首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Phytochemistry》1987,26(12):3145-3150
The plant hormones indole-3-acetic acid (IAA) and abscisic acid (ABA) affect the properties of phospholipid bilayers differently. IAA enhances permeability of bilayers composed of phosphatidylcholine to the non-electrolyte erythritol while ABA requires an additional phospholipid in the membrane to produce substantial enhancement. Similar conclusions are obtained by measuring hormone-induced permeability to chloride ions; IAA is effective with single component phosphatidylcholine membranes while ABA requires a second phospholipid. Erythritol permeability is shown to be pH dependent for both hormones. Although IAA is more effective at increasing erythritol permeability at pH 4 than at pH 7, both dissociated and undissociated IAA affect the process. In comparison ABA is almost totally ineffective in the dissociated form (at pH 7). Spin label electron spin resonance measurements demonstrated that neither hormone substantially disrupts acyl chain mobility within the membrane, indicating that the mechanism of permeability enhancement is not a general non-specific pertubation of membrane ordering and fluidity. Both hormones can also effect the stability of small unilamellar (sonicated) vesicles. Phosphatidylcholine vesicles are relatively stable and do not rapidly aggregate with either ABA or IAA. However, when phosphatidylethanolamine is incorporated as a minor component (10 mol%) into phosphatidylcholine vesicles ABA causes rapid aggregation while IAA has no effect. These experiments indicate that the two hormones may exhibit completely different behaviour on membranes without the requirement for specific proteinaceous receptors.  相似文献   

2.
Effects of dolichol on membrane permeability   总被引:1,自引:0,他引:1  
Small vesicles containing the tetra-anionic fluorescent probe calcein were prepared by sonication of mixtures of plant phosphatidylethanolamine, plant phosphatidylcholine, and dolichol. Following chromatography, the isolated vesicles were found to retain entrapped calcein over the temperature range of 15 to 40 degrees C. Utilizing an assay measuring the fluorescence quenching of entrapped calcein by cobalt ions, the presence of dolichol in the membranes was found to promote the permeability of the phospholipid bilayers to the divalent cation. The permeability was shown to be dependent on temperature with an increase in rate of 17-fold between 15 and 35 degrees C although the plant phospholipids used in these experiments have no known phase transition within this temperature range. The incorporated dolichol was distributed uniformly throughout the vesicle population. Similar vesicles prepared from phosphatidylethanolamine and phosphatidylcholine without added dolichol, from phosphatidylcholine alone, or with phosphatidylcholine and dolichol were far less permeable to the divalent cation under the same assay conditions. These results demonstrate that dolichols have significant effects on the permeability properties of phospholipid bilayers that contain phosphatidylethanolamine.  相似文献   

3.
The (Ca2+ + Mg2+)-ATPase from skeletal muscle sarcoplasmic reticulum was reconstituted into phospholipid bilayers. The permeability of lipid bilayers to Co2+ and glucose was increased slightly by incorporation of the ATPase, and the permeability of mixed bilayers of phosphatidylethanolamine and phosphatidylcholine increased with increasing content of phosphatidylethanolamine both in the presence and absence of the ATPase. The presence of the ATPase, however, resulted in a marked increase in permeability to Ca2+, the permeability decreasing with increasing phosphatidylethanolamine content. Permeability to Ca2+ was found to be dependent on pH and the external concentrations of Mg2+ and Ca2+, was stimulated by adenine nucleotides but was unaffected by inositol trisphosphate. A kinetic model is presented for Ca2+ efflux mediated by the ATPase. It is shown that the kinetic parameters that describe Ca2+ efflux from vesicles of sarcoplasmic reticulum also describe efflux from the vesicles reconstituted from the purified ATPase and phosphatidylcholine. It is shown that the effects of phosphatidylethanolamine on efflux can be simulated in terms of changes in the rates of the transitions linking conformations of the ATPase with inward- and outward-facing Ca2+-binding sites, and that effects of phosphatidylethanolamine on the ATPase activity of the ATPase can also be simulated in terms of effects on the corresponding conformational transitions. We conclude that the ATPase can act as a specific pathway for Ca2+ efflux from sarcoplasmic reticulum.  相似文献   

