首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cross-linking of the neutrophil-beta 2- or beta 3-related leukocyte response integrins by extracellular matrix (ECM) proteins or monoclonal antibodies (mAb) stimulates cytoskeletal rearrangement leading to cell spreading and respiratory burst. Tyrosin phosphorylation of a variety of proteins and activation of the Src family kinases within polymorphonuclear leukocytes (PMN) have recently been implicated in the intracellular signaling pathways generated by leukocyte integrins (Yan, S.R., L. Fumagalli, and G Berton. 1995. J. Inflammation. 45:217-311.) To directly test whether these functional responses are dependent on the Src family kinases p59/61hck and p58c-fgr, we examined adhesion- dependent respiratory burst in PMNs isolated from hck -/-, fgr -/-, and hck -/- fgr -/- knockout mice. Purified bone marrow PMNS from wild-type mice released significant amounts of O2- when adherent to fibrinogen-, fibronectin-, or collagen-coated surfaces, in the presence of activating agents such as tumor necrosis factor (TNF) or formyl- methionyl-leucyl-phenylalanine, as described for human PMNs. PMNs from hck-/-fgr-/- double-mutant mic, however, failed to respond. This defect was specific for integrin signaling, since respiratory burst was normal in hck-/-fgr-/-PMNs stimulated by immune complexes or PMA. Stimulation of respiratory burst was observed in TNF-primed wild-type PMN plated on surfaces coated with murine intracellular adhesion molecule-1 (ICAM-1), while hck-/-fgr-/- PMNs, failed to respond. Direct cross-linking of the subunits of beta 2 and beta 2 integrins by surface-bound mAbs was elicited O2- production by wild-type PMNs, while the double-mutant hck- /-fgr-/- cells failed to respond. Photomicroscopy and cell adhesion assays revealed that the impaired functional responses of hck-/-fgr-/- PMNs were caused by defective spreading and tight adhesion on either ECM protein- or mAb-coated surfaces. In contrast, hck-/-or fgr-/-single mutant cells produced O2- at levels equivalent to wild-type cells on ECM protein, murine ICAM-1, and antiintegrin mAb-coated surfaces. Hence, either p59/61 hck and p 58c-fgr is required for signaling through leukocyte beta 2 and beta 3 integrins leading to PMN spreading and respiratory burst. This is the first direct genetic evidence of the importance of Src family kinases in integrin signaling within leukocytes, and it is also the best example of overlapping function between members of this gene family within a defined signal transduction pathway.  相似文献   

2.
Neutrophil beta(2) integrins are activated by inside-out signaling regulating integrin affinity and valency; following ligand binding, beta(2) integrins trigger outside-in signals regulating cell functions. Addressing inside-out and outside-in signaling in hck(-/-)fgr(-/-) neutrophils, we found that Hck and Fgr do not regulate chemoattractant-induced activation of beta(2) integrin affinity. In fact, beta(2) integrin-mediated rapid adhesion, in static condition assays, and neutrophil adhesion to glass capillary tubes cocoated with ICAM-1, P-selectin, and a chemoattractant, under flow, were unaffected in hck(-/-)fgr(-/-) neutrophils. Additionally, examination of integrin affinity by soluble ICAM-1 binding assays and of beta(2) integrin clustering on the cell surface, showed that integrin activation did not require Hck and Fgr expression. However, after binding, hck(-/-)fgr(-/-) neutrophil spreading over beta(2) integrin ligands was reduced and they rapidly detached from the adhesive surface. Whether alterations in outside-in signaling affect sustained adhesion to the vascular endothelium in vivo was addressed by examining neutrophil adhesiveness to inflamed muscle venules. Intravital microscopy analysis allowed us to conclude that Hck and Fgr regulate neither the number of rolling cells nor rolling velocity in neutrophils. However, arrest of hck(-/-)fgr(-/-) neutrophils to >60 microm in diameter venules was reduced. Thus, Hck and Fgr play no role in chemoattractant-induced inside-out beta(2) integrin activation but regulate outside-in signaling-dependent sustained adhesion.  相似文献   

