首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have previously found that glycolysis and gluconeogenesis occur in separate "compartments" of the VSM cell. These compartments may result from spatial separation of glycolytic and gluconeogenic enzymes (Lloyd and Hardin [1999] Am J Physiol Cell Physiol. 277:C1250-C1262). We have also found that an intact plasma membrane is essential for compartmentation to exist (Lloyd and Hardin [2000] Am J Physiol Cell Physiol. 278:C803-C811), suggesting that glycolysis and gluconeogenesis may be associated with distinct plasma membrane microdomains. Caveolae are one such microdomain, in which proteins of related function colocalize. Thus, we hypothesized that membrane-associated glycolysis occurs in association with caveolae, while gluconeogenesis is localized to non-caveolae domains. To test this hypothesis, we disrupted caveolae in vascular smooth muscle (VSM) of pig cerebral microvessels (PCMV) with beta methyl-cyclodextrin (CD) and examined the metabolism of [2-(13)C]glucose (a glycolytic substrate) and [1-(13)C]fructose 1,6-bisphosphate (FBP, a gluconeogenic substrate in PCMV) using (13)C nuclear magnetic resonance spectroscopy. Caveolar disruption reduced flux of [2-(13)C]glucose to [2-(13)C]lactate, suggesting that caveolar disruption partially disrupted the glycolytic pathway. Caveolae disruption may also have resulted in a breakdown of compartmentation, since conversion of [1-(13)C]FBP to [3-(13)C]lactate was increased by CD treatment. Alternatively, the increased [3-(13)C]lactate production may reflect changes in FBP uptake, since conversion of [1-(13)C]FBP to [3-(13)C]glucose was also elevated in CD-treated cells. Thus, a link between caveolar organization and metabolic organization may exist.  相似文献   

2.
The transformation of macrophages and smooth muscle cells into foam cells by modified low-density lipoproteins (LDL) is one of the key events of atherogenesis. Effects of free radicals have mainly been studied in LDL, and other than toxicity, data dealing with direct action of free radicals on cells are scarce. This study focused on the direct effects of free radicals on cholesterol metabolism of smooth muscle cells. A free radical generator, azobis-amidinopropane dihydrochloride, was used, and conditions for a standardized oxidative stress were set up in vascular smooth muscle cells. After free radical action, the cells presented an accumulation of cholesterol that appeared to be the result of: (i) an increase in cholesterol biosynthesis and esterification; (ii) a decrease in cell cholesteryl ester hydrolysis; and (iii) a reduced cholesterol efflux. All these parameters were opposed by antioxidants. In addition, oxidant stress induced an increased degradation of acetyl-LDL, whereas no change was noted for native LDL. From this data, it was concluded that cholesterol metabolism of vascular smooth muscle cells was markedly altered by in vitro treatment with free radicals, although cell viability was unaffected. The resulting disturbance in cholesterol metabolism favors accumulation of cholesterol and cholesteryl esters in vascular cells, and thus may contribute to the formation of smooth muscle foam cells.  相似文献   

3.
Summary Cholesterol oxidase (3-hydroxy-steroid oxidase) catalyzes the oxidation of cholesterol to 4-cholesten-3 one and other oxidized cholesterol derivatives. The purpose of the present study was to investigate its effects on cultured vascular smooth muscle cells. Cultured rabbit aortic smooth muscle cells were morphologically altered after exposure to cholesterol oxidase in the presence of culture medium containing 10% fetal calf serum. If fetal calf serum was absent, cells were unaffected by the treatment. The extent of morphological change of the smooth muscle cells was dependent upon the time of exposure to the enzyme and the concentration of cholesterol oxidase employed. After moderate treatment with cholesterol oxidase, cells excluded trypan blue. Further, a specific mitochondrial marker DASPMI (dimethyl aminostyryl-methyl-pyridiniumiodine) which was used as a fluorescent index of cell viability, revealed that cell viability was unchanged after moderate cholesterol oxidase treatment. Nile red, a hydrophobic probe which selectively stains intracellular lipid droplets, was applied to detect the cellular lipid content after treatment with cholesterol oxidase. Cellular nile red fluorescence intensity increased linearly with the time and concentration of cholesterol oxidase treatment. These results demonstrate that cholesterol oxidase alters lipid deposition in the cell and changes cell morphology. The primary site of action of cholesterol oxidase appears to be independent of the cell membrane itself and instead is dependent upon the lipid content in the surrounding culture media. These changes occur prior to the cytotoxic effects of extensive oxidation. Because oxidized cholesterol may play an important role in the pathogenesis of atherosclerosis, our results have implications for intracellular accumulation of lipids in smooth muscle cells during the atherosclerotic lesion.  相似文献   

