首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
白斑综合症病毒实时荧光LAMP检测方法的建立及应用   总被引:1,自引:0,他引:1  
研究利用ESE-Quant tube scanner检测平台, 建立了一套基于环介导等温扩增技术(Loop-Mediated Isothermal Amplification, LAMP)的实时荧光检测方法, 用于白斑综合征病毒(White Spot Syndrome Virus, WSSV)的检测; 并在此基础上, 与巢式PCR、Real-time PCR和其他已发表的4种LAMP方法在检测灵敏度、实际应用方面进行比较. 结果显示, 研究建立的实时荧光LAMP检测方法在63℃恒温反应30min可检测到最低为105倍稀释的基因组DNA模板, 与Real-time PCR检测方法的灵敏度相当, 高于巢式PCR和其他已发表的4种LAMP方法的检测灵敏度; 而且特异性较好, 与传染性皮下及造血组织坏死病毒等5种常见对虾病原DNA均无交叉反应. 通过构建质粒进一步进行灵敏度测试显示, 本研究建立的实时荧光LAMP检测方法最低检测限度为24个拷贝质粒DNA, 检出时间亦为30min. 通过对66份待检样品的检测结果显示, 实时荧光LAMP检测方法的检出阳性率为7.57%, 准确率为100%, 高于其他WSSV的检测方法. 因此, 研究建立的WSSV实时荧光LAMP检测方法, 操作简单, 反应速度快, 特异性好, 灵敏度高, 成本低廉, 可以直观、实时地观察反应的进行情况, 适合对虾养殖现场及诊断实验室的WSSV快速检测.    相似文献   

2.
Plasmodium vivax infections remain a major source of malaria-related morbidity and mortality. Early and accurate diagnosis is an integral component of effective malaria control programs. Conventional molecular diagnostic methods provide accurate results but are often resource-intensive, expensive, have a long turnaround time and are beyond the capacity of most malaria-endemic countries. Our laboratory has recently developed a new platform called RealAmp, which combines loop-mediated isothermal amplification (LAMP) with a portable tube scanner real-time isothermal instrument for the rapid detection of malaria parasites. Here we describe new primers for the detection of P. vivax using the RealAmp method. Three pairs of amplification primers required for this method were derived from a conserved DNA sequence unique to the P. vivax genome. The amplification was carried out at 64°C using SYBR Green or SYTO-9 intercalating dyes for 90 minutes with the tube scanner set to collect fluorescence signals at 1-minute intervals. Clinical samples of P. vivax and other human-infecting malaria parasite species were used to determine the sensitivity and specificity of the primers by comparing with an 18S ribosomal RNA-based nested PCR as the gold standard. The new set of primers consistently detected laboratory-maintained isolates of P. vivax from different parts of the world. The primers detected P. vivax in the clinical samples with 94.59% sensitivity (95% CI: 87.48–98.26%) and 100% specificity (95% CI: 90.40–100%) compared to the gold standard nested-PCR method. The new primers also proved to be more sensitive than the published species-specific primers specifically developed for the LAMP method in detecting P. vivax.  相似文献   

3.
Loop-mediated isothermal amplification (LAMP) was applied to develop a rapid and simple detection system for eight periodontal pathogens: Aggregatibacter (Actinobacillus) actinomycetemcomitans, Campylobacter rectus, Eikenella corrodens, Fusobacterium nucleatum, Porphyromonas gingivalis, Prevotella intermedia, Treponema denticola and Tannerella forsythia. Primers were designed from the 16S ribosomal RNA gene for each pathogen, and the LAMP amplified the targets specifically and efficiently under isothermal condition at 64 degrees C. To simplify the manipulation of LAMP examination, boiled cells and intact cells suspended in phosphate-buffered saline (PBS) were tested as templates besides extracted DNA template. The detection limits were 1-10 cells per tube using extracted DNA template. However, LAMP methods using boiled cells and intact cells required 10-100 and 100-1000 cells per tube, respectively. LAMPs for A. actinomycetemcomitans, P. gingivalis and P. intermedia were then applied to clinical plaque samples, and the method demonstrated equal or higher sensitivity compared with the conventional real-time PCR method. These findings suggest the usefulness of the LAMP method for the rapid and simple microbiological diagnosis of periodontitis, and the possibility of LAMP examination without the DNA extraction step.  相似文献   

