共查询到20条相似文献,搜索用时 15 毫秒
1.
Increased permeability and subsequent resealing of the host cell membrane early after infection of Escherichia coli with bacteriophage T1. 下载免费PDF全文
The addition of T1 to cells growing at 37 degrees C in a minimal medium at 0.4 mM Mg2+ rapidly induced an irreversible loss of K+ and Mg2+ and uptake of Na+ by the cells. Both the ATP pool of the cells and the transmembrane proton motive force were reduced. These cells did not lyse from within, since viral DNA replication and the maturation of the 36,000-molecular-weight phage head protein were inhibited. By contrast, cells lysed when infected at 5.4 mM Mg2+. In these cells, T1 initially induced K+ efflux and Na+ influx and lowered the cytoplasmic ATP concentration. After a few minutes, the cation gradients and ATP pool were restored to levels close to that of control cells. At 5.4 mM Mg2+, the shutoff of host protein synthesis was delayed and coincided with the restoration of the ATP pool. In an ATP synthase-negative mutant, infection with T1 did not affect the cytoplasmic ATP concentration but inhibited host protein synthesis with the same rate as it did in wild-type cells. 相似文献
2.
Peptidoglycan association of bacteriophage T5 receptor in Escherichia coli K-12. 总被引:2,自引:1,他引:1 下载免费PDF全文
A total of 50% of the FhuA proteins (also called TonA proteins) present in Escherichia coli cells were associated with the peptidoglycan and 50% were free, whether or not this protein was overproduced. This FhuA-peptidoglycan association was made via the lipoprotein. 相似文献
3.
Interaction of bacteriophage T4 with reconstituted cell envelopes of Escherichia coli K-12. 总被引:2,自引:0,他引:2 下载免费PDF全文
The interaction with bacteriophage T4 of the cell surface of Escherichia coli K-12 reconstituted from outer membrane protein O-8, lipopolysaccharide, and the lipoprotein-bearing peptidoglycan sacculus was studied. The reconstituted cell surface was active as a receptor for the phage, resulting in the contraction of the tail sheath, a morphological change in the base plate which was accompanied by the extension of short tail pins down to the cell surface and the penetration of the needle through the cell surface. However, the ejection of phage deoxyribonucleic acid did not take place. Both O-8 and lipopolysaccharide were essential for the interaction. In the reconstitution, the wild-type lipopolysaccharide could not be replaced by either heptoseless lipopolysaccharide or lipid A. The lipoprotein-bearing peptidoglycan sacculus was also found to be an active component for the phage adsorption. The sacculus most likely functioned as a basal framework on which O-8 and lipopolysaccharide assembled to form a flat sheet which is large enough to interact with individual distal ends of long tail fibers of a single phage particle. 相似文献
4.
Two-component nature of bacteriophage T4 receptor activity in Escherichia coli K-12. 总被引:4,自引:2,他引:2 下载免费PDF全文
Escherichia coli bacteriophage T4 uses the lipopolysaccharide of the outer cell envelope membrane as a receptor. Lipopolysaccharide from E. coli K-12 required a major outer membrane protein, polypeptide Ib, for phage inactivation. 相似文献
5.
Regulation of early mRNA synthesis after bacteriophage T4 infection of Escherichia coli. 总被引:2,自引:2,他引:2 下载免费PDF全文
Regulation of T4-specific mRNA synthesis was studied during leucine starvation of a leucine-requiring stringent Escherichia coli B strain. This was done by imposing starvation prior to T4 infection and then letting RNA synthesis proceed for different time periods. Rifampin or streptolydigin was added to stop further RNA synthesis, and protein synthesis was restored by addition of leucine. Samples were withdrawn at different times, and the enzyme-forming capacities found that, during conditions which elicit the stringent response in uninfected bacteria, immediate early mRNA is not stringently regulated. This conclusion contradicts the earlier conclusion of others, obtained by measuring incorporation of radioactive uracil; this is explained by the observation of Edlin and Neuhard (1967), confirmed and extended by us to the T4-infected cell, that the incorporation of uracil into RNA of a stringent strain is virtually blocked by amino acid starvation, whereas that of adenine continues at 30 to 50% of the rate seen in the presence of the required amino acid. 相似文献
6.
7.