4.
The effects of transforming growth factor-beta (TGF-beta) on low density lipoprotein (LDL) receptor-mediated cholesterol metabolism were evaluated in vascular smooth muscle cells. TGF-beta significantly increased the binding, uptake, and degradation of 125I-LDL. This increase was paralleled by an increase in LDL receptor mRNA steady state levels and an increase in cholesterol esterification. The increase in LDL cholesterol metabolism was independent of proliferation. LDL receptor expression in response to TGF-beta was not affected by coincubation with an antibody against platelet-derived growth factor or by cyclooxygenase inhibitors in arterial smooth muscle cells, suggesting that TGF-beta's effect was not mediated through platelet-derived growth factor or prostaglandins, as demonstrated in other cell systems. However, coincubation with pertussis toxin abrogated the effect of TGF-beta on LDL receptor expression, suggesting that a pertussis toxin-sensitive G-protein may be involved in the signal transduction pathway. These results are discussed in terms of their potential effects on cellular cholesterol trafficking.  相似文献   

5.
Oxidation of low density lipoprotein increases its atherogenic potential. During oxidation there is an extensive conversion of lecithin to lysolecithin. In rat aortic smooth muscle cells, 2-25 micrograms/ml lysolecithin elevated cytosolic calcium concentration up to 560%. Lysolecithin (10-20 micrograms/ml) increased [3H]thymidine incorporation from 15 cpm/mg cell protein (controls) up to 189 cpm/mg cell protein. Lysolecithin (10 micrograms/ml) potentiated the PDGF-induced (50 ng/ml) [3H]thymidine incorporation up to 6.3 times. The results indicate that lysolecithin could induce mechanisms, by which oxidized low density lipoproteins could promote cell growth and thus contribute to atherosclerosis.  相似文献   

6.
NADPH氧化酶活性不影响主动脉平滑肌细胞负荷胆固醇   总被引:1,自引:0,他引:1  
NADPH氧化酶产生的活性氧促进血管平滑肌细胞的增殖和迁移,与动脉粥样硬化的发生密切相关.为了观察NADPH氧化酶的亚基p47phox对血管平滑肌细胞胆固醇代谢的影响,把p47phox基因敲除小鼠的主动脉血管平滑肌细胞与10 mg/L水溶性胆固醇共孵育72 h,然后用0.3 mg/L凝血酶处理10 min,采用免疫组织化学和油红O染色、实时定量逆转录PCR、免疫蛋白印迹、细胞内胆固醇测定等方法,观察细胞内胆固醇的改变,与平滑肌细胞、巨噬细胞、炎症反应细胞内胆固醇代谢相关蛋白的表达.结果显示,与未孵育的对照组相比,水溶性胆固醇孵育过的主动脉血管平滑肌细胞内胆固醇明显增加,差别有显著性意义:细胞内中性脂滴明显增加;α-肌动蛋白的表达下降,半乳糖凝集素3表达升高,单核细胞趋化蛋白1及血管细胞黏附分子1的表达不变;ATP结合盒转运体A1、酰基辅酶A:胆固醇酰基转移酶1及脂肪分化相关蛋白的表达增加.但是,与野生型血管平滑肌细胞相比,敲除p47phox基因并不能使所测定的指标发生变化.结果提示,负荷胆固醇后,p47phox依赖的NADPH氧化酶并不能改变血管平滑肌细胞向泡沫细胞的转变.单纯敲除p47phox基因不能改变细胞内胆固醇代谢的状态.  相似文献   

