首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previously it has been shown that the binding of porcine pancreatic phospholipase A2 to lipid-water interfaces is governed by the pK of the alpha-NH3+ group of the N-terminal alanine. Chemically modified phospholipases A2 in which the N-terminal Ala has been replaced by D-Ala or in which the polypeptide chain has been elongated with DL-Ala no longer display activity toward micellar substrate. The activity of DL-Ala-1-, [D-Ala1]-, and [Gly1]phospholipases A2 on substrate monolayers, which allow a continuous change in the packing density of the lipid molecule, was investigated. At pH 6 [Gly1]phospholipase A2 behaves like the native enzyme on lecithin monolayers. DL-Ala1- and [D-Ala1]phospholipases A2, although they are active in this system, showed a weaker lipid penetration capacity at this pH. Studies on the pH and Ca2+ ion dependency of the pre-steady-state kinetics and of the activity of these radiolabeled proteins showed that [D-Ala1]phospholipase A2 does not possess a second low-affinity site for Ca2+ ions in contrast to the native phospholipase A2. This second low-affinity Ca2+ binding site, which is also absent in [Gly1]phospholipase A2, is induced in the latter enzyme by the presence of lipid-water interfaces.  相似文献   

2.
Human platelets labelled with either [14C]arachidonic acid or [32P]orthophosphate were loaded or not with the Ca2+ fluorescent indicator quin 2. They were then incubated in the presence or in the absence of human thrombin (1 U/ml) in a medium where Ca2+ concentration was adjusted near zero or to 1 mM. Under these conditions, phospholipase A2 activity, as detected by the release of [14C]arachidonate and of its metabolites, or by the hydrolysis of [14C]phosphatidylcholine, was severely impaired in quin 2-loaded platelets upon removal of external Ca2+. However, Ca2+ was not required in non-loaded platelets, where a maximal phospholipase A2 activity was detected in the absence of external Ca2+. In contrast, phospholipase C action, as determined from the amounts of [14C]diacylglycerol, [14C]- or [32P]phosphatidic acid formed, appeared to be much less sensitive to the effects of quin 2 loading and of Ca2+ omission. By using various concentrations of quin 2, it was found that the inhibitory effect exerted against phospholipase A2 could be overcome by external Ca2+ only when the intracellular concentration of the calcium chelator did not exceed 2 mM. At higher concentrations averaging 3.5 mM of quin 2, phospholipase A2 activity was fully suppressed even in the presence of external Ca2+, whereas phospholipase C was still active, although partly inhibited. It is concluded that platelet phospholipase A2 requires higher Ca2+ concentrations than phospholipase C to display a maximal activity. By comparing platelet phospholipase A2 activity under various conditions with the values of cytoplasmic free Ca2+ as detected by quin 2 fluorescence, it is proposed that cytoplasmic free Ca2+ in control platelets stimulated with thrombin can attain concentrations above 1 microM, probably close to 5-10 microM, as recently determined with the photoprotein aequorin (Johnson, P.C., Ware, J.A., Cliveden, P.B., Smith, M., Dvorak, A.M. and Salzman, E.W. (1985) J. Biol. Chem. 260, 2069-2076).  相似文献   

3.
A membrane bound phospholipase A2 (phosphatide 2-acylhydrolase, EC 3.1.1.4) from human platelets has been purified 3500-fold, and partially characterized. Phospholipase A2 activity was assayed using [1(-14)C] oleate-labeled Escherichia coli or sonicated dispersions of synthetic phospholipids. The 2-acyl specificity of the phospholipase activity was confirmed using phosphatidylethanolamine labeled in the C-1 position as substrate. The purified enzyme was maximally active between pH 8.0 and 10.5, and had an absolute requirement for low concentrations of Ca2+. Indomethacin, but not aspirin, inhibited phospholipase A2 activity.  相似文献   

4.
Inactivation of (Na+ + K+)-ATPase of Yoshida sarcoma cells and beef brain microsomes by phospholipase A2 and a cytotoxin P6 from snake venom has been examined in relation to their activity to degrade phospholipids. Cytotoxin P6 which was most basic and devoid of phospholipase activity was most effective in inhibiting the (Na+ + K+)-ATPase of Yoshida sarcoma cells. Phospholipase A2 from Naja naja which was most active in degrading phospholipids was least effective in inhibiting (Na+ + K+)-ATPase in Yoshida sarcoma cells or in beef brain microsomes. Addition of trace amounts of cytotoxin P6 to the phospholipase considerably enhanced the inactivation of (Na+ + K+)-ATPase. The evidence suggests that the charge of the inhibitor protein and its specific structure play an important role in the inactivation of (Na+ + K+)-ATPase.  相似文献   