Role of lipopolysaccharide and outer membrane protein of Escherichia coli K-12 in the receptor activity for bacteriophage T4. 总被引:7,自引:12,他引:7 下载免费PDF全文
Lipopolysaccharide isolated from Escherichia coli K-12 did not inactivate phage T4, although the cell envelopes with 1% sodium deoxycholate resulted in the release of cytoplasmic membrane proteins, 70% of the lipopolysaccharide, and almost all of the phospholipid. The reconstitution of phage receptor activity was achieved from deoxycholate-soluble and -insoluble fractions by dialysis against a solution of magnesium chloride. Lipopolysaccharide was the only essential component in the deoxycholate-soluble fraction. PhageT4-resistant mutants YA21-6 and YA21-82, having defects in the deoxycholate-soluble and -insoluble fractions, respectively, were isolated. The deoxycholate-soluble fraction of YA21-6 possessed heptoseless lipopolysaccharide, and this defect was responsible for the phage resistance. The deoxycholate-insoluble fraction of YA21-82 lacked outer membrane protein O-8. The addition of O-8 to this fraction together with the wild-type lipopolysaccharide resulted in the appearance of the receptor activity. Furthermore, the reconstitution was successfully achieved with only O-8 and the wild-type lipopolysaccharide, indicating that O-8 was an essential component in the deoxycholate-insoluble fraction. 相似文献
8.
9.
Alteration of the Escherichia coli membrane by addition of bacteriophage T4 protein synthesized after infection. 下载免费PDF全文
Many T4-induced proteins were found associated with the Escherichia coli membrane during infection. Some of these were apparently ionically bound, but many could be identified as integral parts of the inner and outer bacterial membranes by their selective solubilities in guanidine or Sarkosyl. The synthesis and insertion of these proteins into the bacterial membrane were temporally controlled and, once in the membrane, these proteins were stably integrated. Host membrane protein synthesis continued after infection of non-UV-irradiated cells, but was not present, if the cells were irradiated. There were no major redistribution or loss of bacterial proteins from E. coli membranes as a consequence of T4 infection. 相似文献
10.
Inversion induced by temperature bacteriophage mu-1 in the chromosome of Escherichia coli K-12. 总被引:2,自引:0,他引:2 下载免费PDF全文
Induction of the Mu prophage of a lysogenic HfrP4X strongly stimulates the early transfer of the purE gene, which is located far from the origin of transfer. By using a rec- Mu cts62 X lysogenic donor, it was established that this process reflects the inversion of the origin of transfer in part of the Hfr population. Hfr's with inverted polarity of gene transfer were isolated; their analysis suggests that two Mu genomes in opposite orientation surround the inverted DNA fragment. Due to the presence of the Mu genome of the invertible G segment, homologous regions in the same orientation can appear in Mu genomes in opposite orientation. In a Rec+ background, Hfr's with inverted polarity (i) return to their original polarity of transfer by recomination between the two inverted Mu and (ii) produce new F' strains by recombination between the two similarly oriented G segments. 相似文献
11.
Roles of cell surface components of Escherichia coli K-12 in bacteriophage T4 infection: interaction of tail core with phospholipids. 总被引:3,自引:3,他引:3 下载免费PDF全文
The cell surface of Escherichia coli K-12, reconstituted from the OmpC protein, lipopolysaccharide, and the peptidoglycan layer, was active as a receptor for phage T4, resulting in the contraction of the tail sheath and the penetration of the core through the cell surface (Furukawa et al., J. Bacteriol. 140:1071--1080, 1979). In the present work the process of DNA ejection from the contracted T4 phage particle was studied. Contracted phage particles were adsorbed to phospholipid liposomes by the core tip. This adsorption resulted in ejection of phage DNA. Either phosphatidylglycerol or cardiolipin was active for the DNA ejection. A proton motive force across the liposome membrane was not required for these processes. The process of DNA ejection, however, was temperature dependent, whereas the adsorption of the core tip to liposomes took place at 4 degrees C. Based on these observations together with those in the previous paper, the process of T4 infection of E. coli K-12 cells is discussed with special reference to the roles of cell surface components. 相似文献
12.
A set of lambda dilv phage have been used in a deletion mapping procedure to determine the location of two previously characterized ilvO alleles. In contrast to earlier conclusions derived from three-factor crosses and episome-shortening techniques with phage P1, the order found is ilvG-ilvO-ilvEDA. A three-factor cross with phage P1 is described that is not consistent with this location for an ilvO allele. Further analysis of this particular three-factor cross revealed than an artifact attributable to a mutual syntrophism had skewed the apparent frequency of inheritance of the ilvO locus. The role of mutual syntrophism is discussed as a source of mapping errors for the ilvO locus. The value of this set of lambda dilv phage and this mapping procedure for obtaining comparatively unambiguous data on the locations of the ilv structural and regulatory genes is demonstrated. 相似文献
13.
The permeability of Escherichia coli cells for exogenous nucleodepolymerases has been studied by an immunoenzyme method. The enzyme ability to penetrate through the bacterial outer membrane and cell wall after 20 min of incubation with culture cells of delayed growth phase has been found. 相似文献
14.