7.
Vitronectin, a multifunctional glycoprotein present in the plasma and interstitial tissues, has recently been found to be localized in atherosclerotic lesions. In this study we examined the effects of vitronectin on the migration of cultured bovine aortic smooth muscle cells using a modified Boyden chamber assay. The cells migrated to fluid-phase vitronectin in a concentration-dependent fashion. The cells also migrated to membrane filter surfaces precoated with vitronectin for a few minutes in the absence of additional vitronectin in the fluid phase, suggesting that this substance binds easily to the filters and stimulates cell migration by haptotaxis under the conditions described. These observations suggest that vitronectin deposited in the intima may be involved in the pathogenesis of atherosclerosis by recruiting smooth muscle cells from the media into the intima.  相似文献   

8.
Exposure of porcine vascular smooth muscle cells to platelet-derived growth factor (PDGF; 18-180 ng/ml) but not epidermal growth factor (EGF; 30 ng/ml), somatomedin C (SmC; 30 ng/ml), or insulin (10 microM), results in a rapid, reversible, time- and concentration-dependent disappearance of vinculin staining in adhesion plaques; actin-containing stress fibers also become disrupted following exposure of cells to PDGF. Disappearance of vinculin staining from adhesion plaques is also caused by 12-O-tetradecanoyl-phorbol-13-acetate (TPA; 200-400 nM), though the time course of the disappearance of vinculin staining under these conditions takes longer than in cells exposed to PDGF. The PDGF-induced removal of vinculin from adhesion plaques was inhibited in a concentration-dependent fashion by 8-(N,N-diethylamino) octyl-3,4,5-trimethoxybenzoate (TMB-8; 0.25-4 microM) and leupepetin (2-300 microM), and by n-alpha-tosyl-L-lysine chloromethylketone (TLCK; 100 microM) and trifluoperazine (TFP; 2.5 microM). Addition of PDGF to vascular smooth muscle cells caused a rapid, transient increase in cytosolic free calcium, from a basal resting level of 146 +/- 6.9 nM (SEM, n = 62) to 414 +/- 34 nM (SEM, n = 22) as determined using the calcium-sensitive indicator Fura-2 and Digitized Video Microscopy. This increase in cellular calcium preceded the disappearance of vinculin from adhesion plaques and was partially blocked by pretreatment of cells with TMB-8 but not leupeptin. This rise in cytosolic free calcium was found to occur in approximately 80% of the sample population and displayed both spatial and temporal subcellular heterogeneity. Exposure of cells to TPA (100 nM) did not result in a change in cytosolic free calcium. Both PDGF (20 ng/ml) and TPA (100 nM) caused cytosolic alkalinization which occurred after PDGF-induced disruption of vinculin from adhesion plaques, as determined using the pH-sensitive indicator BCECF and Digitized Video Microscopy. PDGF stimulated DNA synthesis and vinculin disruption in a similar dose-dependent fashion. Both could be inhibited by leupeptin or TMB-8. These results suggest that 1) exposure of vascular smooth muscle cells to PDGF is associated with the disruption of vinculin from adhesion plaques, 2) PDGF-induced vinculin disruption is regulated by an increase in cytosolic calcium (but not cytosolic alkalinization), and involves proteolysis; 3) activation of protein kinase C also causes vinculin removal from adhesion plaques but by a calcium-independent mechanism, and 4) the cellular response to PDGF-stimulated increases in cytosolic free calcium is heterogeneous.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
We have previously reported that free radical-treated vascular smooth muscle cells (SMC) lead to cholesterol accumulation in vitro. In the current study, we investigated the effects of oxidative stress on cyclic AMP concentration and cAMP-dependent enzymes involved in cholesterol homeostasis in A7r5 cells. Under our conditions of a mild oxidative stress, namely with no change in cell viability, we found that free radicals, initiated using azobis-amidinopropane dihydrochloride (AAPH), resulted in a dose-dependent decrease in cellular cAMP which was opposed by vitamin E preincubation. Although the addition of adenylate cyclase activators (carbacyclin and forskolin) increased cAMP levels it did not succeed in restoring the AAPH-induced decrease. The oxidative stress-induced increase in activities of 3-hydroxy-3-methylglutaryl coenzyme A reductase and of acyl coenzyme A: cholesterol acyltransferase and the decrease in neutral cholesteryl ester hydrolase activity were suppressed by addition of dibutyryl cAMP. Taken together, these results strongly suggest that free radicals reduce cAMP concentrations by altering cell membrane adenylate cyclase activity. The changes of cAMP-dependent enzymes induced by oxidative stress resulting in cholesterol accumulation might be one of the processes leading to SMC-derived foam cells depicted in atheroma plaque. Moreover, if extrapolated to in vivo, these data may explain in part the beneficial effects of antioxidants in the reduction of cardiovascular diseases.  相似文献   