4.
Sistan and Baluchestan province, South-East of Iran, has been reported as an endemic area of malaria [Sadrizadeh B. Malaria in the world, in the eastern Mediterranean region and in Iran: Review article. WHO/EMRO Report 2001: 1-13.]. The main objective of this research was to perform rapid and correct diagnoses of malaria infection. Blood specimens were collected from 140 suspected volunteers. The Giemsa-stained slides examination and nested PCR for amplification of the Plasmodium small subunit ribosomal genes (ssrRNA) were utilized. The results demonstrated 118 out of 140 cases (84.3%) positive for malaria parasites, including 60.7%, 20.7% and 2.9% as having Plasmodium vivax (P.v), Plasmodium falciparum (P.f) and mixed infections (P.v+P.f), respectively by microscopy. The nested PCR detected malaria parasites in 134 samples (94.3%), consisting of 51.4% P.v, 12.6% P.f and 29.3% mixed infections. The PCR analysis detected 37 cases of mixed infections more than that of the routine microscopy. These results suggested that there are a considerable number of cases with mixed infections in the study area that mainly remain undiagnosed by microscopy. It is also concluded that the nested PCR is a suitable complement to microscopy for accurate specific diagnosis of malaria species in field.  相似文献   

5.

Background

Detection of Acinetobacter baumannii has been relying primarily on bacterial culture that often fails to return useful results in time. Although DNA-based assays are more sensitive than bacterial culture in detecting the pathogen, the molecular results are often inconsistent and challenged by doubts on false positives, such as those due to system- and environment-derived contaminations. In addition, these molecular tools require expensive laboratory instruments. Therefore, establishing molecular tools for field use require simpler molecular platforms. The loop-mediated isothermal amplification method is relatively simple and can be improved for better use in a routine clinical bacteriology laboratory. A simple and portable device capable of performing both the amplification and detection (by fluorescence) of LAMP in the same platform has been developed in recent years. This method is referred to as real-time loop-mediated isothermal amplification. In this study, we attempted to utilize this method for rapid detection of A. baumannii.

Methodology and Significant Findings

Species-specific primers were designed to test the utility of this method. Clinical samples of A. baumannii were used to determine the sensitivity and specificity of this system compared to bacterial culture and a polymerase chain reaction method. All positive samples isolated from sputum were confirmed to be the species of Acinetobacter by 16S rRNA gene sequencing. The RealAmp method was found to be simpler and allowed real-time detection of DNA amplification, and could distinguish A. baumannii from Acinetobacter calcoaceticus and Acinetobacter genomic species 3. DNA was extracted by simple boiling method. Compared to bacterial culture, the sensitivity and specificity of RealAmp in detecting A. baumannii was 98.9% and 75.0%, respectively.

Conclusion

The RealAmp assay only requires a single unit, and the assay positivity can be verified by visual inspection. Therefore, this assay has great potential of field use as a molecular tool for detection of A. baumannii.  相似文献   

6.

Background

Loop mediated isothermal amplification (LAMP) provides an opportunity for improved, field-friendly detection of malaria infections in endemic areas. However data on the diagnostic accuracy of LAMP for active case detection, particularly low-density parasitaemias, are lacking. We therefore evaluated the performance of a new LAMP kit compared with PCR using DNA from filter paper blood spots.