Roles of lipopolysaccharide and outer membrane protein OmpC of Escherichia coli K-12 in the receptor function for bacteriophage T4 总被引:6,自引:5,他引:6 下载免费PDF全文
The roles of lipopolysaccharide and OmpC, a major outer membrane protein, in the receptor function for bacteriophage T4 were studied by using Escherichia coli K-12 strains having mutations in the ompC gene or in genes controlling different stages of lipopolysaccharide synthesis. The receptor activity for T4 was monitored by (i) T4 sensitivity of intact cells, (ii) phage inactivation activity of cell envelopes, and (iii) phage inactivation activity of specimens reconstituted from purified OmpC and lipopolysaccharide. It was found that (i) in the presence of the OmpC protein, the essential region of the lipopolysaccharide for the receptor activity was the core-lipid A region that includes the heptose region, whereas the glucose region was not necessarily required for the receptor function; (ii) the OmpC protein was not required at all when the distal end of the lipopolysaccharide was removed to expose a glucose residue at the distal end; and (iii) when cells lacked both the OmpC protein and the glucose region, they became extremely resistant to T4. Based on these findings, the roles of the OmpC protein and lipopolysaccharide in T4 infection are discussed. 相似文献
15.
16.
Pullulanase secretion in Escherichia coli K-12 requires a cytoplasmic protein and a putative polytopic cytoplasmic membrane protein 总被引:18,自引:0,他引:18
The previously uncharacterized third and fourth genes (pulE and pulF) of the pullulanase secretion gene operon of Klebsiella oxytoca strain UNF5023 are, respectively, predicted to encode a 55 kDa polypeptide with a putative nucleotide-binding site, and a highly hydrophobic 44 kDa polypeptide that probably spans the cytoplasmic membrane several times. Expression of pulE in minicells or under the control of a strong bacteriophage T7 promoter resulted in the production of a c. 58 kDa cytoplasmic protein. A representative PulE-beta-galactosidase hybrid protein created by Tnlac mutagenesis was also found mainly in the cytoplasm. These results are in line with the predicted absence from PulE of a region of sufficient hydrophobicity to function as a signal sequence. The PulF polypeptide could not be detected either in minicells or when the gene was transcribed from the T7 promoter, but the acquirement of three pulF-lacZ gene fusions that encoded hybrid proteins with relatively high levels of beta-galactosidase activity indicates that this gene can be transcribed and translated. Gene disruption experiments indicated that both pulE and pulF are required for pullulanase secretion in Escherichia coli K-12. Both proteins exhibit considerable homology throughout their entire lengths with other proteins involved in protein secretion, pilin assembly, conjugation and transformation competence in a variety of bacteria. In addition, PulE protein has consensus sequences found in a wide variety of nucleotide-binding proteins. This study completes the initial characterization of the pullulanase secretion gene operon, which comprises 13 genes that are all essential for the transport of pullulanase across the outer membrane. 相似文献
17.
18.
Maltose transport in Escherichia coli K-12: involvement of the bacteriophage lambda receptor. 总被引:23,自引:40,他引:23 下载免费PDF全文
Mutants affected in lamB, the structural gene for phage lambda receptor, are unable to utilize maltose when it is present at low concentrations (less than or equal 10 muM). During growth in a chemostat at limiting maltose concentrations, the lamB mutants tested were selected against in the presence of the wild-type strain. Transport studies demonstrate that most lamB mutants have deficient maltose transport capacities at low maltose concentrations. When antibodies against purified phage lambda receptor are added to a wild-type strain, transport of maltose at low concentrations is significantly reduced. These results strongly suggest that the phage lambda receptor molecule is involved in maltose transport. 相似文献
19.
20.
Recombination-promoting activity of the bacteriophage lambda Rap protein in Escherichia coli K-12 下载免费PDF全文
The rap gene of bacteriophage lambda was placed in the chromosome of an Escherichia coli K-12 strain in which the recBCD gene cluster had previously been replaced by the lambda red genes and in which the recG gene had been deleted. Recombination between linear double-stranded DNA molecules and the chromosome was tested in variants of the recGDelta red(+) rap(+) strain bearing mutations in genes known to affect recombination in other cellular pathways. The linear DNA was a 4-kb fragment containing the cat gene, with flanking lac sequences, released from an infecting phage chromosome by restriction enzyme cleavage in the cell. Replacement of wild-type lacZ with lacZ::cat was monitored by measuring the production of Lac-deficient chloramphenicol-resistant bacterial progeny. The results of these experiments indicated that the lambda rap gene could functionally substitute for the E. coli ruvC gene in Red-mediated recombination. 相似文献