首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 293 毫秒
1.
Harpin_(Pss)诱导的烟草早期防卫反应及钙的参与   总被引:1,自引:0,他引:1  
Harpin_(Pss)可引发烟草过敏反应。超氧化物歧化酶能抑制,而过氧化氢酶不能抑制harpin_(Pss)诱导产生的这个反应,表明是超氧阴离子(O_2~-)是harpin_(Pss)诱导的烟草过敏反应的必要因子。Harpin_(Pss)还可引起烟草悬浮细胞活性氧的释放和胞外碱性化这两个早期防卫反应。Diphenylene iodonium能消除这种活性氧的诱导,这提示harpin_(Pss)可能是通过诱导NADPH氧化酶而产生O_2~_的。EGTA在无Ca~(2 )培养基中,能消除harpin_(Pss)诱导的烟草悬浮培养物的这两种防卫反应,再向培养基加Ca~(2 ),可恢复harpin_(Pss)的效应。LaCl_3、verapamil、新霉素、U-73122和LiCl也能抑制harpin_(Pss)诱导的这些反应,这表明由Ca~(2 )通道介导的Ca~(2 )内流和胞内Ca~(2 )库中Ca~(2 )的释放也参与了harpin_(Pss)诱导的早期防卫反应和过敏反应。在加harpin_(Pss)后很长时期内加放线菌素D、环己亚胺,都能抑制由它引发的过敏性细胞坏死过程,但它们对harpin_(Pss)诱导的活性氧的产生没有影响。表明O_2~-只是harpin_(Pss)诱发过敏性细胞凋亡的一个促发信号,过敏反应是更复杂的过程,需有基因持续地表达。  相似文献   

2.
采用RT-PCR方法研究了不同浓度壳寡糖对烟草悬浮细胞茉莉酸合成酶基因的转录调控。结果表明, 50 μg.mL-1壳寡糖能够明显诱导烟草悬浮细胞茉莉酸合成途径的关键酶——磷脂酶A2、13-脂氧合酶、丙二烯氧化物合成酶、丙二烯氧化物环化酶和12-氧-植物二烯酸还原酶基因的表达, 而且该浓度的壳寡糖对这些基因的诱导作用相同(似)。在实验设定时间内均诱导表达编码磷脂酶A2的基因, 对其它基因的诱导时间均为8小时, 表明50 μg.mL-1壳寡糖在诱抗过程中启动了茉莉酸合成途径。而200 μg.mL-1壳寡糖的处理对这些基因的表达无显著影响。表明不同浓度的壳寡糖对烟草悬浮细胞的作用模式存在差异, 且高浓度的壳寡糖在烟草悬浮细胞中启动的信号通路可能没有茉莉酸信号的参与。  相似文献   

3.
壳寡糖对烟草悬浮细胞茉莉酸合成基因转录的影响   总被引:2,自引:0,他引:2  
采用RT-PCR方法研究了不同浓度壳寡糖对烟草悬浮细胞茉莉酸合成酶基因的转录调控。结果表明,50μg·mL^-1壳寡糖能够明显诱导烟草悬浮细胞茉莉酸合成途径的关键酶——磷脂酶A2、13-脂氧合酶、丙二烯氧化物合成酶、丙二烯氧化物环化酶和12-氧-植物二烯酸还原酶基因的表达,而且该浓度的壳寡糖对这些基因的诱导作用相同(似)。在实验设定时间内均诱导表达编码磷脂酶A2的基因,对其它基因的诱导时间均为8小时,表明50μg·mL^-1壳寡糖在诱抗过程中启动了茉莉酸合成途径。而200μg·mL^-1壳寡糖的处理对这些基因的表达无显著影响。表明不同浓度的壳寡糖对烟草悬浮细胞的作用模式存在差异,且高浓度的壳寡糖在烟草悬浮细胞中启动的信号通路可能没有茉莉酸信号的参与。  相似文献   

4.
无论在harpin_(Pss)之前、同时、还是之后向烟草植株或悬浮培养系加阴离子通道的抑制剂DIDS(4,4’-diisothiocyanatostilbene-2,2’-disulfonic acid)或AgC(anthracene-9-carboxylic acid),都可以抑制harpin_(Pss)诱导的烟草植株过敏反应和悬浮细胞的活性氧的释放及胞外碱性化。DIDS和A9C还可以抑制harpin_(Pss)诱导的Ca~(2 )内流。而且DIDS的抑制效率比A9C高。推测质膜上的阴离子通道对钙离子通道有着正调节作用,harpin_(Pss)通过阴离子通道和钙离子通道介导的信号传导途径,调节胞内Ca~(2 )浓度,从而启动这些防卫反应。  相似文献   