10.
Stem cells have the ability to differentiate into a variety of cells to replace dead cells or to repair tissue. Recently, accumulating evidence indicates that mechanical forces, cytokines and other factors can influence stem cell differentiation into vascular smooth muscle cells (SMCs). In developmental process, SMCs originate from several sources, which show a great heterogenicity in different vessel walls. In adult vessels, SMCs display a less proliferative nature, but are altered in response to risk factors for atherosclerosis. Traditional view on SMC origins in atherosclerotic lesions is challenged by the recent findings that stem cells and smooth muscle progenitors contribute to the development of atherosclerotic lesions. Vascular progenitor cells circulating in human blood and the presence of adventitia in animals are recent discoveries, but the source of these cells is still unknown. The present review gives an update on the progress of stem cell and SMC research in atherosclerosis, and discusses possible mechanisms of stem/progenitor cell differentiation that contribute to the disease process.  相似文献   

11.
血管平滑肌细胞(vascular smooth muscle cells,VSMCs)的发育与血管壁的构建是目前相关领域中的重要学科前沿.国内外同行的工作多集中在血管发育初始阶段内皮细胞及其前体细胞在血管新生中的作用、调节因素及生物学机制.VSMCs参与血管壁早期构建,特别是VSMCs的募集与分化机制已经成为血管新生研究中的一个新领域. 本期发表的《 抑制Rac1蛋白活化阻碍胚胎发育早期血管新生 》(见696~701页)报道了韩雅玲教授及其合作者在这一领域取得的最新研究结果.Rac1是真核细胞内重要的一类信号传递分子,在细胞信号传递过程中发挥分子开关作用.他们采用胚胎干细胞(ESCs)为模型,建立稳定表达持续型Rac1和显性失活型Rac1编码序列的小鼠ESCs并制备胚胎小体,诱导分化后观察其对内皮细胞分化和迁移的影响,发现抑制Rac1可以干扰血管内皮细胞连接成血管网状结构,细胞骨架F-actin排列紊乱,细胞的迁移受到明显抑制,表明Rac1在胚胎早期血管发育过程中与内皮细胞的迁移有关[1]. 近年来,韩雅玲教授及其研究集体在VSMCs发育与血管构建、胚胎干细胞来源的拟胚体血管平滑肌发育与血管新生机制以及胚胎主动脉VSMCs起源等方面开展了研究,取得了一系列有价值的成果[2~11],可能为闭塞性和增生性血管病的发生及防治提供理论依据和候选基因.详见“相关链接”.  相似文献   