4.
The effect of cholesterol on the ion selective behavior of phospholipid (phosphatidylcholine or phosphatidylethanolamine) bilayer films is studied through the measurement of the membrane non-isothermal potential.It is shown how the mixed phosphatidylcholine-cholesterol membrane can be either cation of anion permselective according to the film composition (cationic behavior is met in the 0–10% cholesterol composition range while anionic selectivity appears in the 20–50% range).On the contrary, mixed phosphatidylethanolamine-cholesterol membranes show the absence of ionic selectivity already met with pure phosphatidylethanolamine films.The presence of a cationic carrier as Dibenzo-18-crown-6 in the film transforms all the studied films (cationic, anionic and no selective bilayers) into ideally cationic selective membranes.These results are discussed on the basis of the current ideas on the charge distribution through the bilayer membranes. Moreover, the role of the permeating ions as potential determining species is stressed.  相似文献   

5.
Using a 31P-NMR lanthanide shift technique, abscisic acid is shown to enhance the permeability to praeseodymium of lipid bilayers composed of 80 mol% phosphatidylcholine and 20 mol% phosphatidylethanolamine. Praeseodymium permeability is immeasurably slow in the absence of the hormone whether or not phosphatidylethanolamine is present in the bilayers. Only in the presence of abscisic acid is praeseodymium permeability observed, the effect being significantly greater when phosphatidylethanolamine is present. These results substantiate prior reports from nonelectrolyte permeability studies that abscisic acid interacts with phosphatidylethanolamine in lipid bilayers.  相似文献   

6.
Summary The interaction of furosemide with different phospholipids was investigated. Its influence on the lipid structure was inferred from its effect on the phase transition properties of lipids and on the conductance of planar bilayer membranes. The thermotropic properties of dipalmitoyl phosphatidylcholine, phosphatidylethanolamine (natural), dipalmitoyl phosphatidylethanolamine, brain sphingomyelin, brain cerebrosides and phosphatidylserine in the presence and absence of furosemide were investigated by differential scanning calorimetry,. The modifying effect of furosemide seems to be strongest on phosphatidylethanolamine (natural) and sphingomyelin bilayers. The propensity of furosemide to decrease the electrical resistance of planar lipid membranes was also studied and it is shown that the drug facilitates the transport of ions. Partition coefficients of furosemide between lipid bilayers and water were measured.Abbreviations DSC differential scanning calorimetry - PLM planar lipid membranes - DPPC dipalmitoyl phosphatidylcholine - DMPC dimyristoyl phosphatidylcholine - PE phosphatidyl ethanol  相似文献   

7.
The typical plant sterols (sitosterol, stigmasterol and campesterol) were compared with respect to their ability to regulate membrane fluidity of soybean phosphatidylcholine (PC) vesicles. Fluidity changes were monitored by the steady-state fluorescence anisotropy with 1,6-diphenyl-1,3,5-hexatriene as a probe and assigned to a measure of the acyl chain orientational order. Sitosterol and campesterol appear to be the most suitable sterols in ordering the acyl chains of soybean lecithin bilayers, even more efficient than cholesterol, the standard of reference for sterol effects on membranes, suggesting that they play a significant role in the regulation of plant membrane properties. Stigmasterol is shown to be much less active. Cycloartenol, a biosynthetic precursor of plant sterols, increases the acyl chain order with the same efficiency as cholesterol. We also investigated the effects of two unusual sterols, 24-methylpollinastanol and 14 alpha,24-dimethylcholest-8-en-3 beta-ol, which were shown to accumulate in plants treated with fungicides belonging to two important classes, N-substituted morpholines and triazoles, respectively. These two sterols exhibit a behavior very similar to that of stigmasterol. The results are discussed in terms of sterol effects on the molecular packing of soybean PC bilayers.  相似文献   