5.
α-吡啶羧酸(PA)是动物细胞程序化死亡的诱导物.我们前期的研究表明,PA可以激发单子叶模式植物水稻的过敏反应(HR).进一步用双子叶模式植物拟南芥(Arabidopsis thaliana)进行的研究表明,PA是一个广谱的植物HR反应的激发子,包括诱导氧进发和细胞死亡.我们探究了PA诱导的拟南芥防卫反应途径,利用不同信号途径标志基因PR-1,PR-2和PDF1.2受诱导剂量和时间激活的结果,表明PA可以同时激活水杨酸和茉莉酸/乙烯依赖的防卫途径.我们也发现PA诱导水稻悬浮细胞产生活性氧是钙离子依赖性的.综合所有结果,我们认为PA可以作为一个非专化性的植物防卫反应激发子,可望用于系统获得性抗性激发的细胞模型的建立.  相似文献   

6.
大丽轮枝菌分泌蛋白激发子的分离纯化及生物功能研究   总被引:1,自引:0,他引:1  
利用硫酸铵沉淀、(A)KTA explorer 10蛋白纯化仪、非变性电泳、割胶电洗脱等方法,从大丽轮枝菌(Verticillium dahliae)发酵液中分离纯化出一种蛋白激发子,经SDS-PAGE电泳检测单一条带,相对分子量为20 kD.该蛋白激发子能够诱导烟草的过敏反应,处理6h后,处理部位出现水溃状,24h后出现坏死斑.该激发子可以诱导烟草细胞在较短时间内产生防卫反应信号分子H2O2和NO,并引起活性氧爆发.  相似文献   

7.
机械刺激可诱发烟草悬浮培养细胞中H2O2的积累,提高烟草悬浮培养细胞在高温胁迫下的存活率和再生能力,缓解高温胁迫下的细胞活力丧失和膜伤害,外源H2O2预处理也可提高烟草悬浮细胞的耐热性。这些暗示H2O2作为信号分子可触发机械刺激诱导的烟草悬浮细胞耐热性形成。  相似文献   

8.
激发植物本身的天然免疫系统可作为防控植物病害的新途径。以50株分离自繁茂膜海绵的真菌为受试菌株筛选具有诱导植物抗性活性的菌株及其代谢产物。采用基于H2DCF-DA的荧光酶标法考察这些真菌的粗代谢物诱导烟草悬浮细胞产生氧爆发的活性,最终筛选到一株真菌HMP-F66能够显著诱导烟草悬浮细胞产生活性氧。根据其形态学特征、培养特征、特征性生理生化反应以及基于r DNA ITS的分子生物学分析,推测该菌株为米曲霉(Aspergillus oryzae)。  相似文献   

9.
ABA诱导型启动子(rd29A)重组到报告基因(GUS)的上游构建表达载体.通过农杆菌介导转化烟草,获得转基因植株.将转基因植株诱导愈伤组织,建立稳定、均一的转rd29A-GUS融合基因的悬浮培养细胞系.用ABA处理悬浮细胞24 h后GUS活性显著升高,说明外源ABA能够诱导rd29A启动子的表达,获得了用于ABA信号转导研究的实用细胞系.在ABA激活表达的细胞介质中加入尼克酰胺(cADPR合成酶的抑制剂)或U73122(PLC抑制剂)只能部分抑制ABA的效应,但如果加入蛋白激酶抑制剂K252a,抑制效果达95%以上.用可跨膜的cAMP的类似物8-Br-cAMP处理细胞发现,它能代替ABA的作用;当介质中加入1 mmol/L IBMX(磷酸二酯酶的抑制剂)增加cAMP的稳定性,发现低浓度的8-Br-cAMP与ABA相同的效应.以上结果表明cAMP参与了烟草悬浮细胞中ABA信号的传递.  相似文献   

10.
Atdad1的超量表达抑制烟草细胞凋亡   总被引:1,自引:0,他引:1  
以Atdad1基因保守区为探针进行Northern杂交,检测到烟草也存在dad1的同源基因,并且在叶和花中表达量较大,而随着叶片的衰老,dad1的表达量明显降低。进一步以过量表达Atdad1基因的烟草悬浮细胞为材料,研究Atdad1基因与细胞凋亡的关系。结果发现48℃热激4h或75ng/mL放线菌素D处理48h均可诱导正常细胞产生凋亡(产生DNA ladder),而相同处理条件下过量表达Atdad1基因的烟草悬浮细胞并没有发生凋亡(无DNA ladder),说明转基因细胞具有一定抵抗凋亡的能力。同时检测到野生型非转基因悬浮细胞凋亡的诱导产生过程中,dad1基因表达量逐步降低。上述结果提供了较直接的证据表明在烟草细胞中dad1基因可能参与了细胞凋亡的负调控。  相似文献   