3.
To address the question whether leukocyte integrins are able to generate signals activating neutrophil functions, we investigated the capability of mAbs against the common beta chain (CD18), or the distinct alpha chains of CR3, LFA-1, or gp150/95, to activate neutrophil respiratory burst. These investigations were performed with mAbs bound to protein A immobilized to tissue culture polystyrene. Neutrophils plated in wells coated with the anti-CD18 mAbs IB4 and 60.3 released H2O2; H2O2 release did not occur when neutrophils were plated in wells coated with an irrelevant, isotype-matched mAb (OKDR), or with mAbs against other molecules (CD16, beta 2-microglobulin) expressed on the neutrophil surface at the same density of CD18. Four different mAbs, OKM1, OKM9, OKM10, 60.1, which recognize distinct epitopes of CR3 were unable to trigger H2O2 or O2- release from neutrophils. However, mAbs against LFA-1 or gp150/95 triggered both H2O2 and O2- release from neutrophils. Stimulation of neutrophils respiratory burst by both anti-CD18, and anti-LFA-1 or gp150/95 mAbs was totally inhibited by the microfilaments disrupting agent, cytochalasin B, and by a permeable cAMP analogue. While the capability to activate neutrophil respiratory burst was restricted to anti-LFA-1 and gp150/95 mAbs, we observed that mAbs against all members of leukocyte integrins, including CR3, were able to trigger neutrophil spreading. These findings indicate that, in neutrophils, all three leukocyte integrins can generate signals activating spreading, but only LFA-1 and gp150/95 can generate signals involved in activation of the respiratory burst. This observation can be relevant to understand the mechanisms responsible for the activation of neutrophil respiratory burst by tumor necrosis factor-alpha, which has been shown to be strictly dependent on expression of leukocyte integrins (Nathan, C., S. Srimal, C. Farber, E. Sanchez, L. Kabbash, A. Asch, J. Gailit, and S. Wright. 1989. J. Cell Biol. 109:13411349.  相似文献   

4.
The Ig-like receptor family member, PIR-B, has been shown to play an inhibitory role in receptor signaling within B cells, mast cells, and dendritic cells. As it has been implicated in integrin-mediated responses, we investigated the effect of loss of the PIR-B protein on integrin-mediated signaling in primary murine myeloid cells. The pir-b-/- neutrophils displayed enhanced respiratory burst, secondary granule release, and a hyperadhesive phenotype when plated on surfaces coated with either extracellular matrix proteins or cellular adhesion molecules in the presence or absence of the soluble inflammatory agonist TNF-alpha. The pir-b-/- and wild-type cells responded equivalently when stimulated with TNF-alpha in suspension, indicating that the hyperresponsive phenotype of the pir-b-/- cells during adhesion was due to enhanced integrin signaling. Both wild-type and pir-b-/- neutrophils expressed similar levels of integrin subunits. Primary bone marrow-derived macrophages from pir-b-/- mice were also hyperadhesive and spread more rapidly than wild-type cells following plating on surfaces that cross-linked cellular beta2 integrins. Biochemical analysis of macrophages from pir-b-/- mice revealed enhanced phosphorylation and activation of proteins involved in integrin signaling. These observations point to a nonredundant role for PIR-B in the regulation of leukocyte integrin signaling.  相似文献   

5.
The relative contribution of integrin and nonintegrin signals to neutrophil activation is incompletely understood. Immobilized anti-integrin Abs were previously shown to induce robust activation of neutrophils without any additional stimulus, suggesting that cross-linking of integrins is sufficient for full activation of the cells. However, the possible contribution from other receptors has not been tested in this system. In this study, we show that neutrophil responses to anti-integrin Abs requires costimulation through low-affinity Fc gamma Rs. Murine neutrophils lacking the FcR gamma-chain or Fc gamma RIII failed to respond to immobilized Abs against beta(1), beta(2), or beta(3) integrins and the activation of wild-type cells could be prevented by blocking Abs against Fc gamma RII/III. Plate-bound anti-CD18 Abs initiated a respiratory burst from human neutrophils, but this response was abrogated when the F(ab')(2) of the same Abs were used or the cells were preincubated with Fc gamma RIIA-blocking Abs. Lack of Fc gamma RIII or administration of Fc gamma R-blocking Abs had no effect on responses of TNF-stimulated cells plated on fibrinogen or rICAM-1. TNF restored the respiratory burst of Fc gamma RIII-deficient neutrophils plated on anti-CD18 mAbs. The p38 MAPK inhibitor SB203580 attenuated the responses of neutrophils to anti-CD18 mAbs or TNF stimulation on a fibrinogen surface. Taken together, these results indicate that activation of low-affinity Fc gamma Rs is required for neutrophil responses induced by anti-integrin Abs and suggest that a second coactivation signal (e.g., through TNF or FcR ligation) is indispensable for full integrin-mediated activation of neutrophils. These second signals are interchangeable and they may converge on the p38 MAPK.  相似文献   

