首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In previous work, we designed peptides that showed potent inhibition of Newcastle disease virus (NDV) and infectious bronchitis virus (IBV) infections in chicken embryos. In this study, we demonstrate that peptides modified with cholesterol or 3 U of polyethylene glycol (PEG3) conjugated to the peptides'' N termini showed even more promising antiviral activities when tested in animal models. Both cholesterol- and cholesterol-PEG3-tagged peptides were able to protect chicken embryos from infection with different serotypes of NDV and IBV when administered 12 h prior to virus inoculation. In comparison, the untagged peptides required intervention closer to the time of viral inoculation to achieve a similar level of protection. Intramuscular injection of cholesterol-tagged peptide at 1.6 mg/kg 1 day before virus infection and then three times at 3-day intervals after viral inoculation protected 70% of the chickens from NDV infection. We further demonstrate that the cholesterol-tagged peptide has an in vivo half-life greater than that of untagged peptides. It also has the potential to cross the blood-brain barrier to enter the avian central nervous system (CNS). Finally, we show that the cholesterol-tagged peptide could play a role before the viral fusion peptide''s insertion into the host cell and thereby target an earlier stage of fusion glycoprotein activation. Our findings are of importance for the further development of antivirals with broad-spectrum protective effects.  相似文献   

2.
During paramyxovirus entry into a host cell, receptor engagement by a specialized binding protein triggers conformational changes in the adjacent fusion protein (F), leading to fusion between the viral and cell membranes. According to the existing paradigm of paramyxovirus membrane fusion, the initial activation of F by the receptor binding protein sets off a spring-loaded mechanism whereby the F protein progresses independently through the subsequent steps in the fusion process, ending in membrane merger. For human parainfluenza virus type 3 (HPIV3), the receptor binding protein (hemagglutinin-neuraminidase [HN]) has three functions: receptor binding, receptor cleaving, and activating F. We report that continuous receptor engagement by HN activates F to advance through the series of structural rearrangements required for fusion. In contrast to the prevailing model, the role of HN-receptor engagement in the fusion process is required beyond an initiating step, i.e., it is still required even after the insertion of the fusion peptide into the target cell membrane, enabling F to mediate membrane merger. We also report that for Nipah virus, whose receptor binding protein has no receptor-cleaving activity, the continuous stimulation of the F protein by a receptor-engaged binding protein is key for fusion. We suggest a general model for paramyxovirus fusion activation in which receptor engagement plays an active role in F activation, and the continued engagement of the receptor binding protein is essential to F protein function until the onset of membrane merger. This model has broad implications for the mechanism of paramyxovirus fusion and for strategies to prevent viral entry.  相似文献   

