首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Among the bilaterally symmetrical, triploblastic animals (the Bilateria), a conserved set of developmental regulatory genes are known to function in patterning the anterior–posterior (AP) axis. This set includes the well-studied Hox cluster genes, and the recently described genes of the ParaHox cluster, which is believed to be the evolutionary sister of the Hox cluster ( Brooke et al. 1998 ). The conserved role of these axial patterning genes in animals as diverse as frogs and flies is believed to reflect an underlying homology (i.e., all bilaterians derive from a common ancestor which possessed an AP axis and the developmental mechanisms responsible for patterning the axis). However, the origin and early evolution of Hox genes and ParaHox genes remain obscure. Repeated attempts have been made to reconstruct the early evolution of Hox genes by analyzing data from the triphoblastic animals, the Bilateria ( Schubert et al. 1993 ; Zhang and Nei 1996 ). A more precise dating of Hox origins has been elusive due to a lack of sufficient information from outgroup taxa such as the phylum Cnidaria (corals, hydras, jellyfishes, and sea anemones). In combination with outgroup taxa, another potential source of information about Hox origins is outgroup genes (e.g., the genes of the ParaHox cluster). In this article, we present cDNA sequences of two Hox-like genes ( anthox2 and anthox6 ) from the sea anemone, Nematostella vectensis. Phylogenetic analysis indicates that anthox2 (=Cnox2) is homologous to the GSX class of ParaHox genes, and anthox6 is homologous to the anterior class of Hox genes. Therefore, the origin of Hox genes and ParaHox genes occurred prior to the evolutionary split between the Cnidaria and the Bilateria and predated the evolution of the anterior–posterior axis of bilaterian animals. Our analysis also suggests that the central Hox class was invented in the bilaterian lineage, subsequent to their split from the Cnidaria.  相似文献   

3.
4.
We isolated genes for hatching enzymes and their paralogs having two cysteine residues at their N-terminal regions in addition to four cysteines conserved in all the astacin family proteases. Genes for such six-cysteine-containing astacin proteases (C6AST) were searched out in the medaka genome database. Five genes for MC6AST1 to 5 were found in addition to embryo-specific hatching enzyme genes. RT-PCR and whole-mount in situ hybridization evidenced that MC6AST1 was expressed in embryos and epidermis of almost all adult tissues examined, while MC6AST2 and 3 were in mesenterium, intestine, and testis. MC6AST4 and 5 were specifically expressed in jaw. In addition, we cloned C6AST cDNA homologs from zebrafish, ayu, and fugu. The MC6AST1 to 5 genes were classified into three groups in the phylogenetic positions, and the expression patterns and hatching enzymes were clearly discriminated from other C6ASTs. Analysis of the exon–intron structures clarified that genes for hatching enzymes MHCE and MAHCE were intron-less, while other MC6AST genes were basically the same as the gene for another hatching enzyme MLCE. In the basal Teleost, the C6AST genes having the ancestral exon–intron structure (nine exon/eight intron structure) first appeared by duplication and chromosomal translocation. Thereafter, maintaining such ancestral exon–intron structure, the LCE gene was newly diversified in Euteleostei, and the MC6AST1 to 5 gene orthologs were duplicated and diversified independently in respective fish lineages. The HCE gene lost all introns in Euteleostei, whereas in the lineage to zebrafish, it was translocated from chromosome to chromosome and lost some of its introns.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.The nucleotide sequence data reported in the present paper will appear in the DDBJ/EMBL/GenBank nucleotide sequence databases with accession numbers from AB256940 to AB256952.  相似文献   

5.
6.
The review is devoted to the mechanisms of generation and coding of human and murine autoantibodies.  相似文献   

7.
Rethinking genes     
The gene is the central construct of twentieth-century biology and evolution. It is a construct because, like “culture” in anthropology, “gene” is widely used and is central to the discipline's discourse, but eludes rigorous definition. Although the gene is acknowledged as a material entity, its membership criteria are unclear and its boundaries are fuzzy—indeed, more than one can occupy the same space at the same time. The purpose of this essay is to bring to light recent refinements in our conception of the gene and their implications for its use in biological anthropology.  相似文献   

8.
Intronic genes     
  相似文献   

9.
10.
11.
Pain genes     
Foulkes T  Wood JN 《PLoS genetics》2008,4(7):e1000086
Pain, which afflicts up to 20% of the population at any time, provides both a massive therapeutic challenge and a route to understanding mechanisms in the nervous system. Specialised sensory neurons (nociceptors) signal the existence of tissue damage to the central nervous system (CNS), where pain is represented in a complex matrix involving many CNS structures. Genetic approaches to investigating pain pathways using model organisms have identified the molecular nature of the transducers, regulatory mechanisms involved in changing neuronal activity, as well as the critical role of immune system cells in driving pain pathways. In man, mapping of human pain mutants as well as twin studies and association studies of altered pain behaviour have identified important regulators of the pain system. In turn, new drug targets for chronic pain treatment have been validated in transgenic mouse studies. Thus, genetic studies of pain pathways have complemented the traditional neuroscience approaches of electrophysiology and pharmacology to give us fresh insights into the molecular basis of pain perception.  相似文献   

12.
Abbott AL 《Current biology : CB》2003,13(21):R824-R825
  相似文献   

13.
abl genes   总被引:5,自引:0,他引:5  
  相似文献   

14.
15.
16.
17.
Speciation genes     
Until recently, the genes that cause reproductive isolation remained black boxes. Consequently, evolutionary biologists were unable to answer several questions about the identities and characteristics of "speciation genes". Over the past few years, however, evolutionary geneticists have finally succeeded in isolating several such genes, providing our first glimpse at factors that are thought to be representative of those underlying the origin of species. Evolutionary analysis of these genes suggests that speciation results from positive Darwinian selection within species. Molecular evolutionary study of the genes causing reproductive isolation may represent an important new phase in the study of speciation.  相似文献   

18.
Determination genes   总被引:3,自引:0,他引:3  
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号