首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The activation kinetics of constitutive and IFNgamma-stimulated 20S proteasomes obtained with homomeric (recPA28alpha, recPA28beta) and heteromeric (recPA28alphabeta) forms of recombinant 11S regulator PA28 was analysed by means of kinetic modelling. The activation curves obtained with increasing concentrations of the individual PA28 subunits (RecP28alpha/RecP28beta/RecP28alpha + RecP28beta) exhibit biphasic characteristics which can be attributed to a low-level activation by PA28 monomers and full proteasome activation by assembled activator complexes. The dissociation constants do not reveal significant differences between the constitutive and the immunoproteasome. Intriguingly, the affinity of the proteasome towards the recPA28alphabeta complex is about two orders of magnitude higher than towards the homomeric PA28alpha and PA28beta complexes. Striking similarities can been revealed in the way how PA28 mediates the kinetics of latent proteasomes with respect to three different fluorogenic peptides probing the chymotrypsin-like, trypsin-like and peptidylglutamyl-peptide hydrolyzing like activity: (a) positive cooperativity disappears as indicated by a lack of sigmoid initial parts of the kinetic curves, (b) substrate affinity is increased, whereby (c), the maximal activity remains virtually constant. As these kinetic features are independent of the peptide substrates, we conclude that PA28 exerts its activating influence on the proteasome by enhancing the uptake (and release) of shorter peptides.  相似文献   

3.
Intracellular proteins are degraded largely by proteasomes. In cells stimulated with gamma interferon , the active proteasome subunits are replaced by "immuno" subunits that form immunoproteasomes. Phylogenetic analysis of the immunosubunits has revealed that they evolve faster than their constitutive counterparts. This suggests that the immunoproteasome has evolved a function that differs from that of the constitutive proteasome. Accumulating experimental degradation data demonstrate, indeed, that the specificity of the immunoproteasome and the constitutive proteasome differs. However, it has not yet been quantified how different the specificity of two forms of the proteasome are. The main question, which still lacks direct evidence, is whether the immunoproteasome generates more MHC ligands. Here we use bioinformatics tools to quantify these differences and show that the immunoproteasome is a more specific enzyme than the constitutive proteasome. Additionally, we predict the degradation of pathogen proteomes and find that the immunoproteasome generates peptides that are better ligands for MHC binding than peptides generated by the constitutive proteasome. Thus, our analysis provides evidence that the immunoproteasome has co-evolved with the major histocompatibility complex to optimize antigen presentation in vertebrate cells.  相似文献   

4.
Precise score for the prediction of peptides cleaved by the proteasome.   总被引:1,自引:0,他引:1  
MOTIVATION: An 8-10mer can become a cytotoxic T lymphocyte epitope only if it is cleaved by the proteasome, transported by TAP and presented by MHC-I molecules. Thus most of the epitopes presented to cytotoxic T cells in the context of MHC-I molecules are products of intracellular proteasomal cleavage. These products are not random, as peptide production is a function of the precise sequence of the proteins processed by the proteasome. RESULTS: We have developed a score for the probability that a given peptide results from proteasomal cleavage. High scoring peptides are those that are cleaved in their extremities and not in their center, while low scoring peptides are either cleaved in their centers or not cleaved in their extremities. The current work differs from most previous works, in that it determines the production probability of an entire peptide, rather than trying to predict specific cleavage sites. We further present different score functions for the constitutive and the immunoproteasome. Our results were validated to have low error levels against multiple epitope databases. We provide here a novel computational tool and a website to use it-http://peptibase.cs.biu.ac.il/PepCleave_II/ to assess the probability that a given peptide indeed results from proteasomal cleavage.  相似文献   

5.
Immunoproteasomes are alternative forms of proteasomes specialized in the generation of MHC class I antigenic peptides and important for efficient cytokine production. We have identified a new biochemical property of 26S immunoproteasomes, namely the ability to hydrolyze basic proteins at greatly increased rates compared to constitutive proteasomes. This enhanced degradative capacity is specific for basic polypeptides, since substrates with a lower content in lysine and arginine residues are hydrolyzed at comparable rates by constitutive and immunoproteasomes. Crucially, selective inhibition of the immunoproteasome tryptic subunit β2i strongly reduces degradation of basic proteins. Therefore, our data demonstrate the rate limiting function of the proteasomal trypsin-like activity in controlling turnover rates of basic protein substrates and suggest new biological roles for immunoproteasomes in maintaining cellular homeostasis by rapidly removing a potentially harmful excess of free histones that can build up under different pathophysiological conditions.  相似文献   