5.
Phospholipase A2 activity in sonicates and acid extracts of ejaculated, washed human sperm was measured using [1-14C] oleate-labeled autoclaved E. coli and 1-[1-14C] stearoyl-2-acyl-3-sn- glycerophosphorylethanolamine as substrates. Phospholipase A was optimally active at pH 7.5, was calcium-dependent, and exclusively catalyzed the release of fatty acid from the 2-position of phospholipids. The activity was membrane-associated, and was solubilized by extraction with 0.18 N H2SO4. Acid extracts of human sperm had the highest specific activity (1709 nmols /h per mg), followed by mouse, rabbit and bull, which were 105, 36 and 1.7 nmols /h per mg, respectively. para-bromophenacyl bromide inhibited human sperm phospholipase A2 activity, but mepacrine was without effect. In the presence of 1.0 mM added CaCl2, phospholipase A2 activity was inhibited by Zn2+ and Mn2+; whereas Cu2+, Cd2+, Mg2+, or Sr2+ had no effect. Zn2+ stimulated activity at low concentrations (10(-6) to 10(-8) M), and inhibited activity in a dose-dependent manner at concentrations of 10(-5) M. The extent of stimulation by low concentrations of Zn2+ was dependent on Ca2+ concentration; at 10(-7) M, Zn2+ activity was stimulated 160% with 0.5 mM CaCl2, and only 120% with 1.0 mM CaCl2. At low concentrations (10(-5) to 10(-7) M), methoxyverapamil (D600) and trifluoperazine stimulated human sperm phospholipase A2 activity, and trifluoperazine but not D600 produced almost complete inhibition between 10(-5) and 10(-4) M of the drug. The significance of human sperm phospholipase A2 activity and its modulation by Ca2+, Zn2+ and Mn2+ in the sperm acrosome reaction is discussed.  相似文献   

6.
A low-molecular weight phospholipase A2 from Arabidopsis thaliana, isoform phospholipase A2-alpha, has been expressed in Escherichia coli in the form of inclusion bodies, refolded, and purified to homogeneity to yield the active mature enzyme. The enzyme was characterized with respect to pH, temperature optimum, and Ca2+ ion requirement. The enzyme has been shown to be a true secretory phospholipase A2 that requires Ca2+ ions in the millimolar range and belongs to group XIB. On the basis of the three-dimensional structures of secretory phospholipase A2 forms (sPLA2s) from bee venom and bovine pancreas, a homology model was generated. Analysis of this model and alignments of different plant sPLA2s showed that the common His-Asp dyad of animal sPLA2s does not exist in plant sPLA2s. In place of the aspartate residue of the dyad, the plant enzymes of group XIA contain a histidine residue, and the enzymes of group XIB contain a serine or an asparagine residue. Mutagenesis of amino acids supposed to be involved in catalysis has shown that His62, the calcium-coordinating Asp63, and the above-mentioned Ser79 residue are essential for activity.  相似文献   

7.
The role of calcium ions in the phospholipid hydrolysis by phospholipase D was studied. It was shown that the enzyme does not split egg lecithine in the absence of Ca2+. In the presence of Ca2+ the reaction occurs via different routes, depending on the type of initiation of the reaction. The optimal concentrations of Ca2+ necessary for activation of phospholipase D are different in the systems activated by various treatments (organic solvents, detergents and solid adsorbents). Optimal concentrations of Ca2+ for the hydrolysis and methanolysis catalyzed by phospholipase D are also different. It was found that the need for Ca2+ and their optimal concentrations are determined by the state of phospholipids at the substrate phase. The data suggest that the enzymatic hydrolysis may occur in the absence of Ca2+. Thus, Ca2+-induced activation is merely an alternative pathway of catalytically active conformation of lypolytic enzymes.  相似文献   

8.
In cell-free extracts of rat liver macrophages (Kupffer cells) phospholipase A2 was found to be strongly activated at free Ca2+ concentrations from 100 nM to 1 microM in the presence of 4 mM free Mg2+. This is within the range of intracellular free Ca2+ reported for basal and various stimulated conditions, respectively. Ca2+ alone increased phospholipase A2 activity at high Ca2+ concentrations (1 mM) whereas Mg2+ alone had only little stimulatory effect. Calmodulin does not seem to participate in the regulation of phospholipase A2 although it relieved the inhibition of phospholipase A2 activity by calmodulin antagonists.  相似文献   

