首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article examines the feasibility of using ultrafiltration to separate the monomer of the monoclonal antibody alemtuzumab (Campath or Campath-1H) from a mixture of dimer and higher-order oligomers (collectively called "dimers" here). Using parameter scanning ultrafiltration, we initially assessed the suitability of the following membranes: 100 kDa and 300 kDa polyethersulfone (PES) membranes, and a 100 kDa polyvinylidene fluoride (PVDF) membrane. A detailed study was then carried out to examine the effects of operating conditions (such as solution pH, ionic strength, stirring speed, and permeate flux) on the separation of the monomer from the dimers using 300 kDa PES and 100 kDa PVDF membranes. Results of the experiments carried out in the carrier phase ultrafiltration (CPUF) mode indicate that the size-based protein-protein separation critically depends on the membrane used as well as the system hydrodynamics. The separation of the monoclonal antibody monomer and dimers using 100 kDa PVDF membranes in the diafiltration mode was also examined. Experimental results demonstrate that under suitable conditions, it is feasible to obtain the alemtuzumab monomer with a purity of more than 93% and a yield of more than 85% (from a mixture of 75% monomer and 25% dimers, which is the typical composition obtained after affinity chromatography). Simulation study indicates that this could be further improved to a purity of more than 96% and a monomer yield of more than 96% by increasing the selectivity of separation or by employing a two-stage diafiltration process.  相似文献   

2.
Protein transmission and hence selectivity of separation can be significantly affected by solution pH and ionic strength in protein fractionation using ultrafiltration. Using parameter scanning ultrafiltration, the transmission of bovine serum albumin (BSA) and monoclonal antibody alemtuzumab (Campath-1H) through 300 kDa polyethersulfone (PES) ultrafiltration membranes were studied over a range of pH and salt concentrations, with focus on the likely conditions for achieving "reverse selectivity," i.e., obtaining purified alemtuzumab (approximately 155 kDa) in the permeate. Experimental results demonstrate that the reverse selectivity could be obtained by manipulating the operating conditions such as the solution pH, ionic strength, permeate flux, and system hydrodynamics. With a two-stage batch ultrafiltration process under suitable conditions, the monoclonal antibody alemtuzumab with a purity of > 98% was obtained in the permeate from a feed solution initially containing 0.50 g/l each of BSA and alemtuzumab. Further purity can be expected by selecting more suitable membranes and optimizing operating conditions.  相似文献   

3.
This paper discusses the separation of human serum albumin (HSA), the most abundant protein present in plasma from human immunoglobulin G (HIgG) by membrane chromatography using a novel macroporous gel-filled membrane (designated Q Type 2). The membrane was prepared by anchoring a quaternary ammonium salt macroporous gel within the pores of a non-woven, polypropylene fabric. Factors affecting HSA binding were examined and operating conditions suitable for separating it from human plasma were identified. At an optimized condition, the HSA binding capacity of this novel membrane under saturating conditions was in the range of 290–300 mg/ml. This was not only significantly higher than binding capacities reported for other chromatographic membranes, but also higher than binding capacities of conventional gel based chromatographic media. The protein binding capacity was also largely insensitive to the superficial velocity, indicating the dominance of convective protein transport to and from the binding sites. The suitability of using this membrane for plasma fractionation was demonstrated by the separation of a simulated feed solution consisting of HSA and HIgG.  相似文献   

4.
In this study, an affinity membrane containing L-histidine as an amino acid ligand was used in separation and purification of human immunoglobulin G (HIgG) from solution and human serum. The polarities and the surface free energies of the affinity membranes were determined by contact angle measurements. HIgG adsorption and purification onto the affinity membranes from aqueous solution and human serum were investigated in a batch and a continuous system. Effect of different system parameters such as ligand density, adsorbent dosage, pH, temperature, ionic strength and HIgG initial concentration on HIgG adsorption were investigated. The maximum adsorption capacity of p(HEMA-MAAH-4) membranes for HIgG was 13.06 mgml(-1). The reversible HIgG adsorption on the affinity membrane obeyed both the Langmuir and Freundlich isotherm models. The adsorption data was analysed using the first- and second-order kinetic model and the experimental data was well described by the first-order equations. In the continuous system, the purity of the eluted HIgG, as determined by HPLC, was 93% with recovery 58% for p(HEMA-MAAH-4) membrane. The affinity membranes are stable when subjected to sanitization with sodium hydroxide after repeated adsorption-elution cycles.  相似文献   