Methods and Findings

Samples from 865 fever patients and 465 asymptomatic individuals collected in Zanzibar were analysed for Pan (all species) and Pf (P. falciparum) DNA with the Loopamp MALARIA Pan/Pf kit. Samples were amplified at 65°C for 40 minutes in a real-time turbidimeter and results were compared with nested PCR. Samples with discordant results between LAMP and nested PCR were analysed with real-time PCR. The real-time PCR corrected nested PCR result was defined as gold standard. Among the 117 (13.5%) PCR detected P. falciparum infections from fever patients (mean parasite density 7491/µL, range 6–782,400) 115, 115 and 111 were positive by Pan-LAMP, Pf-LAMP and nested PCR, respectively. The sensitivities were 98.3% (95%CI 94–99.8) for both Pan and Pf-LAMP. Among the 54 (11.6%) PCR positive samples from asymptomatic individuals (mean parasite density 10/µL, range 0–4972) Pf-LAMP had a sensitivity of 92.7% (95%CI 80.1–98.5) for detection of the 41 P. falciparum infections. Pan-LAMP had sensitivities of 97% (95%CI 84.2–99.9) and 76.9% (95%CI 46.2–95) for detection of P. falciparum and P. malariae, respectively. The specificities for both Pan and Pf-LAMP were 100% (95%CI 99.1–100) in both study groups.

Conclusion

Both components of the Loopamp MALARIA Pan/Pf detection kit revealed high diagnostic accuracy for parasite detection among fever patients and importantly also among asymptomatic individuals of low parasite densities from minute blood volumes preserved on filter paper. These data support LAMPs potential role for improved detection of low-density malaria infections in pre-elimination settings.  相似文献   

7.
Aims: The study describes the development of simple and rapid DNA extraction method in combination with loop‐mediated isothermal amplification (LAMP) to detect enterotoxigenic Staphylococcus aureus in food samples. Methods and Results: In this study, isolation of genomic DNA of enterotoxigenic Staph. aureus from spiked milk, milk burfi, khoa, sugarcane juice and boiled rice was carried out by boiling the isolated sample pellets for 10 min with 1% Triton X‐100. The isolated DNA was evaluated by polymerase chain reaction (PCR) and LAMP method. The LAMP was found to be 100 times more sensitive than PCR. The LAMP assay was very specific for Staph. aureus, and the presence of other contaminating bacterial DNAs and food matrix did not interfere or inhibit the LAMP assay. Conclusions: The template DNA extraction method developed in this study for food samples is simple, rapid and cost‐effective. LAMP was found to be less sensitive to matrix effect of food, compared to PCR. Significance and Impact of the Study: The method is suitable for direct detection of Staph. aureus without any enrichment in contaminated food samples and hence finds its application in food safety analysis, in permutation with LAMP.  相似文献   

8.
Malaria is largely a preventable and curable disease. However, a delay or an inappropriate treatment can result in serious adverse outcomes for patient. Rapid, simple and cost-effective diagnostic tests that can be easily adapted and rapidly scaled-up at the field or community levels are needed. In this study, accelerated detection methods for the Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) dihydrofolate reductase–thymidylate synthase were developed based on the loop-mediated isothermal amplification (LAMP) method. The developed methods included the use of species-specific biotinylated primers to amplify LAMP amplicons, which were then hybridized to specific FITC-labeled DNA probes and visualized on a chromatographic lateral flow dipstick (LFD). The total LAMP–LFD assay time was approximately 1.5 h. The LAMP–LFD assays showed similar detection limit to conventional PCR assay when performed on plasmid DNA carrying the malaria dhfr-ts genes. The LAMP–LFD showed 10 folds higher detection limit than PCR when performed on genomic DNA samples from Pf and Pv parasites. The dhfr-ts LAMP–LFD assays also have the advantages of reduced assay time and easy format for interpretation of results.  相似文献   