9.
Some properties (catalytic and hemolytic activity, pH and temperature optima, stability, substrate specificity, effects of detergents and metal ions, N-terminal sequence, chemical modification of histidine in the enzyme active center, etc.) of phospholipase A2 from hornet (Vespa orientalis) venom were studied. It was shown that phospholipase A2 from hornet venom differs essentially from other enzymes of this species in terms of stability, catalytic properties and structural features. The active center of the enzyme contains an essential histidine residue, similar to other phospholipases A2 from various sources. Unlike other known forms of phospholipase A2, the enzyme under study exerts a pronounced hemolytic action. The hemolysis is inhibited by Ca2+ at concentrations capable of inducing the activation of the hydrolytic activity of the enzyme.  相似文献   

10.
The partial characterization of a calcium-dependent phospholipase A2 associated with membranes of mouse sperm is described. Intact and sonicated sperm had comparable phospholipase A2 activity which was maximal at pH 8.0 using [1-14C]oleate-labeled autoclaved Escherichia coli or 1-[1-14C]stearoyl-2-acyl-3-sn-glycerophosphorylethanolamine as substrates. More than 90% of the activity was sedimented when the sperm sonicate was centrifuged at 100 000 X g, indicating that the enzyme is almost totally membrane-associated. The activity is stimulated 200% during the ionophore-induced acrosome reaction and is almost equally distributed between plasma/outer acrosomal and inner acrosomal membrane fractions. The membrane-associated phospholipase A2 had an absolute requirement for low concentrations of Ca2+; Sr2+, Mg2+ and other divalent and monovalent cations would not substitute for Ca2+. In the presence of optimal Ca2+, zinc and gold ions inhibited the activity while Cu2+ and Cd2+ were without effect. Incubation of sperm sonicates with 1-[1-14C]stearoyl-2-acyl-3-sn-glycerophosphorylethanolamine in the presence and absence of sodium deoxycholate demonstrated the presence of phospholipase A2 and lysophospholipase activities. No phospholipase A1 activity was detectable. Indomethacin, sodium meclofenamate and mepacrine, but not dexamethasone or aspirin, inhibited the sperm phospholipase A2 activity. Preincubation with p-bromophenacyl bromide inhibited phospholipase A2, suggesting the presence of histidine at the active site. The enzyme may play an important role in the membrane fusion events in fertilization.  相似文献   

11.
Upon stimulation of human polymorphonuclear neutrophils with platelet-activating factor (PAF), arachidonic acid (AA) is released from membrane phospholipids. The mechanism for AA liberation, a key step in the synthesis of biologically active eicosanoids, was investigated. PAF was found to elicit an increase in the cytoplasmic level of free Ca2+ as monitored by fluorescent indicator fura 2. When [3H] AA-labeled neutrophils were exposed to PAF, the enhanced release of AA was observed with a concomitant decrease of radioactivity in phosphatidylinositol and phosphatidylcholine fractions. The inhibitors of phospholipase A2, mepacrine and 2-(p-amylcinnamoyl)-amino-4-chlorobenzoic acid, effectively suppressed the liberation of [3H]AA from phospholipids, indicating that liberation of AA is mainly catalyzed by the action of phospholipase A2. The extracellular Ca2+ is not required for AA release. However, intracellular Ca2+ antagonists, TMB-8 and high dose of quin 2/AM drastically reduced the liberation of AA induced by PAF, indicating that Ca2+ is an essential factor for phospholipase A2 activation. PAF raised the fluorescence of fura 2 at concentrations as low as 8 pM which reached a maximal level about 8 nM, whereas more than nM order concentrations of PAF was required for the detectable release of [3H]AA. Pretreatment of neutrophils with pertussis toxin resulted in complete abolition of AA liberation in response to PAF. However, the fura 2 response to PAF was not effectively inhibited by toxin treatment. In human neutrophil homogenate and membrane preparations, guanosine 5'-O-(thiotriphosphate) stimulated AA release and potentiated the action of PAF. Guanosine 5'-O-(thiodiphosphate) inhibited the effects of guanosine 5'-O-(thiotriphosphate). These results suggest several points: 1) PAF stimulates human polymorphonuclear neutrophils to liberate AA mainly by the action of phospholipase A2; 2) Ca2+ mobilization alone is not sufficient to stimulate AA release, although Ca2+ is the important factor for phospholipase A2 activation; and 3) a pertussis toxin-sensitive GTP-binding protein may be implicated in activation of phospholipase A2.  相似文献   