5.
High-resolution fractionation of proteins using ultrafiltration is feasible only at highly optimised conditions. Conventional process optimisation methodology demands both time and material. Pulsed sample injection ultrafiltration has been suggested as a rapid process optimisation technique. In the present work the scope of this technique is further extended by "parameter scanning ultrafiltration," which involves continuous change of a process parameter (e.g., pH, salt concentration). The time and material consumption are thus further reduced. The technique was validated using different proteins and membranes. Sieving coefficients at different pH and salt concentration were compared to those obtained in fixed parameter ultrafiltration experiments. As fractionation case studies the separation of monoclonal antibody from bovine serum albumin and separation of human IgG from human serum albumin were examined.  相似文献   

6.
The protein composition of various structural divisions of human kidney was studied using two-dimensional electrophoresis. Two-dimensional electrophoregrams of the cortical substance of human kidney revealed 165 polypeptide fractions within the pH range of 4.5-7.5, having molecular masses of 10 to 330 kDa. Electrophoresis of glomerular proteins gave 155 fractions with M(r) = 15-300 kDa, whereas fractionation of glomerular basement membrane proteins gave 40 fractions with M(r) = 30-330 kDa within the same range of pH. The M(r) values for all fractions and the relative electrophoretic mobility in the forward direction were determined. A comparative analysis of the electrophoregrams was conducted. The data obtained were used to construct two-dimensional maps of the cortical substance and glomerular proteins of human kidney.  相似文献   

7.
The analysis of metal-binding proteins requires careful sample manipulation to ensure that the metal-protein complex remains in its native state and the metal retention is preserved during sample preparation or analysis. Chemical analysis for the metal content in proteins typically involves some type of liquid chromatography/electrophoresis separation step coupled with an atomic (i.e., inductively coupled plasma-optical emission spectroscopy or -mass spectrometry) or molecular (i.e., electrospray ionization-mass spectrometry) analysis step that requires altered-solvent introduction techniques. UV-VIS absorbance is employed here to monitor the iron content in human holo-transferrin (Tf) under various solvent conditions, changing polarity, pH, ionic strength, and the ionic and hydrophobic environment of the protein. Iron loading percentages (i.e. 100% loading equates to 2 Fe(3+):1 Tf) were quantitatively determined to evaluate the effect of solvent composition on the retention of Fe(3+) in Tf. Maximum retention of Fe(3+) was found in buffered (20 mM Tris) solutions (96 ± 1%). Exposure to organic solvents and deionized H(2)O caused release of ~23-36% of the Fe(3+) from the binding pocket(s) at physiological pH (7.4). Salt concentrations similar to separation conditions used for ion exchange had little to no effect on Fe(3+) retention in holo-Tf. Unsurprisingly, changes in ionic strength caused by additions of guanidine HCl (0-10 M) to holo-Tf resulted in unfolding of the protein and loss of Fe(3+) from Tf; however, denaturing and metal loss was found not to be an instantaneous process for additions of 1-5 M guanidinium to Tf. In contrast, complete denaturing and loss of Fe(3+) was instantaneous with ≥6 M additions of guanidinium, and denaturing and loss of iron from Tf occurred in parallel proportions. Changes to the hydrophobicity of Tf (via addition of 0-14 M urea) had less effect on denaturing and release of Fe(3+) from the Tf binding pocket compared to changes in ionic strength.  相似文献   