3.
The fusion of enveloped viruses with the host cell is driven by specialized fusion proteins to initiate infection. The “class I” fusion proteins harbor two regions, typically two heptad repeat (HR) domains, which are central to the complex conformational changes leading to fusion: the first heptad repeat (HRN) is adjacent to the fusion peptide, while the second (HRC) immediately precedes the transmembrane domain. Peptides derived from the HR regions can inhibit fusion, and one HR peptide, T20 (enfuvirtide), is in clinical use for HIV-1. For paramyxoviruses, the activities of two membrane proteins, the receptor-binding protein (hemagglutinin-neuraminidase [HN] or G) and the fusion protein (F), initiate viral entry. The binding of HN or G to its receptor on a target cell triggers the activation of F, which then inserts into the target cell and mediates the membrane fusion that initiates infection. We have shown that for paramyxoviruses, the inhibitory efficacy of HR peptides is inversely proportional to the rate of F activation. For HIV-1, the antiviral potency of an HRC-derived peptide can be dramatically increased by targeting it to the membrane microdomains where fusion occurs, via the addition of a cholesterol group. We report here that for three paramyxoviruses—human parainfluenza virus type 3 (HPIV3), a major cause of lower respiratory tract diseases in infants, and the emerging zoonotic viruses Hendra virus (HeV) and Nipah virus (NiV), which cause lethal central nervous system diseases—the addition of cholesterol to a paramyxovirus HRC-derived peptide increased antiviral potency by 2 log units. Our data suggest that this enhanced activity is indeed the result of the targeting of the peptide to the plasma membrane, where fusion occurs. The cholesterol-tagged peptides on the cell surface create a protective antiviral shield, target the F protein directly at its site of action, and expand the potential utility of inhibitory peptides for paramyxoviruses.Fusion of enveloped viruses with the host cell is a key step in viral infectivity, and interference with this process can lead to highly effective antivirals. Viral fusion is driven by specialized proteins that undergo an ordered series of conformational changes. These changes facilitate the initial, close apposition of the viral and host membranes, and they ultimately result in the formation of a fusion pore (reviewed in reference 12). The “class I” fusion proteins harbor two regions, typically two heptad repeat (HR) domains: the first one (HRN) adjacent to the fusion peptide and the second one (HRC) immediately preceding the transmembrane domain. Peptides derived from the HR regions can inhibit fusion, and one of them, T20 (enfuvirtide), is in clinical use for HIV-1 (19). Peptides derived from the HRN and HRC regions of paramyxovirus fusion (F) proteins can interact with fusion intermediates of F (3, 20, 22, 37, 46, 49) and provide a promising antiviral strategy.The current model for class I-driven fusion postulates the existence of a so-called prehairpin intermediate, a high-energy structure that bridges the viral and cell membranes, where the HRN and the HRC are separated. The prehairpin intermediate spontaneously collapses into the postfusion structure—a six-helical bundle (6HB), with an inner trimeric coiled-coil formed by the HRN onto which the HRC folds (12, 14, 30, 40). The key to these events is the initial activation step, whereby HN triggers F to initiate the process. Structural and biophysical analyses of the paramyxovirus 6HB (30, 50, 51) suggest that inhibitors bind to the prehairpin intermediate and prevent its transition to the 6HB, thus inhibiting viral entry. The peptides bind to their complementary HR region and thereby prevent HRN and HRC from refolding into the stable 6HB structure required for fusion (3, 10, 40). The efficiency of F triggering by HN critically influences the degree of fusion mediated by F and thus the extent of viral entry (35). In addition, differences in the efficiency of triggering of the fusion process impact the efficacy of potential antiviral molecules that target intermediate states of the fusion protein (36).Paramyxoviruses cause important human illnesses, significantly contributing to global disease and mortality, ranging from lower-respiratory-tract diseases in infants caused by human parainfluenza virus types 1, 2, and 3 (HPIV1, -2, and -3) (9, 48), to highly lethal central nervous system diseases caused by the emerging paramyxoviruses HeV and NiV. No antiviral therapies or vaccines yet exist for these paramyxoviruses, and vaccines would be unlikely to protect the youngest infants. Antiviral agents, therefore, would be particularly beneficial. All paramyxoviruses possess two envelope glycoproteins directly involved in viral entry and pathogenesis: a fusion protein (F) and a receptor-binding protein (HN, H, or G). The paramyxovirus F proteins belong to the group of “class I” fusion proteins (44, 45), which also include the influenza virus hemagglutinin protein and the HIV-1 fusion protein gp120. The F protein is synthesized as a precursor protein (F0) that is proteolytically processed posttranslationally to form a trimer of disulfide-linked heterodimers (F1-F2). This cleavage event places the fusion peptide at the F1 terminus in the mature F protein and is essential for membrane fusion activity. The exact triggers that initiate a series of conformational changes in F leading to membrane fusion differ depending on the pathway the virus uses to enter the cell. In the case of HPIV, HeV, and NiV, the receptor-binding protein, hemagglutinin-neuraminidase (HN) (in HPIV3) or G (in HeV and NiV), binds to cellular surface receptors, brings the viral envelope into proximity with the plasma membrane, and activates the viral F protein. This receptor-ligand interaction is required for the F protein to mediate the fusion of the viral envelope with the host cell membrane (23, 33, 35).The HRC peptide regions of a number of paramyxoviruses, including Sendai virus, measles virus, Newcastle disease virus (NDV), respiratory syncytial virus (RSV), simian virus 5 (SV5), Hendra virus (HeV), and Nipah virus (NiV), can inhibit the infectivity of the homologous virus (17, 20, 31, 37, 47, 49, 52, 53). Recently, we showed that peptides derived from the HRC region of the F protein of HPIV3 are effective inhibitors of both HPIV and HeV/NiV fusion (31) and that, for HeV, the strength of HRC peptide binding to the corresponding HRN region correlates with the potency of fusion and infection inhibition (30). However, peptides derived from the HPIV3 F protein HRC region are more effective at inhibiting HeV/NiV fusion than HPIV3 fusion, despite a stronger homotypic HRN-HRC interaction for HPIV3 (30, 31). We showed (36) that the kinetics of fusion (kinetics of F activation) impacts sensitivity to inhibition by peptides, as is the case for HIV (39). Alterations in HPIV3 HN′s property of F activation affect the kinetics of F''s progression through its conformational changes, thus altering inhibitor efficacy. Once the extended intermediate stage of F has passed, and fusion proceeds, peptide inhibitors are ineffective. We have proposed that the design of effective inhibitors may require either targeting an earlier stage of F activation or increasing the concentration of inhibitor at the location of receptor binding, in order to enhance the access and association of the inhibitor with the intermediate-stage fusion protein (36).A substantial body of evidence supports the notion that viral fusion occurs in confined areas of the interacting viral and host membranes (26). For HIV-1, the lipid composition of the viral membrane is strikingly different from that of the host cell membrane; the former is particularly enriched in cholesterol and sphingomyelin (4, 5, 7, 8). Cholesterol and sphingolipids are often laterally segregated in membrane microdomains or “lipid rafts” (7, 11). In fact, the antiviral potency of the HIV-inhibitory HRC peptide C34 is dramatically increased by targeting it to the “lipid rafts” via the addition of a cholesterol group (16).We applied the targeting strategy based on cholesterol derivatization to paramyxoviruses, and we show here that by adding a cholesterol tag to HPIV3-derived HRC E459V (30) inhibitory peptides, we increased antiviral potency by 2 log units (50% inhibitory concentrations [IC50], <2 nM). We chose to use the HPIV3-derived peptides for HeV/NiV, because we have previously shown that they are far more effective inhibitors of HeV and NiV than the homotypic peptides (30, 31). We propose that the enhanced activity resulting from the addition of a cholesterol tag is a result of the targeting of the peptide to the plasma membrane, where fusion occurs.  相似文献   