9.
Local malaria transmission in the United Arab Emirates (UAE) came to an end in 1997. Nevertheless, UAE has been subjected to substantial importation of malaria cases from abroad, concerning both UAE nationals and immigrants from malarious countries with a total number of 2,119 cases in 2007. To evaluate a new DNA extraction technique using nested PCR, blood samples were collected from 132 individuals who presented to Infectious Diseases Department in Rashid Hospital, Dubai, and Central Department of Malaria Control with fever and persistent headache. Giemsa-stained blood films and ELISA test for malaria antibodies were carried out for detection of Plasmodium infection. Plasmodium infections were identified with the genus-specific primer set and species differentiation using nested PCR. A rapid procedure for diagnosis of malaria infections directly from dried blood spots using for the first time DNA extract from FTA Elute cards was evaluated in contrast to extraction techniques using FTA classic cards and rapid boiling technique. Our new simple technique for DNA extraction using FTA Elute cards was very sensitive giving a sensitivity of 100% compared to 94% using FTA classic cards and 62% in the rapid boiling technique. No complex preparation of blood samples was required prior to the amplification. The production cost of DNA isolation in our PCR assay was much less in comparable to that of other DNA extraction protocols. The nested PCR detected plasmodial infection and could differentiate P. falciparum from P. vivax, and also detected the mixed infection.  相似文献   

10.
Malaria elimination efforts are hampered by the lack of sensitive tools to detect infections with low-level parasitemia, usually below the threshold of standard diagnostic methods, microscopy and rapid diagnostic tests. Isothermal nucleic acid amplification assays such as the loop-mediated isothermal amplification (LAMP), are well suited for field use as they do not require thermal cyclers to run the test. However, the use of specialized equipment, as described by many groups, reduces the versatility of the LAMP technique as a simple tool for use in endemic countries. In this study, the use of the malachite green (MG) dye, as a visual endpoint readout, together with a simple mini heat block was evaluated for the detection of malaria parasites. The assay was performed for 1 hour at 63°C and the results scored by 3 independent human readers. The limit of detection of the assay was determined using well-quantified Plasmodium spp. infected reference samples and its utility in testing clinical samples was determined using 190 pre-treatment specimens submitted for reference diagnosis of imported malaria in the United States. Use of a simplified boil and spin methods of DNA extraction from whole blood and filter paper was also investigated. We demonstrate the accurate and sensitive detection of malaria parasites using this assay with a detection limit ranging between 1–8 parasites/μL, supporting its applicability for the detection of infections with low parasite burden. This assay is compatible with the use of a simple boil and spin sample preparation method from both whole blood and filter papers without a loss of sensitivity. The MG-LAMP assay described here has great potential to extend the reach of molecular tools to settings where they are needed.  相似文献   

11.
A novel detection of a single Plasmodium falciparum in infected blood   总被引:9,自引:0,他引:9  
Detection of Plasmodium falciparum malaria by a specific DNA probe is a highly promising means for epidemiological surveillance of human malaria. However, none of presently available DNA probe methods could detect as little as a few parasites in infected blood. By amplification of a specific 206 base pairs P. falciparum DNA sequence using the polymerase chain reaction (PCR), as little as 0.01 picogram DNA or one-half of a parasite was sufficient for a specific detection. A PCR procedure for detection of P. falciparum in infected blood without prior DNA extraction was also developed which was sensitive for a single parasite. The procedure was simple and should be applicable for a large scale epidemiological study involving a very low parasitemia situation.  相似文献   

12.
In the era of (pre) elimination setting, the prevalence of malaria has been decreasing in most of the previously endemic areas. Therefore, effective cost- and time-saving validated pooling strategy is needed for detection of malaria in low transmission settings. In this study, optimal pooling numbers and lowest detection limit were assessed using known density samples prepared systematically, followed by genomic DNA extraction and nested PCR. Pooling strategy that composed of 10 samples in 1 pool, 20 µl in 1 sample, was optimal, and the parasite density as low as 2 p/µl for both falciparum and vivax infection was enough for detection of malaria. This pooling method showed effectiveness for handling of a huge number of samples in low transmission settings (<9% positive rate). The results indicated that pooling of the blood samples before DNA extraction followed by usual nested PCR is useful and effective for detection of malaria in screening of hidden cases in low-transmission settings.  相似文献   