8.
Current methods for quantitatively comparing proteomes (protein profiling) have inadequate resolution and dynamic range for complex proteomes such as those from mammalian cells or tissues. More extensive profiling of complex proteomes would be obtained if the proteomes could be reproducibly divided into a moderate number of well-separated pools. But the utility of any prefractionation is dependent upon the resolution obtained because extensive cross contamination of many proteins among different pools would make quantitative comparisons impractical. The current study used a recently developed microscale solution isoelectrofocusing (musol-IEF) method to separate human breast cancer cell extracts into seven well-resolved pools. High resolution fractionation could be achieved in a series of small volume tandem chambers separated by thin acrylamide partitions containing covalently bound immobilines that establish discrete pH zones to separate proteins based upon their pIs. In contrast to analytical 2-D gels, this prefractionation method was capable of separating very large proteins (up to about 500 kDa) that could be subsequently profiled and quantitated using large-pore 1-D SDS gels. The pH 4.5-6.5 region was divided into four 0.5 pH unit ranges because this region had the greatest number of proteins. By using very narrow pH range fractions, sample amounts applied to narrow pH range 2-D gels could be increased to detect lower abundance proteins. Although 1.0 pH range 2-D gels were used in these experiments, further protein resolution should be feasible by using 2-D gels with pH ranges that are only slightly wider than the pH ranges of the musol-IEF fractions. By combining musol-IEF prefractionation with subsequent large pore 1-D SDS-PAGE (>100 kDa) and narrow range 2-D gels (<100 kDa), large proteins can be reliably quantitated, many more proteins can be resolved, and lower abundance proteins can be detected.  相似文献   

9.
Liu J  Yin M  Wang M  Zhang X  Ge B  Liu S  Lu J  Cui Z 《Photosynthesis research》2011,107(2):187-193
The isolation of photosystem-I (PS-I) from spinach has been conducted using ultrafiltration with 300 kDa molecular weight cut-off polyethersulfone membranes. The effects of ultrafiltration operating conditions on PS-I activity were optimized using parameter scanning ultrafiltration. These conditions included solution pH, ionic strength, stirring speed, and permeate flux. The effects of detergent (Triton X-100 and n-dodecyl-beta-D-maltoside) concentration on time dependent activity of PS-I were also studied using an O2 electrode. Under optimized conditions, the PS-I purity obtained in the retentate was about 84% and the activity recovery was greater than 94% after ultrafiltration. To our knowledge, this is the first report of the isolation of a membrane protein using ultrafiltration alone.  相似文献   

10.
High-performance tangential flow filtration (HPTFF) is shown to successfully enable concentration, purification and formulation in a single unit operation. This is illustrated with feedstreams comprising recombinant proteins expressed in Escherichia coli (E. coli). Using positively charged cellulosic membranes of 100 kDa molecular weight cut-off and operating under a selected range of buffer pH and ionic strength at a filtrate flux of 100 L m(-2) h(-1), a 10-fold removal of E. coli host cell proteins (HCP) was obtained with an overall process yield of 98%. The HPTFF performance was shown to be robust and reproducible. In addition, the novel charged membrane was regenerated and re-used seven times without loss of selectivity or throughput. When compared with a conventional purification scheme, the proposed process results in the elimination of one chromatographic step, a 12% yield improvement and a significant reduction in purification cost of goods.  相似文献   