6.
The majority of MHC class I epitopes is generated through the ubiquitin-proteasome system. In the present study, we have analyzed the proteasome-dependent generation of the IE pp89 MCMV-derived H-2L(d) epitope by both in vitro and in vivo experiments. As revealed by cytotoxic T-cell assays, the pp89 9mer epitope was generated with high fidelity from the recombinant IE pp89 by 20S proteasomes. In vitro processing showed that the recombinant pp89 was rapidly degraded by 20S proteasomes. Analysis of cell lysates under conditions that allowed detection of polyubiquitinated proteins provided no evidence for the presence of ubiquitin-pp89-conjugates in vivo. These findings suggest a ubiquitin-independent mechanism of proteasomal degradation for pp89.  相似文献   

7.

Background  

Proteasomes play a central role in the major histocompatibility class I (MHCI) antigen processing pathway. They conduct the proteolytic degradation of proteins in the cytosol, generating the C-terminus of CD8 T cell epitopes and MHCI-peptide ligands (P1 residue of cleavage site). There are two types of proteasomes, the constitutive form, expressed in most cell types, and the immunoproteasome, which is constitutively expressed in mature dendritic cells. Protective CD8 T cell epitopes are likely generated by the immunoproteasome and the constitutive proteasome, and here we have modeled and analyzed the cleavage by these two proteases.  相似文献   

8.
There is now convincing evidence that the proteasome contributes to the generation of most of the peptides presented by major histocompatibility complex class I molecules. Here we present a model-based kinetic analysis of fragment patterns generated by the 20S proteasome from 20 to 40 residues long oligomeric substrates. The model consists of ordinary first-order differential equations describing the time evolution of the average probabilities with which fragments can be generated from a given initial substrate. First-order rate laws are used to describe the cleavage of peptide bonds and the release of peptides from the interior of the proteasome to the external space. Numerical estimates for the 27 unknown model parameters are determined across a set of five different proteins with known cleavage patterns. Testing the validity of the model by a jack knife procedure, about 80% of the observed fragments can be correctly identified, whereas the abundance of false-positive classifications is below 10%. From our theoretical approach, it is inferred that double-cleavage fragments of length 7-13 are predominantly cut out in "C-N-order" in that the C-terminus is generated first. This is due to striking differences in the further processing of the two fragments generated by the first cleavage. The upstream fragment exhibits a pronounced tendency to escape from second cleavage as indicated by a large release rate and a monotone exponential decline of peptide bond accessibility with increasing distance from the first scissile bond. In contrast, the release rate of the downstream fragment is about four orders of magnitude lower and the accessibility of peptide bonds shows a sharp peak in a distance of about nine residues from the first scissile bond. This finding strongly supports the idea that generation of fragments with well-defined lengths is favored in that temporary immobilization of the downstream fragment after the first cleavage renders it susceptible for a second cleavage.  相似文献   

9.
Dahlmann B  Ruppert T  Kloetzel PM  Kuehn L 《Biochimie》2001,83(3-4):295-299
20S proteasomes from tissues and cells are a mixture of several subtypes. From rat skeletal muscle we have tentatively separated six different subtypes of 20S proteasomes purified from rat skeletal muscle by high-resolution anion exchange chromatography. Immunoblot analysis using antibodies to the beta-subunits LMP2, LMP7 and their constitutive counterparts delta and MB1 revealed that two of the three major subtypes (subtypes I and II) are constitutive proteasomes, whereas two of the three minor subtypes belong to the subpopulation of immuno-proteasomes. Subtype III and IV are intermediate-type proteasomes. Enzymological characterisation of the six subtypes revealed clearly different V(max) values for hydrolysis of fluorogenic peptide substrates as well as significantly different activities measured with a 25-mer polypeptide of the murine cytomegalovirus IE pp89 protein as substrate. Our data show that the properties of 20S proteasomes isolated from a given tissue or cells are always the average of the properties of the whole set of proteasome subtypes.  相似文献   