6.
The Lyn tyrosine kinase negatively regulates neutrophil integrin signaling   总被引:5,自引:0,他引:5  
The Src family kinase Lyn has been shown to play both stimulatory and inhibitory roles within several hemopoietic cell types. In this study, we investigated the role played by Lyn in neutrophil integrin signaling. Loss of Lyn resulted in a hyperresponsive phenotype on engagement of surface integrins at low valency. Lyn(-/-) neutrophils displayed enhanced respiratory burst, secondary granule release, and a hyperadhesive phenotype when adherent to surfaces coated with either cellular counterreceptors or extracellular matrix proteins. In contrast, Lyn-deficient and wild-type cells expressed similar levels of surface integrins and responded equivalently to activating agents in suspension, indicating that the enhanced responses of lyn(-/-) cells was specific to the integrin signaling pathways. Lyn-deficient macrophages also displayed a hyperadhesive phenotype. Biochemical analysis of macrophages from lyn(-/-) mice revealed that Lyn plays an essential role in the adhesion-dependent phosphorylation of the immunoreceptor tyrosine-based inhibitory motif of the inhibitory receptors SIRP1alpha and PIR-B, which in turn recruit the phosphatase SHP-1. These observations suggest that reduced mobilization of SHP-1 to the membrane in lyn(-/-) neutrophils results in a hyperadhesive and hyperactive phenotype. This hypothesis is further supported by the fact that neutrophils from me(v)/me(v) mice, which have significantly reduced SHP-1 activity, are also hyperresponsive following integrin engagement. This is the first direct evidence using primary leukocytes from lyn(-/-) mice that this kinase functions as a negative regulator in integrin signaling.  相似文献   

7.
Enhanced expression of both integrin alpha v beta 3 and platelet-derived growth factor receptor (PDGFr) has been described in glioblastoma tumors. We therefore explored the possibility that integrin alpha v beta 3 cooperates with PDGFr to promote cell migration in glioblastoma cells, and extended the study to identify the Src family members that are activated on PDGF stimulation. Glioblastoma cells utilize integrins alpha v beta 3 and alpha v beta 5 to mediate vitronectin attachment. We found that physiologic PDGF stimulation (83 pm, 10 min) of vitronectin-adherent cells promoted the specific recruitment of integrin alpha v beta 3-containing focal adhesions to the cell cortex and alpha v beta 3-mediated cell motility. Analysis of PDGFr immunoprecipitates indicated an association of the PDGFr beta with integrin alpha v beta 3, but not integrin alpha v beta 5. Cells plated onto collagen or laminin, which engage different integrins, exhibited significantly less migration on PDGF stimulation, indicating a cooperation of alpha v beta 3 and the PDGFr beta in glioblastoma cells that promotes migration. Further analysis of the cells plated onto vitronectin indicated that PDGF stimulation caused an increase in Src kinase activity, which was associated with integrin alpha v beta 3. In the vitronectin-adherent cells, Lyn was associated preferentially with alpha v beta 3 both in the presence and absence of PDGF stimulation. In contrast, Fyn was associated with both alpha v beta 3 and alpha v beta 5. Moreover, PDGF stimulation increased the activity of Lyn, but not Fyn, in vitronectin-adherent cells, and the activity of Fyn, but not Lyn, in laminin-adherent cells. Using cells attached to mAb anti-alpha v beta 3 or mAb anti-integrin alpha 6, we confirmed the activation of specific members of the Src kinase family with PDGF stimulation. Down-regulation of Lyn expression by siRNA significantly inhibited the cell migration mediated by integrin alpha v beta 3 in PDGF-stimulated cells, demonstrating the PDGFr beta cooperates with integrin alpha v beta 3 in promoting the motility of vitronectin-adherent glioblastoma cells through a Lyn kinase-mediated pathway. Notably, the data indicate that engagement of different integrins alters the identity of the Src family members that are activated on stimulation with PDGF.  相似文献   