12.
We explored the hypothesis that discrepancies in the literature concerning the nature of myosin expression in cultured smooth muscle cells are due to the appearance of a new form of myosin heavy chain (MHC) in vitro. Previously, we used a very porous sodium dodecyl sulfate gel electrophoresis system to detect two MHCs in intact smooth muscles (SM1 and SM2) which differ by less than 2% in molecular weight (Rovner, A. S., Thompson, M. M., and Murphy, R. A. (1986) Am. J. Physiol. 250, C861-C870). Myosin-containing homogenates of rat aorta cells in primary culture were electrophoresed on this gel system, and Western blots were performed using smooth muscle-specific and nonmuscle-specific myosin antibodies. Subconfluent, rapidly proliferating cultures contained a form of heavy chain not found in rat aorta cells in vivo (NM) with electrophoretic mobility and antigenicity identical to the single unique heavy chain seen in nonmuscle cells. Moreover, these cultures expressed almost none of the smooth muscle heavy chains. In contrast, postconfluent growth-arrested cultures expressed increased levels of the two smooth muscle heavy chains, along with large amounts of NM. Analysis of cultures pulsed with [35S] methionine indicated that subconfluent cells were synthesizing almost exclusively NM, whereas postconfluent cells synthesized SM1 and SM2 as well as larger amounts of NM. Similar patterns of MHC content and synthesis were found in subconfluent and postconfluent passaged cells. These results show that cultured vascular smooth muscle cells undergo differential expression of smooth muscle- and nonmuscle-specific MHC forms with changes in their growth state, which appear to parallel changes in expression of the smooth muscle and nonmuscle forms of actin (Owens, G. K., Loeb, A., Gordon, D., and Thompson, M. M. (1986) J. Cell Biol. 102, 343-352). The reappearance of the smooth muscle MHCs in postconfluent cells suggests that density-related growth arrest promotes cytodifferentiation, but the continued expression of the nonmuscle MHC form in these smooth muscle cells indicates that other factors are required to induce the fully differentiated state while in culture.  相似文献   

13.
Phenotypic modulation of smooth muscle cells (SMC) involves dramatic changes in expression and organization of contractile and cytoskeletal proteins, but little is known of how this process is regulated. The present study used a cell culture model to investigate the possible involvement of RhoA, a known regulator of the actin cytoskeleton. In rabbit aortic SMC seeded into primary culture at moderate density, Rho activation was high at two functionally distinct time-points, first as cells modulated to the "synthetic" phenotype, and again upon confluence and return to the "contractile" phenotype. Rho expression increased with time, such that maximal expression occurred upon return to the contractile state. Transient transfection of synthetic state cells with constitutively active RhoA (Val14RhoA) caused a reduction in cell size and reorganization of cytoskeletal proteins to resemble that of the contractile phenotype. Actin and myosin filaments were tightly packed and highly organised while vimentin localised to the perinuclear region; focal adhesions were enlarged and concentrated at the cell periphery. Conversely, inhibition of endogenous Rho by C3 exoenzyme resulted in complete loss of contractile filaments without affecting vimentin distribution; focal adhesions were reduced in size and number. Treatment of synthetic state SMC with known regulators of SMC phenotype, heparin and thrombin, caused a modest increase in Rho activation. Long-term confluence and serum deprivation induced cells to return to a more contractile phenotype and this was augmented by heparin and thrombin. The results implicate RhoA for a role in regulating SMC phenotype and further show that activation of Rho by heparin and thrombin correlates with the ability of these factors to promote the contractile phenotype.  相似文献   

14.
Probucol inhibits the proliferation of vascular smooth muscle cells in vitro and in vivo, and the drug reduces intimal hyperplasia and atherosclerosis in animals via induction of heme oxygenase-1 (HO-1). Because the succinyl ester of probucol, succinobucol, recently failed as an antiatherogenic drug in humans, we investigated its effects on smooth muscle cell proliferation. Succinobucol and probucol induced HO-1 and decreased cell proliferation in rat aortic smooth muscle cells. However, whereas inhibition of HO-1 reversed the antiproliferative effects of probucol, this was not observed with succinobucol. Instead, succinobucol but not probucol induced caspase activity and apoptosis, and it increased mitochondrial oxidation of hydroethidine to ethidium, suggestive of the participation of H(2)O(2) and cytochrome c. Also, succinobucol but not probucol converted cytochrome c into a peroxidase in the presence of H(2)O(2), and succinobucol-induced apoptosis was decreased in cells that lacked cytochrome c or a functional mitochondrial complex II. In addition, succinobucol increased apoptosis of vascular smooth muscle cells in vivo after balloon angioplasty-mediated vascular injury. Our results suggest that succinobucol induces apoptosis via a pathway involving mitochondrial complex II, H(2)O(2), and cytochrome c. These unexpected results are discussed in light of the failure of succinobucol as an antiatherogenic drug in humans.  相似文献   