8.
The uptake of radioactive cholesterol and sitosterol by rat jejunal villus cells was examined using mixed micellar solutions containing sodium taurocholate, equimolar mixtures of the two sterols, and a variety of phospholipid types. The addition of phospholipid to the incubation solutions reduced the cellular absorption of both sterols and gave rise to uptake kinetics that were linear with time. In the presence of egg yolk phospholipid, uptake of the sterols by villus cells occurred with a modest preference for cholesterol over sitosterol. The ratio of accumulated cholesterol/sitosterol increased from 1.0 initially to 1.23 +/- 0.04 (n = 18) after a 30-min incubation at 37 degrees C. The selectivity displayed in the villus cells increased significantly as egg phosphatidylethanolamine was added to the egg phosphatidylcholine (PC) preparation in micellar solution. It was markedly decreased when dipalmitoyl PC or the primarily saturated egg yolk sphingomyelin were incorporated into the micelles. In every case examined, phospholipid was taken up by the cells concurrently with the sterols. The selectivity between cholesterol and sitosterol was maintained when the donor species were multilamellar vesicles composed of egg PC and the sterols, but not when the donor particles were albumin-stabilized sterol dispersions or taurocholate solutions in the absence of PC. The results show that the selective absorption of cholesterol over the plant sterol occurs only in the presence of unsaturated phospholipid. The phospholipid may act by influencing the permeability of the cellular membranes to the two sterols or the rate of sterol desorption from the phospholipid-containing micellar or liposomal carriers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
K Hong  V D Vacquier 《Biochemistry》1986,25(3):543-549
Lysin, a protein of Mr 16 000 from the acrosome granule of the abalone, is responsible for the dissolution of the egg vitelline layer. The primary structure of this cationic protein projects some hydrophobic domains in the secondary structure. Lysin was found to associate nonselectively with phospholipid bilayers and cause a spontaneous release of encapsulated carboxyfluorescein in liposomes. The association of lysin with phosphatidylcholine liposomes suggests that there is a hydrophobic interaction between lysin and lipid bilayers. Binding of lysin to phospholipid resulted in the aggregation of phosphatidylserine-containing liposomes, but aggregation was not observed in neutral phosphatidylcholine liposomes. Resonance energy transfer and dequenching of fluorescent 1-palmitoyl-2-cis-parinaroylphosphatidylcholine were both used to determine the fusogenic activity of lysin in aggregated liposomes. Results from both assays are consistent. Lysin-induced fusion was observed in all the phosphatidylserine-containing liposomes, and the general trend of fusion susceptibility was phosphatidylserine/phosphatidylcholine (1:2) approximately equal to phosphatidylserine/phosphatidylcholine/phosphatidylethanolamine (1:1:1) greater than phosphatidylserine/phosphatidylethanolamine (1:2). Cholesterol up to 30% did not affect the intrinsic fusion susceptibility. A hydrophobic penetration by protein molecules and the packing of phospholipid bilayers are used to interpret the fusion susceptibility. Lysin-induced liposome aggregation was highly independent of the state of self-association of lysin in ionic medium. However, the fusogenic activity of self-associated lysin was found to be much less than the monodispersed one. Liposomes preincubated with Ca2+ did not fuse initially as readily as those without Ca2+ treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The activity of purified recombinant yeast dolichyl-phosphomannose synthase (EC 2.4.1.83) was assessed following reconstitution of the enzyme with phospholipids. The yeast synthase, similar to the mammalian enzyme, was active when reconstituted with phosphatidylethanolamine dispersions but had little (less than 5%) activity in stable phosphatidylcholine bilayers. The enzyme was activated by adding increasing amounts of diacylglycerol to phospholipid bilayers, suggesting that activity of the yeast enzyme was dependent on lipid phase properties rather than specific phospholipids. The synthase could also be reconstituted as an active enzyme in bilayers prepared with a commercial crude lipid preparation containing 40% phosphatidylcholine, but at a rate 10% of that occurring in phosphatidylethanolamine. Vesicles composed of the 40% phosphatidylcholine lipid mixture, dolichyl phosphate, and enzyme were leaky in the presence of divalent cations, and dolichyl-phosphomannose synthase did not appear to catalyze the translocation of dolichyl phosphomannose across membranes at a catalytically significant rate under the assay conditions employed.  相似文献   