11.
12.
Activation of phospholipase D (PLD) and protein kinase C (PKC) as well as calcium mobilization are essential signals for degranulation of mast cells. However, the exact role of PLD in degranulation remains undefined. In this study we have tested the hypothesis that the PLD product, phosphatidic acid, and diacylglycerides generated therefrom might promote activation of PKC. Studies were conducted in two rodent mast cell lines that were stimulated with Ag via FcepsilonRI and a pharmacologic agent, thapsigargin. Diversion of production of phosphatidic acid to phosphatidylbutanol (the transphosphatidylation reaction) by addition of l-butanol suppressed both the translocation of diacylglyceride-dependent isoforms of PKC to the membrane and degranulation. Tertiary-butanol, which is not a substrate for the transphosphatidylation, had a minimal effect on PKC translocation and degranulation, and 1-butanol itself had no effect on PKC translocation when PKC was stimulated directly with phorbol ester, 12-O-tetradecanoylphorbol-13-acetate. Also, in cells transfected with small inhibitory RNAs directed against PLD1 and PLD2, activation of PLD, generation of diacylglycerides, translocation of PKC, and degranulation were all suppressed. Phorbol ester, which did not stimulate degranulation by itself, restored degranulation when used in combination with thapsigargin whether PLD function was disrupted with 1-butanol or the small inhibitory RNAs. However, degranulation was not restored when cells were costimulated with Ag and phorbol ester. These results suggested that the production of phosphatidic acid by PLD facilitates activation of PKC and, in turn, degranulation, although additional PLD-dependent processes appear to be critical for Ag-mediated degranulation.  相似文献   

13.
1-Butanol is commonly used as a substrate for phospholipase D (PLD) activity measurement. Surprisingly we found that, in the presence of 30 mM 1-butanol (standard PLD assay conditions), PLD1 activity in COS-7 cells was lost after incubation for 2 min. In contrast, in the presence of the protein kinase C (PKC) inhibitor staurosporine or dominant negative PKCalpha D481E, the activity was sustained for at least 30min. The binding between PLD1 and PKCalpha was also lost after 2 min incubation with 30 mM 1-butanol while staurosporine and D481E maintained the binding. 1-Butanol at 2 mM did not inhibit PLD1 basal activity or PLD1 binding to PKCalpha, and staurosporine and PKCalpha D481E produced a constant increase in PLD1 basal activity of 2-fold. These results indicate that 1-butanol is inhibitory to PLD1 activity by reducing its association with PKCalpha, and that the concentration of 1-butanol is an important consideration in assaying basal PLD1 activity.  相似文献   

14.
Phospholipase D (PLD), phosphatidylinositol 3-kinase (PI3K), and Akt are known to be involved in cellular signaling related to proliferation and cell survival. In this report, we provide evidence that PLD links sphingosine 1-phosphate (S1P)-induced activation of the G protein-coupled EDG3 receptor to stimulation of PI3K and its downstream effector Akt in Chinese hamster ovary (CHO) cells. S1P stimulation of EDG3-overexpressing CHO cells but not vector-transfected cells induced activation of PLD, PI3K, and Akt in a time- and dose-dependent manner. Akt phosphorylation was prevented by the PI3K inhibitors wortmannin and LY294002 (2-(4-monrpholinyl)-8-phenyl-4H-1-benzopyran-4-one), indicating that Akt activation was dependent on PI3K. S1P-induced activation of PI3K and Akt was abrogated by 1-butanol, which inhibited S1P-induced accumulation of phosphatidic acid by serving as a phosphatidyl group acceptor in the transphosphatidylation reaction catalyzed by PLD, whereas both PI3K and Akt activation were not inhibited by 2-butanol without such reaction. Co-expression of wild-type PLD2 with myc-Akt resulted in increased Akt activation in response to S1P. In contrast, co-expression of a catalytically inactive mutant of PLD2 eliminated the S1P-induced Akt activation. The treatment of EDG3-expressing CHO cells with exogenous Streptomyces chromofuscus PLD, which caused an accumulation of phosphatidic acid, resulted in increases in PI3K activity and the phosphorylation of Akt, the latter of which was completely abolished by LY294002. Furthermore, S1P-induced membrane ruffling, which was dependent on PI3K and Rac, was inhibited by 1-butanol, but not by 2-butanol. These results demonstrate that PLD participates in the activation of PI3K and Akt stimulation of EDG3 receptor.  相似文献   