8.
9.
Primary macrophages isolated from hck(-/-)fgr(-/-) mice display altered morphology and F-actin cytoskeletal structures and reduced migration. The ability of phorbol myristyl acetate (PMA), a protein kinase C activator that has been reported to increase macrophage spreading and carcinoma cell motility, to rescue these hck(-/-)fgr(-/-) defects was tested. Although PMA-treated wild-type and hck(-/-)fgr(-/-) macrophages exhibited a similar flattened, spread phenotype, PMA did not rescue the hck(-/-)fgr(-/-) macrophage migration defect. Instead, both PMA-treated wild type and hck(-/-)fgr(-/-) macrophages were defective in spontaneous and chemotactic migration and tyrosine phosphorylation of the Cbl protooncoprotein was decreased in both. Moreover, c-cbl(-/-) macrophages displayed the same impairment of motility as hck(-/-)fgr(-/-) macrophages and a similar morphology with less polarization and more dorsal ruffling than wild-type macrophages. As Hck and Fgr expression and activity were not decreased in c-cbl(-/-) macrophages, these results suggest that Cbl is likely to be an important downstream mediator of the Src family kinase-regulated macrophage motility pathway.  相似文献   

10.
Haptokinetic cell migration across surfaces is mediated by adhesion receptors including beta1 integrins and CD44 providing adhesion to extracellular matrix (ECM) ligands such as collagen and hyaluronan (HA), respectively. Little is known, however, about how such different receptor systems synergize for cell migration through three-dimensionally (3-D) interconnected ECM ligands. In highly motile human MV3 melanoma cells, both beta1 integrins and CD44 are abundantly expressed, support migration across collagen and HA, respectively, and are deposited upon migration, whereas only beta1 integrins but not CD44 redistribute to focal adhesions. In 3-D collagen lattices in the presence or absence of HA and cross-linking chondroitin sulfate, MV3 cell migration and associated functions such as polarization and matrix reorganization were blocked by anti-beta1 and anti-alpha2 integrin mAbs, whereas mAbs blocking CD44, alpha3, alpha5, alpha6, or alphav integrins showed no effect. With use of highly sensitive time-lapse videomicroscopy and computer-assisted cell tracking techniques, promigratory functions of CD44 were excluded. 1) Addition of HA did not increase the migratory cell population or its migration velocity, 2) blocking of the HA-binding Hermes-1 epitope did not affect migration, and 3) impaired migration after blocking or activation of beta1 integrins was not restored via CD44. Because alpha2beta1-mediated migration was neither synergized nor replaced by CD44-HA interactions, we conclude that the biophysical properties of 3-D multicomponent ECM impose more restricted molecular functions of adhesion receptors, thereby differing from haptokinetic migration across surfaces.  相似文献   

11.
The angiogenic activity of CXC-ELR(+) chemokines, including CXCL8/IL-8, CXCL1/macrophage inflammatory protein-2 (MIP-2), and CXCL1/growth-related oncogene-alpha in the Matrigel sponge angiogenesis assay in vivo, is strictly neutrophil dependent, as neutrophil depletion of the animals completely abrogates the angiogenic response. In this study, we demonstrate that mice deficient in the src family kinases, Hck and Fgr (hck(-/-)fgr(-/-)), are unable to develop an angiogenic response to CXCL1/MIP-2, although they respond normally to vascular endothelial growth factor-A (VEGF-A). Histological examination of the CXCL1/MIP-2-containing Matrigel implants isolated from wild-type or hck(-/-)fgr(-/-) mice showed the presence of an extensive neutrophil infiltrate, excluding a defective neutrophil recruitment into the Matrigel sponges. Accordingly, neutrophils from hck(-/-)fgr(-/-) mice normally migrated and released gelatinase B in response to CXCL1/MIP-2 in vitro, similarly to wild-type neutrophils. However, unlike wild-type neutrophils, those from hck(-/-)fgr(-/-) mice were completely unable to release VEGF-A upon stimulation with CXCL1/MIP-2. Furthermore, neutralizing anti-VEGF-A Abs abrogated the angiogenic response to CXCL1/MIP-2 in wild-type mice and CXCL1/MIP-2 induced angiogenesis in the chick embryo chorioallantoic membrane assay, indicating that neutrophil-derived VEGF-A is a major mediator of CXCL1/MIP-2-induced angiogenesis. Finally, in vitro kinase assays confirmed that CXCL1/MIP-2 activates Hck and Fgr in murine neutrophils. Taken together, these data demonstrate that CXCL1/MIP-2 leads to recruitment of neutrophils that, in turn, release biologically active VEGF-A, resulting in angiogenesis in vivo. Our observations delineate a novel mechanism by which CXCL1/MIP-2 induces neutrophil-dependent angiogenesis in vivo.  相似文献   