15.
Restenosis represents a major impediment to the success of coronary angioplasty. Abnormal proliferation of vascular smooth muscle cells (VSMCs) has been shown to be an important process in the pathogenesis of restenosis. A number of agents, particularly rapamycin and paclitaxel, have been shown to impact on this process. This study was carried out to determine the mechanisms of cytotoxicity of goniothalamin (GN) on VSMCs. Results from MTT cytotoxicity assay showed that the IC(50) for GN was 4.4 microg/ml (22 microM), which was lower compared to the clinically used rapamycin (IC(50) of 25 microg/ml [27.346 microM]). This was achieved primarily via apoptosis where up to 25.83 +/- 0.44% of apoptotic cells were detected after 72 h treatment with GN. In addition, GN demonstrated similar effects as rapamycin in inhibiting VSMCs proliferation using bromodeoxyuridine (BrdU) cell proliferation assay after 72 h treatment at IC(50) concentration (p > 0.05). In order to understand the mechanisms of GN, DNA damage detection using comet assay was determined at 2h post-treatment with GN. Our results showed that there was a concentration-dependent increase in DNA damage in VSMCs prior to cytotoxicity. Moreover, GN effects were comparable to rapamycin. In conclusion, our data show that GN initially induces DNA damage which subsequently leads to cytotoxicity primarily via apoptosis in VSMCs.  相似文献   

16.
Results of previous in vivo experiments indicated that the presence of arterial endothelium modifies cholesteryl ester (CE) metabolism and the retention of low density lipoproteins (LDL) in injured arteries. We describe herein the effects of bovine arterial endothelial cells (ENDO) on the CE cycle, fluid phase endocytosis, and cell proliferation in co-cultured bovine arterial smooth muscle cells (SMC). Following several days of cultivation on confluent SMC, ENDO were removed from SMC by treatment of the co-cultures with 1.0% collagenase (type II). Removal of only ENDO from the co-culture dishes was confirmed by immunofluorescent staining for Factor VIII antigen, hemotoxylin-eosin staining, and biochemical analyses. We observed that ENDO grown to 75% confluency on confluent SMC induced: 1) a reduction of CE hydrolysis as a result of decreased lysosomal CE hydrolytic activity in SMC as compared to SMC cultured alone; and 2) an increase in the rate of incorporation of labeled oleate into CE as a result of increased acyl CoA:cholesterol O-acyltransferase activity in SMC as compared to SMC cultured alone. Neither endothelial cell-derived culture media (ECDM) nor fibroblasts modulated CE metabolism in co-cultured SMC. Additional experiments showed that the presence of endothelial cells or ECDM decreased the proliferation of co-cultured SMC by 50%, but enhanced the endocytotic rate of labeled sucrose into SMC threefold. Results of experiments described herein demonstrate that, in addition to providing a thrombo-resistant surface and regulating permeability, endothelial cells may also serve to modulate cholesteryl ester metabolism in smooth muscle cells derived from the arterial wall.  相似文献   

17.
Growing evidence suggests that a pressure-induced increase in the synthesis of endothelin (ET-1) is involved in arterial remodeling and, as a consequence, in the manifestation of chronic hypertension. To study potential stretch-induced changes in gene expression and their functional consequences, we have cultured rat aortic smooth muscle cells (raSMC) and porcine aortic endothelial cells (PAEC) on flexible elastomer membranes. The cells were periodically stretched (up to 20% elongation, 0.5 Hz, 6 h) and the expression of prepro-ET-1 and that of the endothelin A and B receptors (ET(A)-R and ET(B)-R) were analyzed by semi-quantitative RT-PCR analysis and ELISA (ET-1). In contrast to PAEC where ET-1 synthesis was up-regulated up to eightfold on exposure to cyclic stretch, ET-1 synthesis in raSMC was decreased by more than 80% under these conditions. ET(A) R -mRNA expression in stretched raSMC declined to 50% whereas ET(B) R -mRNA levels were increased up to 10-fold. One functional consequence of this apparent shift in receptor abundance was an apoptosis-promoting action of exogenous ET-1 (10 nM), as judged by the appearance of subdiploid peaks during FACS analysis, caspase-3 activation and chromatin condensation. This ET-1-induced apoptosis appeared to be ET(B)-R mediated, as it was completely suppressed by the ET(B)-R antagonist BQ 788 but not by the ET(A)-R antagonist BQ 123. Moreover, raSMC derived from homozygous spotting lethal rats, which lack a functional ET(B)-R, showed no signs of apoptosis after exposure to cyclic strain and exogenous ET-1. These findings suggest a central role for the endothelin system in the onset of hypertension-induced remodeling in conduit arteries, which may proceed via an initial stretch-induced apoptosis of the smooth muscle cells.  相似文献   