15.
Ballou LM  Jiang YP  Du G  Frohman MA  Lin RZ 《FEBS letters》2003,550(1-3):51-56
The mammalian target of rapamycin (mTOR) promotes increased protein synthesis required for cell growth. It has been suggested that phosphatidic acid, produced upon activation of phospholipase D (PLD), is a common mediator of growth factor activation of mTOR signaling. We used Rat-1 fibroblasts expressing the alpha(1A) adrenergic receptor to study if this G(q)-coupled receptor uses PLD to regulate mTOR signaling. Phenylephrine (PE) stimulation of the alpha(1A) adrenergic receptor induced mTOR autophosphorylation at Ser2481 and phosphorylation of two mTOR effectors, 4E-BP1 and p70 S6 kinase. These PE-induced phosphorylations were greatly reduced in cells depleted of intracellular Ca(2+). PE activation of PLD was also inhibited in Ca(2+)-depleted cells. Incubation of cells with 1-butanol to inhibit PLD signaling attenuated PE-induced phosphorylation of mTOR, 4E-BP1 and p70 S6 kinase. By contrast, platelet-derived growth factor (PDGF)-induced phosphorylation of these proteins was not blocked by Ca(2+) depletion or 1-butanol treatment. These results suggest that the alpha(1A) adrenergic receptor promotes mTOR signaling via a pathway that requires an increase in intracellular Ca(2+) and activation of PLD. The PDGF receptor, by contrast, appears to activate mTOR by a distinct pathway that does not require Ca(2+) or PLD.  相似文献   

16.
Little is known about the effect of epigallocatechin-3 gallate (EGCG), a major constituent of green tea, on the expression of cyclooxygenase (COX)-2. Here, we studied the role of phospholipase D (PLD) isozymes in EGCG-induced COX-2 expression. Stimulation of human astrocytoma cells (U87) with EGCG induced formation of phosphatidylbutanol, a specific product of PLD activity, and synthesis of COX-2 protein and its product, prostaglandin E(2) (PGE(2)). Pretreatment of cells with 1-butanol, but not 3-butanol, suppressed EGCG-induced COX-2 expression and PGE synthesis. Furthermore, evidence that PLD was involved in EGCG-induced COX-2 expression was provided by the observations that COX-2 expression was stimulated by overexpression of PLD1 or PLD2 isozymes and treatment with phosphatidic acid (PA), and that prevention of PA dephosphorylation by 1-propranolol significantly potentiated COX-2 expression induced by EGCG. EGCG induced activation of p38 mitogen-activated protein kinase (p38 MAPK), and specific inhibition of p38 MAPK dramatically abolished EGCG-induced PLD activation, COX-2 expression, and PGE(2) formation. Moreover, protein kinase C (PKC) inhibition suppressed EGCG-induced p38 MAPK activation, COX-2 expression, and PGE(2) accumulation. The same pathways as those obtained (2)in the astrocytoma cells were active in primary rat astrocytes, suggesting the relevance of the findings. Collectively, our results demonstrate for the first time that PLD isozymes mediate EGCG-induced COX-2 expression through PKC and p38 in immortalized astroglial line and normal astrocyte cells.  相似文献   

17.
Recent studies in higher plants or animals have shown that phospholipase D (PLD) signaling regulates many aspects of development, including organization of microtubules (MTs), actin and the endomembrane system. PLD hydrolyzes structural phospholipids to form the second messenger phosphatidic acid (PA). To begin to understand the signaling pathways and molecules that regulate cytoskeletal and endomembrane arrays during early development in the brown alga, Silvetia compressa, we altered PLD activity by applying butyl alcohols to zygotes. 1-Butanol activates PLD and is a preferred substrate, primarily forming phosphatidyl butanol (P-butanol), which is not a signaling molecule. Treatment with 1-butanol inhibited cell division and cytokinesis but not photopolarization or germination, suggesting an MT-based effect. Immunolabeling revealed that 1-butanol treatment rapidly disrupted MT arrays and caused zygotes to arrest in metaphase. MT arrays recovered rapidly following butanol washout, but subsequent development depended on the timing of the treatment regime. Additionally, treatment with 1-butanol early in development disrupted endomembrane organization, known to require functional MTs. Interestingly, treatment with higher concentrations of 2-butanol, which also activates PLD, mimicked the effects of 1-butanol. In contrast, the control t-butanol had no effect on MTs or development. These results indicate that S. compressa zygotes utilize PLD signaling to regulate MT arrays. In contrast, PLD signaling does not appear to regulate actin arrays or endomembrane trafficking directly. This is the first report describing the signaling pathways that regulate cytoskeletal organization in the stramenopile (heterokont) lineage.  相似文献   