11.
13C-NMR and permeability studies are described for sonicated vesicles of phosphatidylcholines bearing two 16-carbon saturated hydrocarbon chains with (a) one ether linkage at carbon 1 (3) or 2 of glycerol and one ester linkage at carbon 2 or 1 (3) of glycerol; (b) two ether linkages and (c) two ester linkages at carbons 1 (3) and 2 of glycerol. The results of 13C-NMR relaxation enhancement measurements using cholesterol enriched with 13C at the 4 position indicate that no significant relocation of the cholesterol molecules takes place in the bilayer when a methylene group is substituted for a carbonyl group in phosphatidylcholine. The 4-13C atom of cholesterol undergoes similar fast anisotropic motions in diester- and diether -phosphatidylcholine bilayers, as judged by spin-lattice relaxation time measurements in the liquid-crystalline phase; although the fast motions are unaltered, linewidth and spin-spin relaxation time measurements suggested some restriction of the slow motions of cholesterol molecules in bilayers from phosphatidylcholines containing an O-alkyl linkage at the sn-2 position instead of an acyl linkage. At temperatures above the gel to liquid-crystal phase transition, the kinetics of ionophore A23187-mediated 45Ca2+ efflux from vesicles prepared from each type of phosphatidylcholine molecule were the same; the kinetics of spontaneous carboxyfluorescein diffusion from diester- and diether -phosphatidylcholine vesicles were the same, whereas mixed ether/ester phosphatidylcholine molecules gave bilayers which are less permeable. The rate constants were reduced on cholesterol incorporation into the bilayers of each type of phosphatidylcholine molecule. The reductions were not statistically significant for 45Ca2+ release. The rate constants for carboxyfluorescein release were also reduced by cholesterol to the same extent in vesicles from diester-, diether -, and 1-ether, and 1-ether-2-ester-phosphatidylcholines; however, a smaller reduction was noted in bilayers from the 1-ester-2-ether analog. The results provide further evidence that there are no highly specific requirements for ester or ether linkages in phosphatidylcholine for cholesterol to reduce bilayer permeability. This is a reflection of the fact that in both diester- and diether -phosphatidylcholine bilayers, the 4-13C atom of cholesterol is located in the region of the acyl carboxyl group or the glyceryl ether oxygen atom.  相似文献   

12.
Plasma membranes were isolated from oat (Avena sativa) roots by the phase-partitioning method. The membranes were exposed to repeated periods of moderate water-deficit stress, and a water-deficit tolerance was induced (acclimated plants). The plasma membranes of the controls (nonacclimated plants) were characterized by a high phospholipid content, 79% of total lipids, cerebrosides (9%) containing hydroxy fatty acids (>90% 24:1-OH) and free sterols, acylated sterylglucosides, sterylglucosides, and steryl esters, together amounting to 12%. Major phospholipids were phosphatidylcholine and phosphatidylethanolamine with lesser amounts of phosphatidylglycerol, phosphatidylinositol, and phosphatidic acid. After the membranes were acclimated to dehydration, the lipid to protein ratio decreased from 1.3 to 0.7 micromoles per milligram. Furthermore, the cerebrosides decreased to 5% and free sterols increased from 9% (nonacclimated plants) to 14%. Because the total phospholipids did not change significantly, the free sterol to phospholipid ratio increased from 0.12 to 0.19. There was no change in the relative distribution of sterols after acclimation. The ratio of phosphatidylcholine to phosphatidylethanolamine changed from 1.1 in the nonacclimated plants to 0.69 in the acclimated plants. The results show that acclimation to dehydration implies substantial alterations in the lipid composition of the plasma membrane.  相似文献   

13.
Comparative studies on bilayer systems of saturated phosphatidylcholines and phosphatidylethanolamines revealed a maximum in ionic permeability in phosphatidylcholine bilayers at the temperature of the gel to liquid-crystalline phase transition but such an increase in permeability was not detectable in bilayers of phosphatidylethanolamine. Furthermore, it was found that at the phase transition temperature the phosphatidylcholine bilayers are subject to rapid hydrolysis by pancreatic phospholipase A2 whereas phosphatidylethanolamine bilayers are not. These differences are discussed in view of detailed information on the molecular organization in the gel and liquid crystalline phases of the two phospholipid classes.  相似文献   

14.
This study examines two ways plant hormones might influence membrane processes, effects on overall permeability and modifications of specific ion channels. Abscisic acid (ABA) and indole-3-acetic acid (IAA) greatly enhanced erythritol permeability in mixed egg lecithin bilayers. In single component dioleoylphosphatidylcholine bilayers ABA was less effective than IAA, while 2,4-dichlorophenoxyacetate (2,4-D) did not affect either system or alter their ABA response. In Myxicola axons ABA and IAA had no effect, while 2,4-D (10 uM) caused a depolarizing shift of voltage-dependent Na+ and K+ activation by 25 +/- 4 mV and 15 +/- 3 mV, consistent with internal negative surface charge changes of -0.002 e-/A2 and -0.0007 e-/A2. We conclude that both generalized and ion channel-directed effects may link plant hormones and intracellular regulation.  相似文献   