4.
Hendra virus (HeV) and Nipah virus (NiV) constitute the Henipavirus genus of paramyxoviruses, both fatal in humans and with the potential for subversion as agents of bioterrorism. Binding of the HeV/NiV attachment protein (G) to its receptor triggers a series of conformational changes in the fusion protein (F), ultimately leading to formation of a postfusion six-helix bundle (6HB) structure and fusion of the viral and cellular membranes. The ectodomain of paramyxovirus F proteins contains two conserved heptad repeat regions, the first (the N-terminal heptad repeat [HRN]) adjacent to the fusion peptide and the second (the C-terminal heptad repeat [HRC]) immediately preceding the transmembrane domain. Peptides derived from the HRN and HRC regions of F are proposed to inhibit fusion by preventing activated F molecules from forming the 6HB structure that is required for fusion. We previously reported that a human parainfluenza virus 3 (HPIV3) F peptide effectively inhibits infection mediated by the HeV glycoproteins in pseudotyped-HeV entry assays more effectively than the comparable HeV-derived peptide, and we now show that this peptide inhibits live-HeV and -NiV infection. HPIV3 F peptides were also effective in inhibiting HeV pseudotype virus entry in a new assay that mimics multicycle replication. This anti-HeV/NiV efficacy can be correlated with the greater potential of the HPIV3 C peptide to interact with the HeV F N peptide coiled-coil trimer, as evaluated by thermal unfolding experiments. Furthermore, replacement of a buried glutamic acid (glutamic acid 459) in the C peptide with valine enhances antiviral potency and stabilizes the 6HB conformation. Our results strongly suggest that conserved interhelical packing interactions in the F protein fusion core are important determinants of C peptide inhibitory activity and offer a strategy for the development of more-potent analogs of F peptide inhibitors.  相似文献   