12.
The metabolism of D-glucose is believed to initiate and regulate insulin secretion by islet beta-cells, although the identity of the metabolite which couples glucose metabolism to the cellular events involved in insulin secretion is unknown. An alternative hypothesis involves the presence of a glucoreceptor for which there has been no biochemical evidence. We have investigated whether glucose recognition by the beta-cell is coupled to phospholipase C. We have used digitonin-permeabilized, [3H]inositol-prelabeled islets to study glucose and carbachol activation of phospholipase C. In this model, carbachol recognition by its muscarinic receptor was coupled to phospholipase C activation. D-Glucose (but not L-glucose) also stimulated phospholipase C activity in these permeabilized islets. This effect was not due to glucose metabolism since glucose 6-phosphate did not affect phospholipase C activity and since phosphorylation of [3H]glucose was not detectable in digitonin-permeabilized islets. Glucose had no effect on the myo-inositol-1,4,5-trisphosphate-5-phosphatase or 3-kinase activities. In the absence of agonist, free Ca2+ concentrations between 0.1 and 1 microM (as determined with a Ca2+-specific electrode) did not influence phospholipase C activity. Stimulation of phospholipase C activity by either carbachol or glucose required Ca2+ in the submicromolar range and was optimal at 0.5 microM free Ca2+.myo-Inositol-1,3,4,5-tetrakisphosphate production from permeabilized islets was synergistically augmented by Ca2+ (0.5-10 microM) and glucose. Phospholipase C activity in islets is therefore not directly activated by free Ca2+ concentrations in the submicromolar range. Furthermore, glucose per se activates phospholipase C activity independently of glucose metabolism. A working hypothesis based on these findings is that glucose is recognized by a site which is coupled to phospholipase C in islets.  相似文献   

13.
The promyelocytic cell line HL-60 has been used as an in vitro model to study the mechanism of action of two chemotactic aldehydes, 2-nonenal and 4-hydroxynonenal. Increasing aldehyde concentrations have been added to undifferentiated and DMSO-differentiated cells incubated at 37 degrees C and their effect on phosphoinositide-specific phospholipase C has been analysed by using a specific inositol-1,4,5-tris-phosphate assay system. Concentrations of 2-nonenal between 10(-9) and 10(-7) M significantly increased the enzymatic-activity in DMSO-differentiated HL-60 cells, while 10(-9) and 10(-8) M concentrations were active in the undifferentiated cells. 4-Hydroxynonenal was able to activate phospholipase C both in undifferentiated and DMSO-differentiated cells at concentrations ranging from 10(-8) to 10(-6) M. The concentrations of both compounds active on phospholipase C displayed a good correspondence with those which had been reported to be chemotactic towards rat neutrophils. In the case of 4-hydroxynonenal, the present results confirm its ability to activate phospholipase C, which we had previously shown in isolated neutrophil plasma membranes. The comparison of the effects of 2-nonenal and 4-hydroxynonenal on chemotaxis and phospholipase C activation suggests a common mechanism of action for both aldehydes, for which the presence of the double bond seems to be required.  相似文献   

14.
7F0----5D0 excitation spectroscopy of Eu3+ has been used to study the catalytic Ca2+-binding site of pancreatic phospholipases A2. Eu3+ binds competitively with Ca2+ to the enzyme with retention of about 5% of the activity found with Ca2+. The dissociation constants for the Eu3+-enzyme complexes of bovine phospholipase A2 and porcine isophospholipase A2 are 0.22 mM and 0.16 mM, respectively. Results obtained with the porcine phospholipase A2 at neutral pH indicate aggregation of this enzyme at protein concentrations above 0.18 mM. The Eu3+ bound at the catalytic site of pancreatic phospholipase A2 is coordinated to four or five water molecules, which, in conjunction with binding constant data, suggests the involvement of two or three protein ligands. Addition of a monomeric substrate analogue to the enzyme-Eu3+ complex results in the loss of an additional water molecule from the first coordination sphere of the bound Eu3+. This result suggests an interaction between the negative charge of the polar head group of the substrate analogue and the Eu3+. Binding of the enzyme-Eu3+ complex to micelles results in a nearly complete dehydration of the Eu3+ bound to the catalytic center. In the phospholipase A2-Eu3+-micelle complex, only one H2O molecule is coordinated to Eu3+. This dehydration at the active site of phospholipase A2 in the protein-lipid complex can be an important reason for the enhanced activity of this enzyme at lipid-water interfaces.  相似文献   