12.
Adhesion of neutrophils to substrate is initiated by receptor-ligand interactions that induce outside-in signaling. Inside-out signals and lateral interactions between surface molecules further fine tune the response. This study investigates the role of CD66 in adhesion of neutrophils to fibronectin, using domain-mapped monoclonal antibodies to CD66. Neutrophils express CD66a, CD66b, and CD66c on their surface. The neutrophil surface molecules that bind to fibronectin are the alpha(4)beta(1) and alpha(5)beta(1) integrins. Our results show that the monoclonal antibody Kat4c, which recognizes the AB domain of CD66a, b, and c and the polyclonal anti-CD66 (anti-carcinoembryonic antigen), augments neutrophil adhesion to fibronectin, while monoclonal antibodies to the individual CD66 antigens, the Fab fragment of Kat4c, and a mixture of the individual antibodies to CD66 antigens were unable to affect the adhesion. Thus heterodimerization of CD66a, b, and c is required for promoting neutrophil adhesion to fibronectin. The increased adhesion in presence of Kat4c was inhibited by antibodies to the beta(1) and beta(2) integrins. Antibody ligation of CD66 antigens causes their clustering and concomitant coclustering of the alpha(M) subunit of the beta(2) integrin, thereby activating the integrin. The sugar alpha-methyl mannoside inhibited anti-CD66-mediated clustering, indicating that a carbohydrate-lectin interaction may exist between CD66 and alpha(M) integrin. It also reduced the increased adhesion of neutrophils to fibronectin, suggesting that beta(2) integrin activation precedes beta(1) integrin activation. Further, the anti-CD66-mediated adhesion to fibronectin is accompanied by increased localization of Src family kinases (lyn and hck) to the cytoskeleton and an increase in their kinase activity. These results suggest that crosslinking of CD66a, CD66b, and CD66c promotes activation of the beta(2) integrin and in turn an alteration in the affinity of the beta(1) integrin, which enhances the adhesion of neutrophils to fibronectin.  相似文献   

13.
Alpha 4 integrin increases anoikis of human osteosarcoma cells   总被引:2,自引:0,他引:2  
Cell motility, growth, and proliferation are regulated by adhesion to the extracellular matrix. Detachment of adherent cells from extracellular matrix results in induction of apoptosis ("anoikis"). Transformed cells often show an anchorage-independent growth that enables them to acquire a motile, invasive phenotype. This phenotype has been associated with the altered expression and function of the integrin family of transmembrane proteins that mediate cell adhesion to the extracellular matrix. Although alpha4 integrin is normally expressed on leukocyte subpopulations, a number of metastatic melanomas and sarcomas express it as well. In this study, we demonstrated the expression of alpha4 integrins on the human osteosarcoma cell line SAOS and on metastatic osteosarcoma lesions from the lung and pericardium. We further demonstrated that alpha4 integrin is coupled to the beta1 subunit by biochemical analysis and by using a mAb directed against a combinatorial epitope unique to the alpha4beta1 molecule. SAOS cells undergo anoikis when adherence is denied. Anoikis involved the activation of caspase 3 and the release of cytochrome c from mitochondria. Treatment of non-adherent SAOS with an anti-alpha4 mAb increased anoikis while anti-beta1 integrin mAbs did not alter anoikis, thus indicating a novel function for the alpha4 subunit in the control of cell death. Since integrins can control cell migration, proliferation, and apoptosis these results demonstrate a potential role for alpha4 integrin during multiple aspects of osteosarcoma metastasis.  相似文献   