5.
Fusion between the viral and target cell membranes is an obligatory step for the infectivity of all enveloped virus, and blocking this process is a clinically validated therapeutic strategy.Viral fusion is driven by specialized proteins which, although specific to each virus, act through a common mechanism, the formation of a complex between two heptad repeat (HR) regions. The HR regions are initially separated in an intermediate termed "prehairpin", which bridges the viral and cell membranes, and then fold onto each other to form a 6-helical bundle (6HB), driving the two membranes to fuse. HR-derived peptides can inhibit viral infectivity by binding to the prehairpin intermediate and preventing its transition to the 6HB.The antiviral activity of HR-derived peptides differs considerably among enveloped viruses. For weak inhibitors, potency can be increased by peptide engineering strategies, but sequence-specific optimization is time-consuming. In seeking ways to increase potency without changing the native sequence, we previously reported that attachment to the HR peptide of a cholesterol group ("cholesterol-tagging") dramatically increases its antiviral potency, and simultaneously increases its half-life in vivo. We show here that antiviral potency may be increased by combining cholesterol-tagging with dimerization of the HR-derived sequence, using as examples human parainfluenza virus, Nipah virus, and HIV-1. Together, cholesterol-tagging and dimerization may represent strategies to boost HR peptide potency to levels that in some cases may be compatible with in vivo use, possibly contributing to emergency responses to outbreaks of existing or novel viruses.  相似文献   

6.
We previously described fusion-inhibitory peptides that are targeted to the cell membrane by cholesterol conjugation and potently inhibit enveloped viruses that fuse at the cell surface, including HIV, parainfluenza, and henipaviruses. However, for viruses that fuse inside of intracellular compartments, fusion-inhibitory peptides have exhibited very low antiviral activity. We propose that for these viruses, too, membrane targeting via cholesterol conjugation may yield potent compounds. Here we compare the activity of fusion-inhibitory peptides derived from the influenza hemagglutinin (HA) and show that although the unconjugated peptides are inactive, the cholesterol-conjugated compounds are effective inhibitors of infectivity and membrane fusion. We hypothesize that the cholesterol moiety, by localizing the peptides to the target cell membrane, allows the peptides to follow the virus to the intracellular site of fusion. The cholesterol-conjugated peptides trap HA in a transient intermediate state after fusion is triggered but before completion of the refolding steps that drive the merging of the viral and cellular membranes. These results provide proof of concept for an antiviral strategy that is applicable to intracellularly fusing viruses, including known and emerging viral pathogens.  相似文献   

7.
We have previously described heterotypic peptides from parainfluenza virus that potently inhibit Nipah virus in vitro but are not efficacious in vivo. In contrast, our second-generation inhibitors, featuring a cholesterol moiety, are also efficacious in vivo. The difference between in vitro and in vivo results led us to investigate the basis for this discrepancy. Here, we compare the activities of the compounds in standard laboratory cells and in cells relevant to the natural tropism of Nipah virus, i.e., primary neurons, and show that while our first-generation inhibitors are poorly active in primary neurons, the cholesterol-conjugated compounds are highly potent. These results highlight the advantage of evaluating antiviral potency in cells relevant to natural host target tissue.  相似文献   

8.
Paramyxoviruses enter host cells by fusing the viral envelope with a host cell membrane. Fusion is mediated by the viral fusion (F) protein, and it undergoes large irreversible conformational changes to cause membrane merger. The C terminus of PIV5 F contains a membrane-proximal 7-residue external region (MPER), followed by the transmembrane (TM) domain and a 20-residue cytoplasmic tail. To study the sequence requirements of the F protein C terminus for fusion, we constructed chimeras containing the ectodomain of parainfluenza virus 5 F (PIV5 F) and either the MPER, the TM domain, or the cytoplasmic tail of the F proteins of the paramyxoviruses measles virus, mumps virus, Newcastle disease virus, human parainfluenza virus 3, and Nipah virus. The chimeras were expressed, and their ability to cause cell fusion was analyzed. The chimeric proteins were variably expressed at the cell surface. We found that chimeras containing the ectodomain of PIV5 F with the C terminus of other paramyxoviruses were unable to cause cell fusion. Fusion could be restored by decreasing the activation energy of refolding through introduction of a destabilizing mutation (S443P). Replacing individual regions, singly or doubly, in the chimeras with native PIV5 F sequences restored fusion to various degrees, but it did not have an additive effect in restoring activity. Thus, the F protein C terminus may be a specific structure that only functions with its cognate ectodomain. Alanine scanning mutagenesis of MPER indicates that it has a regulatory role in fusion since both hyperfusogenic and hypofusogenic mutations were found.  相似文献   