15.
In cell-free extracts of rat liver macrophages (Kupffer cells) phospholipase A2 was found to be rapidly associated with the particulate fraction in a Ca(2+)-dependent manner at Ca2+ concentrations of 0.1-1.0 microM. This is also the range of the levels of intracellular Ca2+ reported for basal and various stimulated conditions. After translocation, phospholipase A2 could be released from the membranes in the presence of Ca2+ chelators, increasing the specific activity of phospholipase A2 in the supernatant fraction. These findings support the view that translocation is a regulatory mechanism of phospholipase A2 by bringing the enzyme to its substrate. Unlike the situation with protein kinase C, Mg2+ exerted little effect on phospholipase A2 translocation, indicating that this process is regulated in vivo mainly by fluctuations of the intracellular Ca2+ content.  相似文献   

16.
Dimeric T. flavoviridis phospholipase A2 has been studied in terms of the interaction with essential Ca2+ by equilibrium gel filtration, ultraviolet difference spectroscopy, fluorescence measurements, and chemical modifications with p-bromophenacyl bromide. The subunit bound to Ca2+ with a 1:1 molar ratio and no cooperative binding was observed. The hypochromic effect produced upon the binding of Ca2+ is due to perturbation of (a) specific tryptophan residue(s) located in the vicinity of the active site and appears to be characteristic of this enzyme. On the basis of the pH dependence of the dissociation constants, it has been found that the alpha-amino group (pKa 8.7) controls the binding of Ca2+. Deprotonation of the alpha-amino group is possibly accompanied by conformational transition to the active form which is able to bind Ca2+. This is in contrast to the case of bovine pancreatic phospholipase A2 in which Asp-49 (pKa 5.2) is responsible for the metal ion binding (Fleer et al. (1981) Eur. J. Biochem. 113, 283-288). Des-octapeptide(1-8)-phospholipase A2 (L-fragment) was found to be capable of binding Ca2+ under the control of a group with a pKa of 7.6. This pKa value was similar to an apparent pKa of 7.5 determined for the histidine residue in the active site of the native enzyme by way of p-bromophenacyl bromide modification. It appears that the N-terminal (octapeptide) sequence affects the binding mode of Ca2+, possibly because of conformational transition arising from its removal. The reinvestigation showed that the N-terminal octapeptide sequence is Gly-Leu-Trp-Gln-Phe-Glu-Asn-Met.  相似文献   

17.
Modification of Trimeresurus flavoviridis phospholipase A2 with a 5-fold molar excess of tetranitromethane produced 40% active mononitrotyrosyl phospholipase A2 in which Tyr-76 was specifically nitrated. This is in contrast to the case of mammalian pancreatic phospholipases A2 where Tyr-70 but not Tyr-76 was nitrated. When Ca2+ was bound to T. flavoviridis mononitrotyrosyl phospholipase A2, nitrated tyrosine (Tyr(NO2))-76 moved from a less polar site to a polar site with the decrease of the pKa value of its hydroxyl group. Nitration of Tyr-76 did not influence the binding affinity to Ca2+. Addition of laurylphosphorylcholine to mononitrotyrosyl phospholipase A2 in the presence of Ca2+ caused the movement of Tyr(NO2)-76 from a polar environment to a less polar environment with the rise in the pKa value. Tyrosine-76 is located in the site whose environmental polarity is affected by the binding of the ligands to the active site. As Tyr-76 is located in the site not proximal to the active site, it could be assumed that the conformational change induced by the binding of the ligands extends to the region remote from the active site in T. flavoviridis phospholipase A2. This might provide evidence of long-range diffusional coupling between remote sites in the noncooperative globular protein.  相似文献   

