-interactions, and the interactions of IPI3 and NOC3 with several pre-RC and pre-IC proteins. Ten of the novel interactions were further confirmed by co-immunoprecipitation assays. Furthermore, we identified the conserved interaction networks between the yeast and human RIPs. This study provides a foundation and framework for further understanding the architectures, interactions and functions of the yeast and human pre-RC and pre-IC.  相似文献   

16.
Mcm proteins play an essential role in eukaryotic DNA replication, but their biochemical functions are poorly understood. Recently, we reported that a DNA helicase activity is associated with an Mcm4-Mcm6-Mcm7 (Mcm4,6,7) complex, suggesting that this complex is involved in the initiation of DNA replication as a DNA-unwinding enzyme. In this study, we have expressed and isolated the mouse Mcm2, 4,6,7 proteins from insect cells and characterized various mutant Mcm4,6,7 complexes in which the conserved ATPase motifs of the Mcm4 and Mcm6 proteins were mutated. The activities associated with such preparations demonstrated that the DNA helicase activity is intrinsically associated with the Mcm4,6,7 complex. Biochemical analyses of these mutant Mcm4,6,7 complexes indicated that the ATP binding activity of the Mcm6 protein in the complex is critical for DNA helicase activity and that the Mcm4 protein may play a role in the single-stranded DNA binding activity of the complex. The results also indicated that the two activities of DNA helicase and single-stranded DNA binding can be separated.  相似文献   

17.
Eukaryotic cells coordinate chromosome duplication by assembly of protein complexes at origins of DNA replication and by activation of cyclin-dependent kinase and Cdc7p-Dbf4p kinase. We show in Saccharomyces cerevisiae that although Cdc7p levels are constant during the cell division cycle, Dbf4p and Cdc7p-Dbf4p kinase activity fluctuate. Dbf4p binds to chromatin near the G(1)/S-phase boundary well after binding of the minichromosome maintenance (Mcm) proteins, and it is stabilized at the non-permissive temperature in mutants of the anaphase-promoting complex, suggesting that Dbf4p is targeted for destruction by ubiquitin-mediated proteolysis. Arresting cells with hydroxyurea (HU) or with mutations in genes encoding DNA replication proteins results in a more stable, hyper-phosphorylated form of Dbf4p and an attenuated kinase activity. The Dbf4p phosphorylation in response to HU is RAD53 dependent. This suggests that an S-phase checkpoint function regulates Cdc7p-Dbf4p kinase activity. Cdc7p may also play a role in adapting from the checkpoint response since deletion of CDC7 results in HU hypersensitivity. Recombinant Cdc7p-Dbf4p kinase was purified and both subunits were autophosphorylated. Cdc7p-Dbf4p efficiently phosphorylates several proteins that are required for the initiation of DNA replication, including five of the six Mcm proteins and the p180 subunit of DNA polymerase alpha-primase.  相似文献   

18.
The function of the mammalian TIMELESS protein (TIM) has been enigmatic. TIM is essential for early embryonic development, but little is known regarding its biochemical and cellular function. Although identified based on similarity to a Drosophila circadian clock factor, it also shares similarity with a second family of proteins that is more widely conserved throughout eukaryotes. Members of this second protein family in yeast (S.c. Tof1p, S.p. Swi1p) have been implicated in DNA synthesis, S-phase-dependent checkpoint activation and chromosome cohesion, three processes coordinated at the level of the replication fork complex. The present work demonstrates that mammalian TIM and its constitutive binding partner, Tipin (ortholog of S.c. Csm3p, S.p. Swi3p), are replisome-associated proteins. Both proteins associate with components of the endogenous replication fork complex, and are present at BrdU-positive DNA replication sites. Knock-down of TIM also compromises DNA replication efficiency. Further, the direct binding of the TIM-Tipin complex to the 34 kDa subunit of replication protein A provides a biochemical explanation for the potential coupling role of these proteins. Like TIM, Tipin is also involved in the molecular mechanism of UV-dependent checkpoint activation and cell growth arrest. Tipin additionally associates with peroxiredoxin2 and appears to be involved in checkpoint responses to H(2)O(2), a role recently described for yeast versions of TIM and Tipin. Together, this work establishes TIM and Tipin as functional orthologs of their replisome-associated yeast counterparts capable of coordinating replication with genotoxic stress responses, and distinguishes mammalian TIM from the circadian-specific paralogs from which it was originally identified.  相似文献   

19.
A Schwacha  S P Bell 《Molecular cell》2001,8(5):1093-1104
The six MCM (minichromosome maintenance) proteins are essential DNA replication factors that each contain a putative ATP binding motif and together form a heterohexameric complex. We show that these motifs are required for viability in vivo and coordinated ATP hydrolysis in vitro. Mutational analysis discriminates between two functionally distinct MCM protein subgroups: Mcm4p, 6p, and 7p contribute canonical ATP binding motifs essential for catalysis, whereas the related motifs in Mcm2p, 3p, and 5p serve a regulatory function. Reconstitution experiments indicate that specific functional interactions between these two subgroups are required for robust ATP hydrolysis. Our observations show parallels between the MCM complex and the F1-ATPase, and we discuss how ATP hydrolysis by the MCM complex might be coupled to DNA strand separation.  相似文献   

20.
Garber PM  Rine J 《Genetics》2002,161(2):521-534
The MAD2-dependent spindle checkpoint blocks anaphase until all chromosomes have achieved successful bipolar attachment to the mitotic spindle. The DNA damage and DNA replication checkpoints block anaphase in response to DNA lesions that may include single-stranded DNA and stalled replication forks. Many of the same conditions that activate the DNA damage and DNA replication checkpoints also activated the spindle checkpoint. The mad2Delta mutation partially relieved the arrest responses of cells to mutations affecting the replication proteins Mcm3p and Pol1p. Thus a previously unrecognized aspect of spindle checkpoint function may be to protect cells from defects in DNA replication. Furthermore, in cells lacking either the DNA damage or the DNA replication checkpoints, the spindle checkpoint contributed to the arrest responses of cells to the DNA-damaging agent methyl methanesulfonate, the replication inhibitor hydroxyurea, and mutations affecting Mcm2p and Orc2p. Thus the spindle checkpoint was sensitive to a wider range of chromosomal perturbations than previously recognized. Finally, the DNA replication checkpoint did not contribute to the arrests of cells in response to mutations affecting ORC, Mcm proteins, or DNA polymerase delta. Thus the specificity of this checkpoint may be more limited than previously recognized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号