15.
Ca2+-induced phase separation in phosphatidylserine/phosphatidylethanolamine and phosphatidylserine/phosphatidylethanolamine/phosphatidylcholine model membranes was studied using spin-labeled phosphatidylethanolamine and phosphatidylcholine and compared with that in phosphatidylserine/phosphatidylcholine model membranes studied previously. The phosphatidylethanolamine-containing membranes behaved in qualitatively the same way as did phosphatidylserine/phosphatidylcholine model membranes. There were some quantitative differences between them. The degree of phase separation was higher in the phosphatidylethanolamine-containing membranes. For example, the degree of phase separation in phosphatidylserine/phosphatidylethanolamine membranes containing various mole fractions of phosphatidylserine was 94--100% at 23 degrees C and 84--88% at 40 degrees C, while the corresponding value for phosphatidylserine/phosphatidylcholine membranes was 74--85% at 23 degrees C and 61--79% at 40 degrees C. Ca2+ concentration required for the phase separation was lower for phosphatidylserine/phosphatidylethanolamine than that for phosphatidylserine/phosphatidylcholine membranes; concentration to cause a half-maximal phase separation was 1.4 . 10(-7) M for phosphatidylserine-phosphatidylethanolamine and 1.2 . 10(-6) M for phosphatidylserine/phosphatidylcholine membranes. The phase diagram of phosphatidylserine/phosphatidylethanolamine membranes in the presence of Ca2+ was also qualitatively the same as that of phosphatidylserine/phosphatidylcholine except for the different phase transition temperatures of phosphatidylethanolamine (17 degrees C) and phosphatidylcholine (-15 degrees C). These differences were explained in terms of a greater tendency for phosphatidylethanolamine, compared to phosphatidylcholine, to form its own fluid phase separated from the Ca2+-chelated solid-phase phosphatidylserine domain.  相似文献   

16.
The permeability of liposomal membranes was studied as a function of the amount of incorporated PEG-lipid. The fluorescent dyes ethidium, propidium and 5(6)-carboxy fluorescein were used as markers for measurements of spontaneous leakage. The results show that addition of up to 8 mol% of PEG(2000)-DSPE into liposomal membranes of DSPC/Cho and EPC/Cho reduces the permeability of carboxyfluorescein in buffer solution. In contrast, the leakage of the more amphiphilic dye ethidium was not to any measurable extent affected by PEG-lipid inclusion. Another important difference was that ethidum leakage showed a clear dependence on temperature whereas leakage of carboxyfluorescein from pegylated liposomes did not. We conclude that the mechanisms by which the two dyes permeate the liposomal bilayer are qualitatively different. Both ethidium and carboxyfluorescein did interact with human serum components in a way that made measurements in serum unreliable. The more hydrophilic ethidium analogue propidium was shown not to interact with human serum components to any detectable extent. This made propidium suitable for permeability determinations in human serum. It was found that liposomes composed of pure EPC or EPC with 5 mol% DSPE-PEG, displayed a dramatic increase in permeability when subjected to a medium composed of 20% human serum in buffer. Addition of 40 mol% cholesterol to the EPC bilayers reduced the observed release rate in human serum substantially, whereas no stabilizing effect was observed upon PEG-lipid inclusion.  相似文献   

17.
Transport of protons and hydrochloric acid through lipid bilayer membranes   总被引:5,自引:0,他引:5  
Transport of protons and hydrochloric acid through lipid bilayer membranes was studied by a combination of electrical conductance and pH electrode techniques. In the presence of large pH gradients, proton transport occurs primarily by diffusion of molecular HCl. The permeability of egg phosphatidylcholine/decane bilayers to HCl is about 3 cm . s-1, seven to nine order of magnitude higher than the permeability to H+, OH- or Cl-. The HCl permeability of phosphatidylserine or egg phosphatidylcholine/cholesterol (1 : 1) bilayers is about 50% lower than the permeability of egg phosphatidylcholine bilayers. Diffusion of molecular HCl may be an important process in tissues exposed to high HCl concentrations, e.g., gastric mucosa. However, at neutral pH the diffusion of molecular HCl is too slow to contribute significantly to net movements of H+ or Cl-.  相似文献   