10.
Prediction of proteasome cleavage motifs by neural networks   总被引:20,自引:0,他引:20  
We present a predictive method that can simulate an essential step in the antigen presentation in higher vertebrates, namely the step involving the proteasomal degradation of polypeptides into fragments which have the potential to bind to MHC Class I molecules. Proteasomal cleavage prediction algorithms published so far were trained on data from in vitro digestion experiments with constitutive proteasomes. As a result, they did not take into account the characteristics of the structurally modified proteasomes--often called immunoproteasomes--found in cells stimulated by gamma-interferon under physiological conditions. Our algorithm has been trained not only on in vitro data, but also on MHC Class I ligand data, which reflect a combination of immunoproteasome and constitutive proteasome specificity. This feature, together with the use of neural networks, a non-linear classification technique, make the prediction of MHC Class I ligand boundaries more accurate: 65% of the cleavage sites and 85% of the non-cleavage sites are correctly determined. Moreover, we show that the neural networks trained on the constitutive proteasome data learns a specificity that differs from that of the networks trained on MHC Class I ligands, i.e. the specificity of the immunoproteasome is different than the constitutive proteasome. The tools developed in this study in combination with a predictor of MHC and TAP binding capacity should give a more complete prediction of the generation and presentation of peptides on MHC Class I molecules. Here we demonstrate that such an approach produces an accurate prediction of the CTL the epitopes in HIV Nef. The method is available at www.cbs.dtu.dk/services/NetChop/.  相似文献   

11.
The majority of cellular proteins are degraded by proteasomes within the ubiquitin-proteasome ATP-dependent degradation pathway. Products of proteasomal activity are short peptides that are further hydrolysed by proteases to single amino acids. However, some peptides can escape this degradation, being selected and taken up by major histocompatibility complex (MHC) class I molecules for presentation to the immune system on the cell surface. MHC class I molecules are highly selective and specific in terms of ligand binding. Variability of peptides produced in living cells arises in a variety of ways, ensuring fast and efficient immune responses. Substitution of constitutive proteasomal subunits with immunosubunits leads to conformational changes in the substrate binding channels, resulting in a modified protein cleavage pattern and consequently in the generation of new antigenic peptides. The recently discovered event of proteasomal peptide splicing opens new horizons in the understanding of additional functions that proteasomes apparently possess. Whether peptide splicing is an occasional side product of proteasomal activity still needs to be clarified. Both gamma-interferon-induced immunoproteasomes and peptide splicing represent two significant events providing increased diversity of antigenic peptides for flexible and fine-tuned immune response.  相似文献   

12.
Mass spectrometry (MS)-based methods coupled to reverse phase chromatography separation are a useful technology to analyze complex peptide pools that are comprised of different peptides with unrelated sequences. In antigen presentation, proteasomes generate a set of short peptides that are closely related and overlapping and in some instances may even have identical retention times and identical masses. In these situations, micro-liquid chromatography-MS/MS focused on each theoretical parent ion followed by manual interpretation optimizes the identification of generated peptides. The results suggest that the degradation of short antigens by the proteasome occurs by sequential cleavage.  相似文献   

13.
The eukaryotic 20 S proteasome contains the following 6 active sites: 2 chymotrypsin-like, 2 trypsin-like, and 2 caspase-like. We previously showed that hydrophobic peptide substrates of the chymotrypsin-like sites allosterically stimulate peptide hydrolysis by the caspase-like sites and their own cleavage. More thorough analysis revealed that these peptides also stimulate peptide hydrolysis by the trypsin-like site. This general activation by hydrophobic peptides occurred even if the chymotrypsin-like sites were occupied by a covalent inhibitor and was highly cooperative, with an average Hill coefficient of 7. Therefore, this stimulation of peptide hydrolysis at all active sites occurs upon binding of hydrophobic peptides to several non-catalytic sites. The stimulation by hydrophobic peptides was not observed in the yeast Delta N alpha 3 mutant 20 S proteasomes, in 20 S-PA26 complexes, or SDS-activated proteasomes and was significantly lower in 26 S proteasomes, all of which appear to have the gated channel in the alpha-rings in an open conformation and hydrolyze peptides at much faster rates than 20 S proteasomes. Also the hydrophobic peptides altered K(m), V(max) of active sites in a similar fashion as PA26 and the Delta N alpha 3 mutation. The activation by hydrophobic peptides was decreased in K(+)-containing buffer, which favors the closed state of the channels. Therefore, hydrophobic peptides stimulate peptide hydrolysis most likely by promoting the opening of the channels in the alpha-rings. During protein breakdown, this peptide-induced channel opening may function to facilitate the release of products from the proteasome.  相似文献   