9.
Hendra virus (HeV) is a recently identified paramyxovirus that is fatal in humans and could be used as an agent of bioterrorism. The HeV receptor-binding protein (G) is required in order for the fusion protein (F) to mediate fusion, and analysis of the triggering/activation of HeV F by G should lead to strategies for interfering with this key step in viral entry. HeV F, once triggered by the receptor-bound G, by analogy with other paramyxovirus F proteins, undergoes multistep conformational changes leading to a six-helix bundle (6HB) structure that accomplishes fusion of the viral and cellular membranes. The ectodomain of paramyxovirus F proteins contains two conserved heptad repeat regions (HRN and HRC) near the fusion peptide and the transmembrane domains, respectively. Peptides derived from the HRN and HRC regions of F are proposed to inhibit fusion by preventing F, after the initial triggering step, from forming the 6HB structure that is required for fusion. HeV peptides have previously been found to be effective at inhibiting HeV fusion. However, we found that a human parainfluenza virus 3 F-peptide is more effective at inhibiting HeV fusion than the comparable HeV-derived peptide.  相似文献   

10.
Buzón V  Cladera J 《Biochemistry》2006,45(51):15768-15775
Fusion of viral and cell membranes is a key event in the process by which the human immunodeficiency virus (HIV) enters the target cell. Membrane fusion is facilitated by the interaction of the viral gp41 fusion peptide with the cell membrane. Using synthetic peptides and model membrane systems, it has been established that the sequence of events implies the binding of the peptide to the membrane, followed by a conformational change (transformation of unordered and helical structures into beta-aggregates) which precedes lipid mixing. It is known that this process can be influenced by the membrane lipid composition. In the present work we have undertaken a systematic study in order to determine the influence of cholesterol (abundant in the viral membrane) in the sequence of events leading to lipid mixing. Besides its effect on membrane fluidity, cholesterol can affect a less known physical parameter, the membrane dipole potential. Using the dipole potential fluorescent sensor di-8-ANEPPS together with other biophysical techniques, we show that cholesterol increases the affinity of the fusion peptide for the model membranes, and although it lowers the extent of lipid mixing, it increases the mixing rate. The influence of cholesterol on the peptide affinity and the lipid mixing rate are shown to be mainly due to its influence of the membrane dipole potential, whereas the lipid mixing extent and peptide conformational changes seem to be more dependent on other membrane parameters such as membrane fluidity and hydration.  相似文献   

11.
K Asano  A Asano 《Biochemistry》1988,27(4):1321-1329
Specificity of the binding of sterols and related compounds with purified F-protein (fusion protein) of the HVJ (Sendai virus) was studied by binding competition with [3H]cholesterol. Requirement for cholesterol or the A/B ring trans structure and nonrequirement for the 3-hydroxyl group were found in this binding. Binding of 125I-labeled Z-Phe-Tyr, an inhibitory peptide of viral membrane-cell membrane fusion, was studied by using purified proteins and virions. F-Protein and virions showed a specific binding with the peptide, whereas the result was negative with hemagglutinin and neuraminidase protein. Thermolysin-truncated F-protein (an F-protein derivative deprived of a 2.5-kDa fragment from the N-terminal of the F1 subunit and without fusogenic activity) exhibited a considerably diminished binding ability both to cholesterol and to inhibitory peptides. Therefore, the N-terminal hydrophobic sequence that was previously assigned as fusogenic seems to be the binding site of these molecules. In support of this, the binding of cholesterol with F-protein was inhibited by Z-Phe-Tyr and other fusion inhibitory peptides, whereas it was not affected with non-fusion-inhibitory Z-Gly-Phe. These results are discussed in relation to the notion that the binding of the N-terminal portion of the F1 subunit of F-protein with cholesterol in the target cell membranes facilitates the fusion reaction.  相似文献   

