首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background  

One frequent application of microarray experiments is in the study of monitoring gene activities in a cell during cell cycle or cell division. A new challenge for analyzing the microarray experiments is to identify genes that are statistically significantly periodically expressed during the cell cycle. Such a challenge occurs due to the large number of genes that are simultaneously measured, a moderate to small number of measurements per gene taken at different time points, and high levels of non-normal random noises inherited in the data.  相似文献   

2.
3.
MOTIVATION: Chromosomal copy number changes (aneuploidies) are common in cell populations that undergo multiple cell divisions including yeast strains, cell lines and tumor cells. Identification of aneuploidies is critical in evolutionary studies, where changes in copy number serve an adaptive purpose, as well as in cancer studies, where amplifications and deletions of chromosomal regions have been identified as a major pathogenetic mechanism. Aneuploidies can be studied on whole-genome level using array CGH (a microarray-based method that measures the DNA content), but their presence also affects gene expression. In gene expression microarray analysis, identification of copy number changes is especially important in preventing aberrant biological conclusions based on spurious gene expression correlation or masked phenotypes that arise due to aneuploidies. Previously suggested approaches for aneuploidy detection from microarray data mostly focus on array CGH, address only whole-chromosome or whole-arm copy number changes, and rely on thresholds or other heuristics, making them unsuitable for fully automated general application to gene expression datasets. There is a need for a general and robust method for identification of aneuploidies of any size from both array CGH and gene expression microarray data. RESULTS: We present ChARM (Chromosomal Aberration Region Miner), a robust and accurate expectation-maximization based method for identification of segmental aneuploidies (partial chromosome changes) from gene expression and array CGH microarray data. Systematic evaluation of the algorithm on synthetic and biological data shows that the method is robust to noise, aneuploidal segment size and P-value cutoff. Using our approach, we identify known chromosomal changes and predict novel potential segmental aneuploidies in commonly used yeast deletion strains and in breast cancer. ChARM can be routinely used to identify aneuploidies in array CGH datasets and to screen gene expression data for aneuploidies or array biases. Our methodology is sensitive enough to detect statistically significant and biologically relevant aneuploidies even when expression or DNA content changes are subtle as in mixed populations of cells. AVAILABILITY: Code available by request from the authors and on Web supplement at http://function.cs.princeton.edu/ChARM/  相似文献   

4.
Modern microarray technology is capable of providing data about the expression of thousands of genes, and even of whole genomes. An important question is how this technology can be used most effectively to unravel the workings of cellular machinery. Here, we propose a method to infer genetic networks on the basis of data from appropriately designed microarray experiments. In addition to identifying the genes that affect a specific other gene directly, this method also estimates the strength of such effects. We will discuss both the experimental setup and the theoretical background.  相似文献   

5.
MOTIVATION: Because co-expressed genes are likely to share the same biological function, cluster analysis of gene expression profiles has been applied for gene function discovery. Most existing clustering methods ignore known gene functions in the process of clustering. RESULTS: To take advantage of accumulating gene functional annotations, we propose incorporating known gene functions into a new distance metric, which shrinks a gene expression-based distance towards 0 if and only if the two genes share a common gene function. A two-step procedure is used. First, the shrinkage distance metric is used in any distance-based clustering method, e.g. K-medoids or hierarchical clustering, to cluster the genes with known functions. Second, while keeping the clustering results from the first step for the genes with known functions, the expression-based distance metric is used to cluster the remaining genes of unknown function, assigning each of them to either one of the clusters obtained in the first step or some new clusters. A simulation study and an application to gene function prediction for the yeast demonstrate the advantage of our proposal over the standard method.  相似文献   

6.
MOTIVATION: In microarray studies, numerous tools are available for functional enrichment analysis based on GO categories. Most of these tools, due to their requirement of a prior threshold for designating genes as differentially expressed genes (DEGs), are categorized as threshold-dependent methods that often suffer from a major criticism on their changing results with different thresholds. RESULTS: In the present article, by considering the inherent correlation structure of the GO categories, a continuous measure based on semantic similarity of GO categories is proposed to investigate the functional consistence (or stability) of threshold-dependent methods. The results from several datasets show when simply counting overlapping categories between two groups, the significant category groups selected under different DEG thresholds are seemingly very different. However, based on the semantic similarity measure proposed in this article, the results are rather functionally consistent for a wide range of DEG thresholds. Moreover, we find that the functional consistence of gene lists ranked by SAM metric behaves relatively robust against changing DEG thresholds. AVAILABILITY: Source code in R is available on request from the authors.  相似文献   

7.
We propose and study the notion of dense regions for the analysis of categorized gene expression data and present some searching algorithms for discovering them. The algorithms can be applied to any categorical data matrices derived from gene expression level matrices. We demonstrate that dense regions are simple but useful and statistically significant patterns that can be used to 1) identify genes and/or samples of interest and 2) eliminate genes and/or samples corresponding to outliers, noise, or abnormalities. Some theoretical studies on the properties of the dense regions are presented which allow us to characterize dense regions into several classes and to derive tailor-made algorithms for different classes of regions. Moreover, an empirical simulation study on the distribution of the size of dense regions is carried out which is then used to assess the significance of dense regions and to derive effective pruning methods to speed up the searching algorithms. Real microarray data sets are employed to test our methods. Comparisons with six other well-known clustering algorithms using synthetic and real data are also conducted which confirm the superiority of our methods in discovering dense regions. The DRIFT code and a tutorial are available as supplemental material, which can be found on the Computer Society Digital Library at http://computer.org/tcbb/archives.htm.  相似文献   