14.
Expression of HLA-B27 in murine cells has been used to establish animal models for human spondyloarthritis and for antigen presentation studies, but the effects of xenogeneic HLA-B27 expression on peptide presentation are little known. The issue was addressed in this study. HLA-B27-bound peptide repertoires from human and murine cells overlapped by 75-85%, indicating that many endogenous HLA-B27 ligands are generated and presented in both species. Of 20 differentially presented peptides that were sequenced, only 40% arose from obvious inter-species protein polymorphism, suggesting that differences in antigen processing-loading accounted for many species-specific ligands. Digestion of synthetic substrates with human and murine 20 S proteasomes revealed cleavage differences that accounted for or correlated with differential expression of particular peptides. One HLA-B27 ligand found only in human cells was similarly generated in vitro by human and murine proteasomes. Differential presentation correlated with significantly decreased amounts of this ligand in human tapasin-deficient cells reconstituted with murine tapasin, indicating that species-specific interactions between HLA-B27, tapasin, and/or other proteins in the peptide-loading complex influenced presentation of this peptide. Our results indicate that differences in proteasomal specificity and in interactions involving tapasin determine differential processing and presentation of a significant number of HLA-B27 ligands in human and murine cells.  相似文献   

15.
Constitutive proteasomes and immunoproteasomes shape the peptide repertoire presented by major histocompatibility complex class I (MHC-I) molecules by harboring different sets of catalytically active subunits. Here, we present the crystal structures of constitutive proteasomes and immunoproteasomes from mouse in the presence and absence of the epoxyketone inhibitor PR-957 (ONX 0914) at 2.9 ? resolution. Based on our X-ray data, we propose a unique catalytic feature for the immunoproteasome subunit β5i/LMP7. Comparison of ligand-free and ligand-bound proteasomes reveals conformational changes in the S1 pocket of β5c/X but not β5i, thereby explaining the selectivity of PR-957 for β5i. Time-resolved structures of yeast proteasome:PR-957 complexes indicate that ligand docking to the active site occurs only via the reactive head group and the P1 side chain. Together, our results support structure-guided design of inhibitory lead structures selective for immunoproteasomes that are linked to cytokine production and diseases like cancer and autoimmune disorders.  相似文献   

16.
Rabbit myelin basic protein (BP) was subjected to partial cleavage with plasmin, and 15 cleavage products were isolated by a combination of gel filtration and ion-exchange chromatography. Their identification was achieved by amino acid analysis and tryptic peptide mapping, supplemented in some instances by carboxy-terminal analyses with carboxypeptidases A, B, and Y and amino-terminal analyses with dipeptidyl aminopeptidase I. The results showed that major plasmic cleavage sites included the Lys89-Asn90, Lys133-Ser134, and Lys153-Leu154 bonds. Cleavages also occurred at the Arg31-His32, Lys53-Arg54, and Arg25-His26 bonds, but these appeared to be less extensive. A large number of additional peptides were produced in relatively low yield. The smaller of these were isolated from heterogeneous fractions by high-voltage electrophoresis-TLC. Amino acid analysis of these peptides showed that minor cleavage sites included the Arg9-His10, Lys13-Tyr14, Lys103-Gly104, Lys137-Gly138, Lys140-Gly141, and Arg160-Ser161 bonds. In spite of a lower selectivity toward peptide bonds in BP as compared with pepsin, cathepsin D, and thrombin, plasmin has the advantage over the former proteinases in that it does not cleave at or near the Phe44-Phe45 bond. Instead it cleaves at the Arg31-His32 and Lys53-Arg54 bonds, thus preserving the entire hydrophobic sequence Ile-Leu-Asp-Ser-Ile-Gly-Arg-Phe-Phe as well as short sequences to either side.  相似文献   

17.
Imatinib (IM) has been described to modulate the function of dendritic cells and T lymphocytes and to affect the expression of antigen in CML cells. In our study, we investigated the effect of the tyrosine kinase inhibitors IM and nilotinib (NI) on antigen presentation and processing by analyzing the proteasomal activity in CML cell lines and patient samples. We used a biotinylated active site-directed probe, which covalently binds to the proteasomally active beta-subunits in an activity-dependent fashion. Additionally, we analyzed the cleavage and processing of HLA-A3/11- and HLA-B8-binding peptides derived from BCR-ABL by IM- or NI-treated isolated 20S immunoproteasomes using mass spectrometry. We found that IM treatment leads to a reduction in MHC-class I expression which is in line with the inhibition of proteasomal activity. This process is independent of BCR-ABL or apoptosis induction. In vitro digestion experiments using purified proteasomes showed that generation of epitope-precursor peptides was significantly altered in the presence of NI and IM. Treatment of the immunoproteasome with these compounds resulted in an almost complete reduction in the generation of long precursor peptides for the HLA-A3/A11 and ?B8 epitopes while processing of the short peptide sequences increased. Treatment of isolated 20S proteasomes with serine-/threonine- and tyrosine-specific phosphatases induced a significant downregulation of the proteasomal activity further indicating that phosphorylation of the proteasome regulates its function and antigen processing. Our results demonstrate that IM and NI can affect the immunogenicity of malignant cells by modulating proteasomal degradation and the repertoire of processed T cell epitopes.  相似文献   