18.
The activation of phospholipase D (PLD) is a common response to mitogenic stimuli in various cell types. As PLD-mediated signaling is known to be disrupted in the presence of ethanol, we tested whether PLD is involved in the ethanol-induced inhibition of cell proliferation in rat cortical primary astrocytes. Readdition of fetal calf serum (FCS) to serum-deprived astroglial cultures caused a rapid, threefold increase of PLD activity and a strong mitogenic response; both effects were dependent on tyrosine kinases but not on protein kinase C. Ethanol (0.1-2%) suppressed the FCS-induced, PLD-mediated formation of phosphatidic acid (PA) as well as astroglial cell proliferation in a concentration-dependent manner. Moreover, exogenous bacterial PLD increased astroglial proliferation in an ethanol-sensitive manner, whereas exogenous PA or lysophosphatidic acid was less effective. Formation of PA and astroglial proliferation were strongly inhibited by 1-butanol (0.1-1%), a substrate of PLD, but were unaffected by t-butanol, a non-substrate; 2-butanol had intermediate effects. Platelet-derived growth factor and endothelin-1 mimicked the mitogenic effect of FCS; their effects were also inhibited by the butanols in the potency order 1-butanol > 2-butanol > tert-butanol. Our results, in particular, the differential effects of 1-, 2-, and tert-butanol with respect to PA formation and astroglial proliferation, strongly suggest that the antiproliferative effects of ethanol in glial cells are due to the disruption of the PLD signaling pathway. This mechanism may also contribute to the inhibition of astroglial growth and brain development observed in alcoholic embryopathy.  相似文献   

19.
Deng S  Yu M  Wang Y  Jia Q  Lin L  Dong H 《The FEBS journal》2010,277(24):5097-5111
Reactive oxygen species (ROS) are important signalling molecules in living cells. It is believed that ROS molecules are the main triggers of the hypersensitive response (HR) in plants. In the present study of the effect of riboflavin, which is excited to generate ROS in light, on the development of the HR induced by the elicitin protein ParA1 in tobacco (Nicotiana tabacum), we found that the extent of the ParA1-induced HR was diminished by hydroxyl radical (OH?), a type of ROS. As compared with the zones treated with ParA1 only, the HR symptom in the zones that were infiltrated with ParA1 plus riboflavin was significantly diminished when the treated plants were placed in the light. However, this did not occur when the plants were maintained in the dark. Trypan blue staining and the ion leakage measurements confirmed HR suppression in the light. Further experiments proved that HR suppression is attributed to the involvement of the photoexcited riboflavin, and that the suppression can be eliminated with the addition of hydrogen peroxide scavengers or OH? scavengers. Fenton reagent treatment and EPR measurements demonstrated that it is OH? rather than hydrogen peroxide that contributes to HR suppression. Accompanying the endogenous OH? formation, suppression of the ParA1-induced HR occurred in the tobacco leaves that had been treated with high-level abscisic acid, and that suppression was also removed by OH? scavengers. These results offer evidence that OH?, an understudied and little appreciated ROS, participates in and modulates biologically relevant signalling in plant cells.  相似文献   

20.
Hydrogen peroxide (H2O2) (10-100 microM) induced rapid and transient accumulation of phosphatidic acid (PA) in suspension-cultured rice cells. When phospholipase activity in the cellular extract fraction prepared from rice cells treated with H2O2 was assayed in the presence of 1-butanol (0.1%), rapid and transient phosphatidylbutanol (PtdBut) formation was observed. Thus, the H2O2-activated phospholipase was concluded to be phospholipase D (PLD). Furthermore, H2O2 directly induced in vitro PLD activation in the cytosolic fraction without H2O2 treatment. In vitro and in vivo activation of PLD were completely suppressed in the presence of lavendustin A (0.05 mM), a potent inhibitor of protein tyrosine kinase. Phytoalexin biosynthesis induced by N-acetylchitooligosaccharide elicitor was enhanced in the presence of H2O2 (10-100 microM), whereas it was suppressed in the presence of tiron, a potent scavenger of O2-, 1-butanol (0.1%) and lavendustin A (0.05 mM). These results indicate that H2O2-inducible PLD activation enhances signal transduction leading to phytoalexin biosynthesis in rice cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号