18.
Gao Z  Cao L  Luo Q  Wang X  Yu L  Wang T  Liu H 《DNA and cell biology》2011,30(3):149-155
Platelet-derived growth factor BB (PDGF-BB) regulates vascular smooth muscle cells (VSMCs) by activating signaling cascades that promote vasoconstriction and growth, but the underlying mechanisms remain incompletely characterized. In this study, we aimed at investigating the role of spleen tyrosine kinase (Syk) in the proliferation and phenotypes in rat pulmonary arterial VSMCs. Our results demonstrate that PDGF-BB or Syk-adenovirus led to a substantial increase of proliferation of VSMCs and cytoskeleton rearrangement in rat VSMCs. Consistently, these cells underwent phenotype changes. Notably, Syk inhibitor piceatannol significantly inhibited those biological effects induced by PDGF-BB. Thus, we conclude that Syk plays an important role in vascular remodeling through the modulation of proliferation and phenotypes of VSMCs.  相似文献   

19.
The expression and distribution of types 1, 2, and 3 inositol 1,4, 5-trisphosphate receptor (InsP(3)R) in proliferating, primary cultures of rat aortic smooth muscle were compared to fully developed and differentiated rat aortic smooth muscle. Subtype-specific InsP(3)R antibodies revealed that the expression of type 1 InsP(3)R was similar in cultured aortic cells and aorta homogenate but expression of type 2 and 3 InsP(3)R subtypes was increased 3-fold in cultured aortic cells. The distribution of the type 1 InsP(3)R was located throughout the cytoplasm; type 2 InsP(3)R was found closely associated with the nucleus and at the plasma membrane; type 3 InsP(3)R was distributed predominantly around the nucleus. Alterations in InsP(3)R subtype expression and localization may have important functions in regulating intracellular calcium release around the nucleus when vascular smooth muscle cells switch to a more proliferating phenotype.  相似文献   

20.
豚鼠不同部位微动脉平滑肌细胞电生理学特性的比较   总被引:1,自引:0,他引:1  
Ma KT  Li XZ  Li L  Zhang ZP  Zhao L  Zhu H  Si JQ 《生理学报》2010,62(5):421-426
本研究应用电生理技术在豚鼠离体小脑前下动脉(anterior inferior cerebellar artery,AICA)、肠系膜动脉(mesenteric artery,MA)和耳蜗螺旋动脉(spiral modiolar artery,SMA)分支(直径小于100μm)上比较微动脉平滑肌细胞电生理学特性的异同。结果显示:(1)应用细胞内微电极记录技术测得AICA、MA和SMA细胞静息膜电位分别为(-68±1.8)(n=65)、(-71±2.4)(n=80)和(-66±2.9)mV(n=58),各微动脉间无统计学差异。(2)一段血管微动脉标本全细胞膜片钳记录的平滑肌细胞膜电容和膜电导都远大于单个细胞标本,且微动脉间存在统计学差异,大小顺序为MAAICASMA。应用缝隙连接阻断剂2-APB(100μmol/L)后记录一段微动脉平滑肌细胞膜电容和膜电导与单个细胞十分接近。(3)AICA、MA和SMA单个平滑肌细胞膜电流I/V关系呈明显的外向整流特性,都对1mmol/L4-AP和10mmol/LTEA敏感。当指令电压为+40mV时,AICA、MA和SMA血管平滑肌细胞电流密度分别为(26±2.0)、(24±1.7)和(18±1.3)pA/pF,SMA和AICA、MA间存在统计学差异。上述结果提示,豚鼠不同部位微动脉平滑肌细胞在缝隙连接耦联力和电流密度等电生理特性存在差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号