8.
9.
Unbiased pattern detection in microarray data series   总被引:1,自引:0,他引:1  
MOTIVATION: Following the advent of microarray technology in recent years, the challenge for biologists is to identify genes of interest from the thousands of genetic expression levels measured in each microarray experiment. In many cases the aim is to identify pattern in the data series generated by successive microarray measurements. RESULTS: Here we introduce a new method of detecting pattern in microarray data series which is independent of the nature of this pattern. Our approach provides a measure of the algorithmic compressibility of each data series. A series which is significantly compressible is much more likely to result from simple underlying mechanisms than series which are incompressible. Accordingly, the gene associated with a compressible series is more likely to be biologically significant. We test our method on microarray time series of yeast cell cycle and show that it blindly selects genes exhibiting the expected cyclic behaviour as well as detecting other forms of pattern. Our results successfully predict two independent non-microarray experimental studies.  相似文献   

10.
11.

Background  

An important component of time course microarray studies is the identification of genes that demonstrate significant time-dependent variation in their expression levels. Until recently, available methods for performing such significance tests required replicates of individual time points. This paper describes a replicate-free method that was developed as part of a study of the estrous cycle in the rat mammary gland in which no replicate data was collected.  相似文献   

12.

Background  

Gene microarray technology provides the ability to study the regulation of thousands of genes simultaneously, but its potential is limited without an estimate of the statistical significance of the observed changes in gene expression. Due to the large number of genes being tested and the comparatively small number of array replicates (e.g., N = 3), standard statistical methods such as the Student's t-test fail to produce reliable results. Two other statistical approaches commonly used to improve significance estimates are a penalized t-test and a Z-test using intensity-dependent variance estimates.  相似文献   

13.

Background  

Gene-set analysis evaluates the expression of biological pathways, or a priori defined gene sets, rather than that of individual genes, in association with a binary phenotype, and is of great biologic interest in many DNA microarray studies. Gene Set Enrichment Analysis (GSEA) has been applied widely as a tool for gene-set analyses. We describe here some critical problems with GSEA and propose an alternative method by extending the individual-gene analysis method, Significance Analysis of Microarray (SAM), to gene-set analyses (SAM-GS).  相似文献   

14.
Microarray gene expression data is used in various biological and medical investigations. Processing of gene expression data requires algorithms in data mining, process automation and knowledge discovery. Available data mining algorithms exploits various visualization techniques. Here, we describe the merits and demerits of various visualization parameters used in gene expression analysis.  相似文献   

15.
Although two-color fluorescent DNA microarrays are now standard equipment in many molecular biology laboratories, methods for identifying differentially expressed genes in microarray data are still evolving. Here, we report a refined test for differentially expressed genes which does not rely on gene expression ratios but directly compares a series of repeated measurements of the two dye intensities for each gene. This test uses a statistical model to describe multiplicative and additive errors influencing an array experiment, where model parameters are estimated from observed intensities for all genes using the method of maximum likelihood. A generalized likelihood ratio test is performed for each gene to determine whether, under the model, these intensities are significantly different. We use this method to identify significant differences in gene expression among yeast cells growing in galactose-stimulating versus non-stimulating conditions and compare our results with current approaches for identifying differentially-expressed genes. The effect of sample size on parameter optimization is also explored, as is the use of the error model to compare the within- and between-slide intensity variation intrinsic to an array experiment.  相似文献   

16.
MOTIVATION: Given the vast amount of gene expression data, it is essential to develop a simple and reliable method of investigating the fine structure of gene interaction. We show how an information geometric measure achieves this. RESULTS: We introduce an information geometric measure of binary random vectors and show how this measure reveals the fine structure of gene interaction. In particular, we propose an iterative procedure by using this measure (called IPIG). The procedure finds higher-order dependencies which may underlie the interaction between two genes of interest. To demonstrate the method, we investigate the interaction between the two genes of interest in the data from human acute lymphoblastic leukemia cells. The method successfully discovered biologically known findings and also selected other genes as hidden causes that constitute the interaction. AVAILABILITY: Softwares are currently not available but are possibly made available in future at http://www.mns.brain.riken.go.jp/~nakahara/DNA_pub.html where all the related information is also linked.  相似文献   

17.
MOTIVATION: Missing values are problematic for the analysis of microarray data. Imputation methods have been compared in terms of the similarity between imputed and true values in simulation experiments and not of their influence on the final analysis. The focus has been on missing at random, while entries are missing also not at random. RESULTS: We investigate the influence of imputation on the detection of differentially expressed genes from cDNA microarray data. We apply ANOVA for microarrays and SAM and look to the differentially expressed genes that are lost because of imputation. We show that this new measure provides useful information that the traditional root mean squared error cannot capture. We also show that the type of missingness matters: imputing 5% missing not at random has the same effect as imputing 10-30% missing at random. We propose a new method for imputation (LinImp), fitting a simple linear model for each channel separately, and compare it with the widely used KNNimpute method. For 10% missing at random, KNNimpute leads to twice as many lost differentially expressed genes as LinImp. AVAILABILITY: The R package for LinImp is available at http://folk.uio.no/idasch/imp.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号