12.
Cholesterol is required in the exit pathway of Semliki Forest virus   总被引:5,自引:1,他引:4       下载免费PDF全文
The enveloped alphavirus Semliki Forest virus (SFV) infects cells via a membrane fusion reaction triggered by low pH. For fusion to occur cholesterol is required in the target membrane, as demonstrated both in in vitro fusion assays and in vivo for virus infection of a host cell. In this paper we examine the role of cholesterol in postfusion events in the SFV life cycle. Cholesterol-depleted insect cells were transfected with SFV RNA or infected at very high multiplicities to circumvent the fusion block caused by the absence of cholesterol. Under these conditions, the viral spike proteins were synthesized and transported to the site of p62 cleavage with normal kinetics. Surprisingly, the subsequent exit of virus particles was dramatically slowed compared to cholesterol-containing cells. The inhibition of virus production could be reversed by the addition of cholesterol to depleted cells. In contrast to results with SFV, no cholesterol requirement for virus exit was observed for the production of either the unrelated vesicular stomatitis virus or a cholesterol-independent SFV fusion mutant. Thus, cholesterol was only critical in the exit pathway of viruses that also require cholesterol for fusion. These results demonstrate a specific and unexpected lipid requirement in virus exit, and suggest that in addition to its role in fusion, cholesterol is involved in the assembly or budding of SFV.  相似文献   

13.
Nipah virus (NiV) and Hendra virus (HeV) are novel paramyxoviruses from pigs and horses, respectively, that are responsible for fatal zoonotic infections of humans. The unique genetic and biological characteristics of these emerging agents has led to their classification as the prototypic members of a new genus within the Paramyxovirinae subfamily called HENIPAVIRUS: These viruses are most closely related to members of the genus Morbillivirus and infect cells through a pH-independent membrane fusion event mediated by the actions of their attachment (G) and fusion (F) glycoproteins. Understanding their cell biological features and exploring the functional characteristics of the NiV and HeV glycoproteins will help define important properties of these emerging viruses and may provide new insights into paramyxovirus membrane fusion mechanisms. Using a recombinant vaccinia virus system and a quantitative assay for fusion, we demonstrate NiV glycoprotein function and the same pattern of cellular tropism recently reported for HeV-mediated fusion, suggesting that NiV likely uses the same cellular receptor for infection. Fusion specificity was verified by inhibition with a specific antiserum or peptides derived from the alpha-helical heptads of NiV or HeV F. Like that of HeV, NiV-mediated fusion also requires both F and G. Finally, interactions between the glycoproteins of the paramyxoviruses have not been well defined, but here we show that the NiV and HeV glycoproteins are capable of highly efficient heterotypic functional activity with each other. However, no heterotypic activity was observed with envelope glycoproteins of the morbilliviruses Measles virus and Canine distemper virus.  相似文献   

14.
副粘病毒F蛋白的两段七肽重复序列(HR1和HR2)在病毒侵染细胞的过程中相互作用形成热稳定的富含α螺旋的异源二聚体,此结构的形成引起病毒囊膜与细胞膜的并置而最终导致膜融合的发生。腮腺炎病毒(Mumps virus, MuV)属于副粘病毒科,腮腺炎病毒属,可能利用与其他副粘病毒相似的侵染机制。本研究对MuV 融合蛋白的HR区进行了计算机程序预测,并利用大肠杆菌GST融合表达系统对MuV F蛋白HR1和HR2两段多肽进行了表达和纯化,通过GST pull_down 实验证实HR1和HR2多肽在体外能够相互作用,凝胶过滤层析证明HR1、HR2多肽能够形成多聚体,说明MuV F蛋白的HR区的相互作用可能是其发挥融合功能的关键因素。  相似文献   