14.
Co-signaling events between integrins and cell surface proteoglycans play a critical role in the organization of the cytoskeleton and adhesion forces of cells. These processes, which appear to be responsible for maintaining intraocular pressure in the human eye, involve a novel cooperative co-signaling pathway between alpha5beta1 and alpha4beta1 integrins and are independent of heparan sulfate proteoglycans. Human trabecular meshwork cells isolated from the eye were plated on type III 7-10 repeats of fibronectin (alpha5beta1 ligand) in the absence or presence of the heparin (Hep) II domain of fibronectin. In the absence of the Hep II domain, cells had a bipolar morphology with few focal adhesions and stress fibers. The addition of the Hep II domain increased cell spreading and the numbers of focal adhesions and stress fibers. Cell spreading and stress fiber formation were not mediated by heparan sulfate proteoglycans because treatment with chlorate, heparinase, or soluble heparin did not prevent Hep II domain-mediated cell spreading. Cell spreading and stress fiber formation were mediated by alpha4beta1 integrin because soluble anti-alpha4 integrin antibodies inhibited Hep II domain-mediated cell spreading and soluble vascular cell adhesion molecule-1 (alpha4beta1 ligand)-induced cell spreading. This is the first demonstration of the Hep II domain mediating cell spreading and stress fiber formation through alpha4beta1 integrin. This novel pathway demonstrates a cooperative, rather than antagonistic, role between alpha5beta1 and alpha4beta1 integrins and suggests that interactions between the Hep II domain and alpha4beta1 integrin could modulate the strength of cytoskeleton-mediated processes in the trabecular meshwork of the human eye.  相似文献   

15.
Spreading of neutrophils on protein-coated surfaces is a pivotal event in their ability to respond to soluble, physiologic agonists by releasing large amounts of hydrolases and oxidants. Using neutrophils plated on serum-, fibrinogen- or fibronectin-coated surfaces, we investigated the effect of human serum albumin (HSA) on spreading- dependent neutrophil responses. HSA suppressed the respiratory burst of neutrophils in response to tumor necrosis factor-alpha (TNF), complement component C5a or formylated peptide, but not phorbol myristate acetate. HSA was suppressive only if added before the onset of the respiratory burst, and suppression was reversed when HSA was removed. Likewise, HSA selectively and reversibly inhibited TNF-induced cell spreading and the associated fall in cAMP. However, HSA did not hinder TNF-induced cell adherence to the same protein-coated surfaces. We investigated cell surface sialoproteins as modulators of cell spreading and as targets for the anti-spreading action of HSA. Oxidation of the cell surface with periodate followed by reduction with 3H-borohydride and immunoblotting with specific mAbs helped identify the predominant sialoprotein on human neutrophils as CD43 (sialophorin, leukosialin). Treatment of neutrophils with C. perfringens sialidase desialylated CD43, markedly enhanced the ability of the cells to respond to TNF by spreading and undergoing a respiratory burst, and antagonized the ability of HSA to inhibit these responses. TNF-treated, adherent neutrophils shed CD43, and this was blocked by HSA, but not by ovalbumin. Exogenous neutrophil elastase removed CD43 from the neutrophil surface. HSA blocked the actions of both sialidase and elastase on CD43. In contrast, ovalbumin did not block the action of sialidase on CD43, and HSA did not inhibit the ability of sialidase to hydrolyze a synthetic substrate. These results suggested that HSA might bind CD43. In fact, the extracellular portion of CD43 bound to HSA- Sepharose, but not to ovalbumin- or glycylglycine-Sepharose. Finally, two mAbs recognizing different epitopes on CD43 mimicked HSA's inhibitory effects on neutrophil function. Thus, HSA can dissociate attachment of neutrophils from spreading. This dissociation may help neutrophils migrate along a chemotactic gradient, while decreasing their release of oxidants. CD43, a long, rigid molecule with a markedly negative charge, antagonizes neutrophil spreading. HSA appears to inhibit spreading-dependent neutrophil functions by binding to CD43 and interfering with the ability of neutrophils to shed it.  相似文献   