18.
The present study examined (a) the source of arachidonic acid for Ca2+-stimulated renal inner medullary prostaglandin synthesis, (b) the Ca2+-dependence of enzymes of the phospholipase A2 and C pathways, and (c) the role of calmodulin in these Ca2+ actions. Ca2+ plus the ionophore A23187 stimulated (2-4-fold) release of labeled arachidonate, diglyceride, prostaglandin E2 or F2 alpha from inner medullary slices with a concomitant fall in labeled phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine. The calmodulin antagonist N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide hydrochloride (W-7) (10-100 microM) abolished or suppressed Ca++-stimulated immunoreactive prostaglandin E, labeled arachidonate and prostaglandin release, and the fall in labeled phospholipids but did not suppress labeled diglyceride or inositol accumulation. Studies in subcellular fractions demonstrated a particulate phospholipase A2 activity and a phosphatidylinositol-specific phospholipase C activity which was predominantly soluble (80%). W-7 or trifluoperazine (25 microM) abolished Ca2+-stimulated phospholipase A2 activity and particulate phospholipase C activity but were without effect on soluble phospholipase C. W-7 (100 microM) was without effect on Ca2+-stimulated diglyceride lipase and phosphatidic acid-specific phospholipase A2 activities. Hypertonic urea at concentrations that pertain in the inner medulla of hydropenic rats in vivo inhibited Ca2+-induced increases in labeled arachidonate release and immunoreactive prostaglandin E in slice incubates and Ca2+-responsive phospholipase C and A2. The results are consistent with the involvement of phospholipase A2, C, or both in the Ca2+ (+A23187)-stimulated release of free arachidonate for prostaglandin synthesis and support a role for calmodulin in Ca2+ activation of phospholipase A2 and particulate phospholipase C.  相似文献   

19.
The N and C terminals and tyrosine-phosphorylating site of the middle-sized tumor antigen of polyoma virus were chemically synthesized. The sequences of these peptides were Met-Asp-Arg-Val-Leu-Ser-Arg-Ala-Asp-Lys (N-MT), Met-Leu-Phe-Ile-Leu-Ile-Lys-Arg-Ser-Arg-His-Phe (C-MT), and Glu-Glu-Glu-Glu-Tyr-Met-Pro-Met-Glu (MT-Tyr), respectively. Among these peptides, the C-MT peptide inhibited phospholipase A2 (EC 3.1.1.4), phospholipase C (EC 3.1.4.3), and phospholipase D (EC 3.1.4.4). In addition, phosphatidylinositol-specific phospholipase C (EC 3.1.4.10) was also inhibited by this peptide. To study the mechanism of the inhibition, kinetic analysis was performed using phospholipase A2 from porcine pancreas. The degree of inhibition of phospholipase was dose dependent, and maximal inhibition was observed at pH 8.8. This peptide inhibited phospholipase A2 in a competitive manner for low-affinity sites of Ca2+, and in a noncompetitive manner for phospholipid substrates. When a fatty acid in the 2 position of the glycerol moiety of phosphatidylcholine was replaced by palmitic acid (C16:0), oleic acid (C18:1), linoleic acid (C18:2), eicosatrienoic acid (C20:3), or arachidonic acid (C20:4), the degree of inhibition of phosphatidylcholine hydrolysis by the C-MT peptide decreased. Inhibition of phospholipase A2 by the C-MT peptide was reversed by low concentrations of sodium deoxycholate but not by Triton X-100 or Nonidet P40, nonionic detergents. These detergents and the modification of acyl groups altered the micellar state of phospholipids. These results, taken together, suggest that the binding of the C-MT peptide near the low-affinity Ca2+ binding sites modifies the interaction of phospholipid substrates with the active center of phospholipase A2.  相似文献   

20.
In order to probe the role of Asp-49 in the active site of porcine pancreatic phospholipase A2 two mutant proteins were constructed containing either Glu or Lys at position 49. Their enzymatic activities and their affinities for substrate and for Ca2+ ions were examined in comparison with the native enzyme. Enzymatic characterization indicated that the presence of Asp-49 is essential for effective hydrolysis of phospholipids. Conversion of Asp-49 to either Glu or Lys strongly reduces the binding of Ca2+ ions in particular for the lysine mutant but the affinity for substrate analogues is hardly affected. Extensive purification of [Lys49]phospholipase A2 from the venom of Agkistrodon piscivorus piscivorus yielded a protein which was 4000 times less active than the basic [Asp49]phospholipase A2 from this venom. Inhibition studies with p-bromophenacyl bromide showed that this residual activity was due to a small amount of contaminating enzyme and that the Lys-49 homologue itself is inactive. The results obtained both with the porcine pancreatic phospholipase A2 mutants and with the native venom enzymes show that Asp-49 is essential for the catalytic action of phospholipase A2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号