15.
Enveloped viruses enter cells by viral glycoprotein-mediated binding to host cells and subsequent fusion of virus and host cell membranes. For the coronaviruses, viral spike (S) proteins execute these cell entry functions. The S proteins are set apart from other viral and cellular membrane fusion proteins by their extensively palmitoylated membrane-associated tails. Palmitate adducts are generally required for protein-mediated fusions, but their precise roles in the process are unclear. To obtain additional insights into the S-mediated membrane fusion process, we focused on these acylated carboxyl-terminal intravirion tails. Substituting alanines for the cysteines that are subject to palmitoylation had effects on both S incorporation into virions and S-mediated membrane fusions. In specifically dissecting the effects of endodomain mutations on the fusion process, we used antiviral heptad repeat peptides that bind only to folding intermediates in the S-mediated fusion process and found that mutants lacking three palmitoylated cysteines remained in transitional folding states nearly 10 times longer than native S proteins. This slower refolding was also reflected in the paucity of postfusion six-helix bundle configurations among the mutant S proteins. Viruses with fewer palmitoylated S protein cysteines entered cells slowly and had reduced specific infectivities. These findings indicate that lipid adducts anchoring S proteins into virus membranes are necessary for the rapid, productive S protein refolding events that culminate in membrane fusions. These studies reveal a previously unappreciated role for covalently attached lipids on the endodomains of viral proteins eliciting membrane fusion reactions.  相似文献   

16.
The Spike (S) glycoprotein of coronaviruses (CoV) mediates viral entry into host cells. It contains two hydrophobic heptad repeat (HR) regions, denoted HRN and HRC, which oligomerize the S glycoprotein into a trimer in the native state and when activated collapse into a six-helix bundle structure driving fusion of the host and viral membranes. Previous studies have shown that peptides of the HR regions can inhibit viral infectivity. These studies imply that the HR regions are accessible and that agents which can interact with them may prevent viral entry. In the present study, we have investigated an approach to generate antibodies that specifically recognize the HRN and HRC regions of the SARS-CoV spike (S) glycoprotein in order to evaluate whether these antibodies can inhibit viral infectivity and thus neutralize the SARS-CoV. In this regard, we incorporated HRN and HRC coiled-coil surface residues into a de novo designed two-stranded alpha-helical coiled-coil template for generating conformation-specific antibodies that recognize alpha-helices in proteins (Lu, S.M., Hodges, R.S., 2002. J. Biol. Chem. 277, 23515-23524). Eighteen surface residues from two regions of HRN and HRC were incorporated into the template and used to generate four anti-sera, HRN1, HRN2, HRC1, and HRC2. Our results show that all of the elicited anti-sera can specifically recognize HRN or HRC peptides and the native SARS-CoV S protein in an ELISA format. Flow cytometry (FACS) analysis, however, showed only HRC1 and HRC2 anti-sera could bind to native S protein expressed on the cell surface of Chinese hamster ovary cells, i.e., the cell surface structure of the S glycoprotein precluded the ability of the HRN1 or HRN2 anti-sera to see their respective epitope sites. In in vitro viral infectivity assays, no inhibition was observed for either HRN1 or HRN2 anti-serum, whereas both HRC1 and HRC2 anti-sera could inhibit SARS-CoV infection in a dose-dependent manner. Interestingly, the HRC1 anti-serum, which was a more effective inhibitor of viral infectivity compared to HRC2 anti-serum, could only bind the pre-fusogenic state of HRC, i.e., the HRC1 anti-serum did not recognize the six-helix bundle conformation (fusion state) whereas HRC2 anti-serum did. These results suggest that antibodies that are more specific for the pre-fusogenic state of HRC may be better neutralizing antibodies. Overall, these results clearly demonstrate that the two-stranded coiled-coil template acts as an excellent presentation system for eliciting helix-specific antibodies against highly conserved viral antigens and HRC1 and HRC2 peptides may represent potential candidates for use in a peptide vaccine against the SARS-CoV.  相似文献   

17.
《Biophysical journal》2020,118(10):2426-2433
Host lipid composition influences many stages of the influenza A virus (IAV) entry process, including initial binding of IAV to sialylated glycans, fusion between the viral envelope and the host membrane, and the formation of a fusion pore through which the viral genome is transferred into a target cell. In particular, target membrane cholesterol has been shown to preferentially associate with virus receptors and alter physical properties of the membrane like fluidity and curvature. These properties affect both IAV binding and fusion, which makes it difficult to isolate the role of cholesterol in IAV fusion from receptor binding effects. Here, we develop a fusion assay that uses synthetic DNA-lipid conjugates as surrogate viral receptors to tether virions to target vesicles. To avoid the possibly perturbative effect of adding a self-quenched concentration of dye-labeled lipids to the viral membrane, we tether virions to lipid-labeled target vesicles and use fluorescence microscopy to detect individual, pH-triggered IAV membrane fusion events. Through this approach, we find that cholesterol in the target membrane enhances the efficiency of single-particle IAV lipid mixing, whereas the rate of lipid mixing is independent of cholesterol composition. We also find that the single-particle kinetics of influenza lipid mixing to target membranes with different cholesterol compositions is independent of receptor binding, suggesting that cholesterol-mediated spatial clustering of viral receptors within the target membrane does not significantly affect IAV hemifusion. These results are consistent with the hypothesis that target membrane cholesterol increases lipid mixing efficiency by altering host membrane curvature.  相似文献   