13.
本文的目的在于建立用于临床检测残翅病病毒(Deformed wing virus,DWV)的等温环介导扩增技术(Loopmediated isothermal amplification,LAMP),为该疾病的预防和控制提供理论依据。在DWV基因保守序列设计4条引物,探究LAMP扩增的最优条件,并与常规的PCR(polymerase chain reaction)检测方法进行比较。建立的LAMP方法检测下限为0.89 pg,灵敏度比PCR高100倍而且特异性好。临床检测显示建立的LAMP方法可行、准确、方便、灵敏。针对DWV的LAMP建立的检测方法为养蜂生产第一线检测和预防DWV提供了技术支持,有一定的应用价值。  相似文献   

14.
Loop-mediated isothermal amplification (LAMP) is a novel nucleic acid amplification method performed under isothermal conditions and has a high specificity and efficiency. We developed a LAMP assay targeting the 16S rRNA gene for rapid detection of Haemophilus parasuis. The results obtained from testing 31 H. parasuis strains and 28 other bacterial species strains showed that LAMP was as specific as, and more sensitive than, nested PCR. Fifty-five lung samples were collected from 55 healthy pigs. All the samples were negative for H. parasuis by bacterial isolation, nested PCR and LAMP, respectively. In addition, 122 lung samples were collected from 122 pigs with apparent respiratory problems. Sixty-five were positive by bacterial isolation. All the samples that were positive by bacterial isolation were also positive by nested PCR and LAMP. The LAMP assay demonstrated higher sensitivity than nested PCR, picking up 16 additional cases. The LAMP assay also gave a same result compared with the nested PCR when the two assays were used, respectively, to detect H. parasuis from samples obtained from experimentally infected pigs. We concluded that LAMP is a highly sensitive and reliable method for detection of H. parasuis infection.  相似文献   

15.
Opisthorchis viverrini and other foodborne trematode infections are major health problem in Thailand, the Lao People's Democratic Republic, Vietnam and Cambodia. Differential diagnosis of O. viverrini based on the microscopic observation of parasite eggs is difficult in areas where Clonorchis sinensis and minute intestinal flukes coexist. We therefore established a rapid, sensitive and specific method for detecting O. viverrini infection from the stool samples using the loop-mediated isothermal amplification (LAMP) method. A total of five primers from seven regions were designed to target the internal transcribed spacer 1 (ITS1) in ribosomal DNA for specific amplification. Hydroxy naphthol blue (HNB) was more effective to detect the LAMP product compared to the Real-time LAMP and turbidity assay for its simple and distinct detection. The LAMP assay specifically amplified O. viverrini ITS1 but not C. sinensis and minute intestinal flukes with the limit of detection around 10− 3 ng DNA/μL. The sensitivity of the LAMP was 100% compared to egg positive samples. While all microscopically positive samples were positive by LAMP, additionally 5 of 13 (38.5%) microscopically negative samples were also LAMP positive. The technique has great potential for differential diagnosis in endemic areas with mixed O. viverrini and intestinal fluke infections. As it is an easy and simple method, the LAMP is potentially applicable for point-of-care diagnosis.  相似文献   

16.
快速检测HBV DNA的环状介导等温DNA扩增法   总被引:5,自引:2,他引:5  
环状介导等温DNA扩增(LAMP)技术是一种新的核酸扩增方法,它能够高特异性、高效、快速地进行核酸的扩增。利用LAMP法检测乙型肝炎病毒(HBV),能够在等温条件下于1h内将少量的基因拷贝数扩增至10^9,在对65份临床标本的检测中显示了较高的特异性。与现有的PCR技术相比,LAMP法更加简便快速,且在等温条件下进行,不需要复杂的仪器设备,为临床检测乙肝病毒提供了一个快速筒便的新方法。  相似文献   

17.
A loop-mediated isothermal amplification (LAMP) method with a real-time monitoring system was developed for the detection of porcine circovirus type 1 (PCV1) in commercial swine vaccines. This method was highly specific for PCV1. No cross-reaction to porcine circovirus type 2, porcine parvovirus, pseudorabies virus, classical swine fever virus, and porcine reproductive and respiratory syndrome virus was observed. The analytical sensitivity of the LAMP for PCV1 DNA was 10 copies/μl in the case of positive recombinant plasmid comparable to that obtained from the nested polymerase chain reaction (nested PCR). Furthermore, 25 commercial swine vaccines were tested by both the LAMP and the nested PCR, and three of them were tested positive for PCV1 DNA. These results indicate that PCV1 DNA can be real-time detected by the LAMP; the method was highly specific, sensitive, and rapid for the detection of PCV1 DNA, particularly in commercial swine vaccines.  相似文献   