16.
The beta(2) integrin cell adhesion molecules (CAM) mediate polymorphonuclear leukocyte (PMNL) emigration in most inflamed tissues, but, in the lung, other yet to be identified CAMs appear to be involved. In Lewis rats, the intratracheal injection of Escherichia coli-LPS induced acute (6-h) PMNL accumulation in the lung parenchyma (280 x 10(6) by myeloperoxidase assay; PBS control = 35 x 10(6)) and bronchoalveolar lavage fluid (BALF = 27 x 10(6); PBS = 0.1 x 10(6)). Parenchymal accumulation was not inhibited by a blocking Ab to beta(2) integrins and only minimally inhibited (20.5%; p < 0.05) in BALF. We examined the role of alpha(4)beta(1) and alpha(5)beta(1) integrins and of selectins in this PMNL recruitment. Treatment with mAbs to alpha(4)beta(1) or alpha(5)beta(1), even in combination, had no effect on PMNL accumulation induced by intratracheal LPS. However, anti-alpha(4) combined with anti-beta(2) mAbs inhibited PMNL recruitment to the parenchyma by 56% (p < 0.001) and to BALF by 58% (p < 0.01). The addition of anti-alpha(5) mAb to beta(2) plus alpha(4) blockade inhibited PMNL accumulation further (by 79%; p < 0.05). In contrast, blockade of L-, P-, and E-selectins in combination or together with beta(2), alpha(4), and alpha(5) integrins had no effect. LPS-induced BALF protein accumulation was not inhibited by treatment with anti-beta(2) plus alpha(4) mAbs, but was prevented when alpha(5)beta(1) was also blocked. Thus, while selectins appear to play no role, alpha(4)beta(1) and alpha(5)beta(1) function as major alternate CAMs to the beta(2) integrins in mediating PMNL migration to lung and to pulmonary vascular and epithelial permeability.  相似文献   

17.
The requirement for phosphatidylinositol 3-kinase (PI3K) in the establishment of cell polarity and motility in a number of cell types has recently come into question. In this study, we demonstrate that inhibition of PI3K by wortmannin in neutrophil-like differentiated HL60 cells expressing CXCR2 resulted in reduced cell motility but normal chemotaxis in response to a gradient of CXCL8. However, wortmannin inhibition of PI3K did impair the ability of cells to re-orient their polarity and respond quickly to a change in the direction of the CXCL8 gradient. We hypothesized that Src-regulated ELMO-Dock2-Rac2 activation mediates chemotaxis in the absence of PI3K activity. Inhibition of Src with the small molecule inhibitor, PP2, or inhibition of Dock2 by shRNA knockdown confirmed the functional role of Src and Dock2 in regulating chemotaxis when PI3K was inhibited. Moreover, neutrophils isolated from bone marrow of hck(-/-)fgr(-/-)lyn(-/-) mice exhibited much more severe inhibition of chemotaxis when PI3K was blocked with wortmannin as compared with neutrophils isolated from bone marrow of wild-type mice. Thus, PI3K and Src-ELMO-Dock2 pathways work in parallel to activate Rac2 and modulate chemotaxis in response to a CXCL8 gradient in neutrophils.  相似文献   

18.
《The Journal of cell biology》1990,111(5):2171-2181
The ability of neutrophils (PMN) to undergo a prolonged respiratory burst in response to cytokines such as tumor necrosis factor-alpha (TNF) depends on expression of CD11/CD18 (beta 2) integrins and interaction with matrix protein-coated surfaces (Nathan, C., S. Srimal, C. Farber, E. Sanchez, L. Kabbash, A. Asch, J. Gailit, and S. D. Wright. 1989. J. Cell Biol. 109:1341-1349). We tested the hypothesis that changes in cAMP mediate the joint action of cytokines and integrins. When plated on FBS- or fibrinogen-coated surfaces, PMN responded to TNF with a sustained fall in intracellular cAMP. This did not occur without TNF; in suspended PMN; in PMN treated with anti-CD18 mAb; or in PMN genetically deficient in beta 2 integrins. A preceding fall in cAMP appeared essential for TNF to induce a respiratory burst, because drugs that elevate cAMP blocked the burst if added any time before, but not after, its onset. Adenosine analogues and cytochalasins also block the TNF-induced respiratory burst if added before, but not after, its onset. Both also blocked the TNF-induced fall in cAMP. The effect of cytochalasins led us to examine the relationship between cAMP and actin reorganization. The same conditions that led to a sustained fall in cAMP led at the same time to cell spreading and the assembly of actin filaments. As with the respiratory burst, cAMP-elevating agents inhibited TNF-induced cell spreading and actin filament assembly if added before, but not after, spreading began. Thus, occupation of TNF receptors and engagement of CD18 integrins interact synergistically in PMN to promote a fall in cAMP. The fall in cAMP is closely related to cell spreading and actin reorganization. These changes are necessary for TNF to induce a prolonged respiratory burst. We conclude that integrins can act jointly with cytokines to affect cell shape and function through alterations in the level of a second messenger, cAMP.  相似文献   