18.
Henipavirus is a new genus of Paramyxoviridae that uses protein-based receptors (ephrinB2 and ephrinB3) for virus entry. Paramyxovirus entry requires the coordinated action of the fusion (F) and attachment viral envelope glycoproteins. Receptor binding to the attachment protein triggers F to undergo a conformational cascade that results in membrane fusion. The accumulation of structural and functional studies on many paramyxoviral fusion and attachment proteins, including the recent elucidation of structures of Nipah virus (NiV) and Hendra virus (HeV) G glycoproteins bound and unbound to cognate ephrinB receptors, indicate that henipavirus entry and fusion could differ mechanistically from paramyxoviruses that use glycan-based receptors.  相似文献   

19.
Samuel O  Shai Y 《Biochemistry》2001,40(5):1340-1349
Paramyxoviruses penetrate into their host cells by fusing their membranes with the plasma membrane. The hydrophobic N terminus of their F1 protein, termed the 'fusion peptide', is thought to be responsible for this process. Recently, an additional internal fusion peptide, homologous in sequence to the N-terminal fusion peptide of HIV-1, was identified in the Sendai virus F1 protein. Here, we investigated whether the presence of an additional internal fusion peptide is a general feature of paramyxoviridae. To this end, we synthesized and structurally and functionally characterized three peptides: (i) MV-197, which corresponds to an internal segment of the F1 protein of the measles virus (amino acids 197-225), homologous in location but not in sequence to the internal fusion peptide of the Sendai virus, (ii) Mu-MV-197, a randomized version of MV-197, and (iii) the 33 amino acid N-terminal fusion peptide of the measles virus. Remarkably, only MV-197 was highly fusogenic toward large unilamellar vesicles composed of either zwitterionic (phosphatidylcholine or phosphatidylcholine/sphingomyelin/cholesterol, a composition similar to that of human cell membranes) or negatively charged phospholipids. Binding experiments, circular dichroism spectroscopy in phospholipid membranes, and homo energy-transfer studies with fluorescently labeled peptides revealed that MV-197 adopts a predominant alpha-helical structure and shares properties similar to those reported for known fusion peptides. These results suggest that the presence of two fusion peptides in the F1 protein is a general feature of paramyxoviruses.  相似文献   

20.
Popa A  Pager CT  Dutch RE 《Biochemistry》2011,50(6):945-952
The paramyxovirus family includes important human pathogens such as measles, mumps, respiratory syncytial virus, and the recently emerged, highly pathogenic Hendra and Nipah viruses. The viral fusion (F) protein plays critical roles in infection, promoting both the virus-cell membrane fusion events needed for viral entry as well as cell-cell fusion events leading to syncytia formation. We describe the surprising finding that addition of the short epitope HA tag to the cytoplasmic tail (CT) of the Hendra virus F protein leads to a significant increase in the extent of cell-cell membrane fusion. This increase was not due to alterations in surface expression, cleavage state, or association with lipid microdomains. Addition of a Myc tag of similar length did not alter Hendra F protein fusion activity, indicating that the observed stimulation was not solely a result of lengthening the CT. Three tyrosine residues within the HA tag were critical for the increase in the extent of fusion, suggesting C-terminal tyrosines may modulate Hendra fusion activity. The effects of addition of the HA tag varied with other fusion proteins, as parainfluenza virus 5 F-HA showed a decreased level of surface expression and no stimulation of fusion. These results indicate that additions to the C-terminal end of the F protein CT can modulate protein function in a sequence specific manner, reinforcing the need for careful analysis of epitope-tagged glycoproteins. In addition, our results implicate C-terminal tyrosine residues in the modulation of the membrane fusion reaction promoted by these viral glycoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号