18.
Staphylococcus aureus V8 protease has been reported to have a strict specificity for cleavage of the Glu-X bond in ammonium bicarbonate (pH 7.9). With myelin basic protein and one of its major peptic fragments (residues 89-169) as substrates, selective cleavage of Asp(32)-Thr(33), Asp(37)-Ser(38), and Glu(118-Gly(119) bonds was observed, as well as the unusual cleavage of the Gly(127)-Gly(128) bond. The Asp-Glu and Glu-Asn bonds in the sequence of Gln-Asp-Glu-Asn-Pro(81-84) were resistant to V8 protease attack. The following peptides were identified as products of limited cleavage of basic protein by V8 protease: (1-32), (1-37), (33-169), (38-169), (33-118), (38-118), (33-127), (38-127), (119-169), and (128-169). Cleavage of the peptic peptide (89-169) yielded fragments (89-118), (89-127), (119-169), and (128-169). All peptides were identified by amino acid analysis, as well as NH2- and COOH-terminal analyses. Time course studies with basic protein showed that V8 protease initially attacked the bonds between Asp(32) and Thr(33) and Asp(37) and Ser(38). With peptide (89-169) the initial cleavage was between Glu(118) and Gly(119). Peptides (89-118) and (89-127) were encephalitogenic in the Lewis rat. The activity of these peptides in the rat confirms the presence of a minor encephalitogenic site in guinea pig basic protein. Peptide (89-127) was encephalitogenic in the guinea pig, as expected, because it contains the intact encephalitogenic site. V8 protease digestion of basic protein yields some interesting new fragments, not previously available for biologic studies.  相似文献   

19.
It is concluded from many experiments that mammalian tissues and cells must contain a heterogeneous population of 20 S proteasome complexes. We describe the purification and separation by chromatographic procedures of constitutive 20 S proteasomes, 20 S immuno-proteasomes and intermediate-type 20 S proteasomes from a given tissue. Our data demonstrate that each of these three groups comprises more than one subtype and that the relative ratios of the subtypes differ between different rat tissues. Thus, six subtypes could be identified in rat muscle tissue. Subtypes I and II are constitutive proteasomes, while subtypes V and VI comprise immuno-proteasomes. Subtypes III and IV belong to a group of intermediate-type proteasomes. The subtypes differ with regard to their enzymatic characteristics. Subtypes I-III exhibit high chymotrypsin-like activity and high peptidylglutamylpeptide hydrolysing activity, while these activities are depressed in subtypes IV-VI. In contrast, trypsin-like activity of subtypes IV-VI is enhanced in comparison to subtypes I-III. Importantly, the subtypes also differ in their preferential cleavage site usage when tested by digestion of a synthetic 25mer polypeptide substrate. Therefore, the characteristics of proteasomes purified from tissues or cells represent the average of the different subtype activities which in turn may have different functions in vivo.  相似文献   

20.
D'Souza CA  Wood DD  She YM  Moscarello MA 《Biochemistry》2005,44(38):12905-12913
Although multiple sclerosis (MS) is thought to be an autoimmune disease, the mechanisms by which immunodominant epitopes are generated and lymphocytes are activated are not known. Here, myelin basic protein-component 1 (MBP-C1) from MS tissue was shown to undergo autocatalytic cleavage at slightly alkaline pH. Importantly, one of the major peptides released contained the immunodominant epitope 84-89. Interestingly, MBP isolated from MS patients showed a faster time course of cleavage and a more robust release of epitope 84-89 than MBP isolated from normal individuals. The cleavage reaction was not inhibited by protease inhibitors, except for phenylmethanesulfonyl fluoride (PMSF), a serine protease inhibitor. Since PMSF inhibition suggested a role for a serine residue in the cleavage, we labeled myelin basic protein with diisopropyl fluorophosphate (DFP), known to bind active site serine residues. Mass spectrometry was used to identify the labeled peptide, which consisted of residues 140-152. Since this peptide contained a single serine residue, we concluded it to be the active serine. The importance of this cleavage mechanism is that it provides for a ready source of the immunodominant peptide for sensitization of T-cells. It is not necessary to invoke other mechanisms such as molecular mimicry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号