19.
The Arg-Gly-Asp (RGD) tripeptide and ajoene were used for studying the role of adhesive receptors in the respiratory burst. Activation of the respiratory burst was examined by using luminol-dependent and lucigenin-dependent chemiluminescence. Recently, it was shown that ajoene, (E, Z)-4,5,9-trithiadodeca-1,6,11-trien-9-oxide, a substance isolated from garlic extract, inhibits the binding of fibrinogen to activated platelets by direct interaction with fibrinogen receptor (Apitz-Castro, R., Lederma, E., Escalante, J. and Jain, M.K. (1986) Biochem. Biophys. Res. Commun. 141, 145-150). Taking into consideration the structural and functional similarity of integrins, it would be reasonable to assume that ajoene as well as RGD can inhibit adhesive interactions of human neutrophils. We have shown that the effect of various activators on the respiratory burst was abolished by ajoene or RGD treatment. The inhibitory effect of RGD and ajoene was dose-dependent. The treatment of neutrophils with antiserum against human plasma fibronectin inhibited the respiratory burst in response to formyl-methionyl-leucylphenylalanine (fMLP) and phorbol 12-myristate 13-acetate (PMA). This effect is dose-dependent and reversible with the addition of fibronectin. These data indicate that the respiratory burst in human neutrophils is mediated by the integrin family of receptors and that interactions between the extracellular matrix fibronectin and cells are necessary for the respiratory burst.  相似文献   

20.
《The Journal of cell biology》1994,126(4):1111-1121
Stimulation of adherent human neutrophils (PMN) with tumor necrosis factor (TNF) triggers protein tyrosine phosphorylation (Fuortes, M., W. W. Jin, and C. Nathan. 1993. J. Cell Biol. 120:777-784). We investigated the dependence of this response on beta 2 integrins by using PMN isolated from a leukocyte adhesion deficiency (LAD) patient, which do not express beta 2 integrins, and by plating PMN on surface bound anti-beta 2 (CD18) antibodies. Protein tyrosine phosphorylation increased in PMN plated on fibrinogen and this phosphorylation was enhanced by TNF. Triggering of protein tyrosine phosphorylation did not occur in LAD PMN plated on fibrinogen either in the absence or the presence of TNF. Surface bound anti-CD18, but not isotype-matched anti- Class I major histocompatibility complex (MHC) antigens, antibodies triggered tyrosine phosphorylation in normal, but not in LAD PMN. As the major tyrosine phosphorylated proteins we found in our assay conditions migrated with an apparent molecular mass of 56-60 kD, we investigated whether beta 2 integrins are implicated in activation of members of the src family of intracellular protein-tyrosine kinases. We found that the fgr protein-tyrosine kinase (p58fgr) activity, and its extent of phosphorylation in tyrosine, in PMN adherent to fibrinogen, was enhanced by TNF. Activation of p58fgr in response to TNF was evident within 10 min of treatment and increased with times up to 30 min. Also other activators of beta 2 integrins such as phorbol-12- myristate 13-acetate (PMA), and formyl methionyl-leucyl-phenylalanine (FMLP), induced activation of p58fgr kinase activity. Activation of p58fgr kinase activity, and phosphorylation in tyrosine, did not occur in PMN of a LAD patient in response to TNF. Soluble anti-CD18, but not anti-Class I MHC antigens, antibodies inhibited activation of p58fgr kinase activity in PMN adherent to fibrinogen in response to TNF, PMA, and FMLP. These findings demonstrate that, in PMN, beta 2 integrins are implicated in triggering of protein tyrosine phosphorylation, and establish a link between beta 2 integrin-dependent adhesion and the protein tyrosine kinase fgr in cell signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号