18.
Losartan was found to affect both the thermotropic behavior and molecular mobility of dimyristoyl- and dipalmitoyl-phosphatidylcholine membranes (Theodoropoulou and Marsh, Biochim. Biophys. Acta 1461 (1999) 135-146). At low concentrations, the antagonist is located close to the interfacial region of the phosphatidylcholine bilayer while at high mole fractions it inserts deeper in the bilayers. In the present study, we investigated the interactions of losartan with phosphatidylethanolamine membranes using differential scanning calorimetry (DSC), electron spin resonance (ESR) and 31P nuclear magnetic resonance (NMR) spectroscopy. DSC showed that the antagonist affected the thermotropic transitions of dimyristoyl-, dipalmitoyl- and dielaidoyl-phosphatidylethanolamine membranes (DMPE, DPPE and DEPE, respectively). ESR spectroscopy showed that the interaction of losartan with phosphatidylethanolamine membranes is more superficial than in the case of phosphatidylcholine bilayers. Additionally, losartan increased the spin-spin broadening of 12-PESL spin labels in the gel phase of DMPE and DPPE membranes, while in the case of DEPE membranes the opposite effect was observed. (31)P-NMR showed that the antagonist stabilizes the fluid lamellar phase of DEPE membranes relative to the hexagonal H(II) phase. Our results show that losartan affects the thermotropic behavior of phosphatidylethanolamine membranes, while the molecular mobility of the membranes is not affected greatly. Furthermore, its interactions with phosphatidylethanolamine membranes are more superficial than with phosphatidylcholine bilayers.  相似文献   

19.
13C-NMR and permeability studies are described for sonicated vesicles of phosphatidylcholines bearing two 16-carbon saturated hydrocarbon chains with (a) one ether linkage at carbon 1 (3) or 2 of glycerol and one ester linkage at carbon 2 or 1 (3) of glycerol; (b) two ether linkages and (c) two ester linkages at carbons 1 (3) and 2 of glycerol. The results of 13C-NMR relaxation enhancement measurements using cholesterol enriched with 13C at the 4 position indicate that no significant relocation of the cholesterol molecules takes place in the bilayer when a methylene group is substituted for a carbonyl group in phosphatidylcholine. The 4-13C atom of cholesterol undergoes similar fast anisotropic motions in diester- and diether-phosphatidylcholine bilayers, as judged by spin-lattice relaxation time measurements in the liquid-crystalline phase; although the fast motions are unaltered, linewidth and spin-spin relaxation time measurements suggested some restriction of the slow motions of cholesterol molecules in bilayers from phosphatidylcholines containing an O-alkyl linkage at the sn-2 position instead of an acyl linkage. At temperatures above the gel to liquid-crystal phase transition, the kinetics of ionophore A23187-mediated 45Ca2+ efflux from vesicles prepared from each type of phosphatidylcholine molecule were the same; the kinetics of spontaneous carboxyfluorescein diffusion from diester- and diether-phosphatidylcholine vesicles were the same, whereas mixed ether/ester phosphatidylcholine molecules gave bilayers which are less permeable. The rate constants were reduced on cholesterol incorporation into the bilayers of each type of phosphatidylcholine molecule. The reductions were not statistically significant for 45Ca2+ release. The rate constants for carboxyfluorescein release were also reduced by cholesterol to the same extent in vesicles from diester-, diether-, and 1-ether-2-ester-phosphatidylcholines; however, a smaller reduction was noted in bilayers from the 1-ester-2-ether analog. These results provide further evidence that there are no highly specific requirements for ester or ether linkages in phosphatidylcholine for cholesterol to reduce bilayer permeability. This is a reflection of the fact that in both diester- and diether-phosphatidylcholine bilayers, the 4-13C atom of cholesterol is located in the region of the acyl carboxyl group or the glyceryl ether oxygen atom.  相似文献   

20.
Differential scanning calorimetry (DSC) and fluorescence polarization methods have been used to study the interactions between phospholipid membranes and a polymeric biocide, poly(hexamethylene biguanide hydrochloride) (PHMB). It was found that PHMB had very little effect on neutral lipids such as phosphatidylcholine (PC) and phosphatidylethanolamine (PE), whereas it greatly reduced the phase transition temperature of phosphatidylglycerol (PG), an acidic lipid found in bacteria. Although the corresponding monomeric biocide had a similar effect on the PG bilayer, the behaviour towards mixed lipid bilayers of PC and PG has been shown to be completely different for the polymeric and monomeric biocides: viz. the former can induce isothermal phase separation into a PHMB-PG complex domain and a PC-enriched domain, whilst the latter cannot. This may account for the great difference in bactericidal activity between them. It is suggested that PHMB interacts primarily with negatively charged species in the membranes, inducing aggregation of acidic lipids in the vicinity of the adsorption site, where higher fluidity and higher permeability are expected. The results have shown that two factors might be crucial in the cidal activity of such types of cationic disinfectants as biguanides: phase separation and interaction with the hydrocarbon interior of the membranes. Polymeric biocides could be particularly effective by virtue of their ability to combine hydrophobic character and multiple charges within a single molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号