18.
The development of sensitive, rapid, and accurate diagnostic methods for vivax malaria is essential for the effective control of malaria in the Republic of Korea, where vivax malaria patients usually show low parasitemia. In this study, a TaqMan-based real-time polymerase chain reaction (PCR) method was established and compared with other PCR-based assays, including nested PCR, loop-mediated isothermal amplification, and multiplex PCR, using samples from febrile patients with suspected vivax malaria. The established real-time PCR had a high sensitivity (99.6%) and specificity (100%). Therefore, this sensitive, specific, rapid, and quantitative real-time PCR method could be used for the routine diagnosis of vivax malaria in the laboratory of the Korea National Institute of Health.  相似文献   

19.
Sensitive techniques for the detection of Plasmodium (Aconoidasida: Plasmodiidae) sporozoites in field‐collected malaria vectors are essential for the correct assessment of risk for malaria transmission. A real‐time polymerase chain reaction (RT‐PCR) protocol targeting Plasmodium mtDNA proved to be much more sensitive in detecting sporozoites in mosquitoes than the widely used enzyme‐linked immunosorbent assay targeting Plasmodium circumsporozoite protein (CSP‐ELISA). However, because of the relatively high costs associated with equipment and reagents, RT‐PCRs are mostly used to assess the outcomes of experimental infections in the frame of research experiments, rather than in routine monitoring of mosquito infection in the field. The present authors developed a novel mtDNA‐based nested PCR protocol, modified from a loop‐mediated isothermal amplification (LAMP) assay for Plasmodium recognition in human blood samples, and compared its performance with that of routinely used CSP‐ELISAs in field‐collected Anopheles coluzzii (Diptera: Culicidae) samples. The nested PCR showed 1.4‐fold higher sensitivity than the CSP‐ELISA. However, nested PCR results obtained in two laboratories and in different replicates within the same laboratory were not 100% consistent, probably because the copy number of amplifiable Plasmodium mtDNA was close in some specimens to the threshold of nested PCR sensitivity. This implies that Plasmodium‐positive specimens should be confirmed by a second nested PCR to avoid false positives. Overall, the results emphasize the need to use molecular approaches to obtain accurate estimates of the actual level of Plasmodium circulation within malaria vector populations.  相似文献   

20.
Loop-mediated isothermal amplification (LAMP) is a novel nucleic acid amplification method performed under isothermal conditions with high specificity and efficiency. We developed a diagnostic method based on LAMP for detection of Actinobacillus pleuropneumoniae . Using six specific primers targeting the apxIVA gene, the LAMP assay rapidly amplified the target gene within 30 min, requiring only a laboratory water bath for the reaction to occur. The resulting amplificon was visualized by adding SYBR Green I to the mixture. The results obtained from testing 15 A. pleuropneumoniae reference strains and other seven bacterial species strains showed that the LAMP was as specific as and 10 times more sensitive than nested PCR. Sixty-five tonsil samples were collected from 65 healthy pigs. All the samples were negative for A. pleuropneumoniae by immunomagnetic separation-based (IMS) bacterial isolation, nested PCR and LAMP, respectively. Meanwhile, 115 tonsil samples were also collected from 115 pigs with apparent respiratory problems. Twenty-two were positive by IMS bacterial isolation. All the samples that were positive by IMS bacterial isolation were also positive by nested PCR and LAMP. The LAMP assay demonstrated exceptionally higher sensitivity than nested PCR by picking up 14 additional positive cases (χ2 test, P <0.0001); we concluded that LAMP was a highly sensitive and reliable method for detection of A. pleuropneumoniae infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号