11.
Various aspects of membrane solubilization by the Triton X-series of nonionic detergents were examined in pig liver mitochondrial membranes. Binding of Triton X-100 to nonsolubilized membranes was saturable with increased concentrations of the detergent. Maximum binding occurred at concentrations exceeding 0.5% Triton X-100 (w/v). Solubilization of both protein and phospholipid increased with increasing Triton X-100 to a plateau which was dependent on the initial membrane protein concentration used. At low detergent concentrations (less than 0.087% Triton X-100, w/v), proteins were preferentially solubilized over phospholipids. At higher Triton X-100 concentrations the opposite was true. Using the well-defined Triton X-series of detergents, the optimal hydrophile-lipophile balance number (HLB) for solubilization of phosphatidylglycerophosphate synthase (EC 2.7.8.5) was 13.5, corresponding to Triton X-100. Activity was solubilized optimally at detergent concentrations between 0.1 and 0.2% (w/v). The optimal protein-to-detergent ratio for solubilization was 3 mg protein/mg Triton X-100. Solubilization of phosphatidylglycerophosphate synthase was generally better at low ionic strength, though total protein solubilization increased at high ionic strength. Solubilization was also dependent on pH. Significantly higher protein solubilization was observed at high pH (i.e., 8.5), as was phosphatidylglycerophosphate synthase solubilization. The manipulation of these variables in improving the recovery and specificity of membrane protein solubilization by detergents was examined.  相似文献   

12.
Although protein fractionation by selective membrane filtration has numerous potential applications in both the downstream processing of fermentation broths and the purification of plasma proteins, the selectivity for proteins with only moderately different molecular weights has generally been quite poor. We have obtained experimental data for the transport of bovine serum albumin (BSA) and immunoglobulins (IgG) through 100,000 and 300,000 molecular weight cutoff polyethersulfone membranes in a stirred ultrafiltration device at different solution pH and ionic strength. The selectivity was a complex function of the flux due to the simultaneous convective and diffusive solute transport through the membrane and the bulk mass transfer limitations in the stirred cell. Under phsioligical conditions (pH 7.0 and 0.15 M NaCI) the maximum selectivity for the BSA-IgG separation was only about 2.0 due primarily to the effects of protein adsorption. In contrast, BSA-IgG selectivities as high as 50 were obtained with the same membranes when the protein solution was at pH 4.8 and 0.0015 M NaCl. This enhanced selectivity was a direct result of the electrosatatic contributions to both bulk and membrane transport. The membrane selectivity could actually be reversed, with higher passage of the larger IgG molecules, by using a 300,000 molecular weight cutoff membrane at pH 7.4 and an ionic strength of 0.0015 M NaCl. These results clearly demonstrate that the effectiveness of selective protein filtration can be dramatically altered by appropriately controlling electrostatic interactions through changes in pH and/or ionic strength. (c) 1994 John Wiley & Sons, Inc.  相似文献   

13.
Protein A immobilized polyhydroxylmethyacrylate (PHEMA) microbeads were investigated for the specific removal of HIgG from aqueous solutions and from human plasma. PHEMA microbeads were prepared by a suspension polymerization technique and activated by CNBr in an alkaline medium (pH 11.5). Protein A was then immobilized by covalent binding onto these microbeads. The amount of immobilized protein A was controlled by changing pH and the initial concentrations of CNBr and protein A. The maximum protein A immobilization was observed at pH 9.5. Up to 3.5 mg protein A/g PHEMA was immobilized on the CNBr activated PHEMA microbeads. The maximum HIgG adsorption on the protein A immobilized PHEMA microbeads was observed at pH 8.0. The non-specific HIgG adsorption onto the plain PHEMA microbeads was low (about 0.167 mg of HIgG/g PHEMA). Higher adsorption values (up to 6.0 mg of HIgG/g PHEMA) were obtained in which the protein A immobilized PHEMA microbeads were used. Much higher amounts of HIgG (up to 24.0 mg of HIgG/g PHEMA) were adsorbed from human plasma.  相似文献   

14.
Ly L  Wasinger VC 《Proteomics》2008,8(20):4197-4208
In recent times, the analysis of the peptidome has become increasingly valuable to gain a better understanding of the critical roles native peptides play in biological processes. Here, we show a technique using a novel electrophoretic device named MF10, for the fractionation of proteins and peptides based on size and also pH in low volume liquid phase under an electric field. A 1 microM, 7-protein and peptide standard mix ranging from 1 to 25 kDa has been used to show peptide migration into a fraction contained by 1-5 kDa membranes. Simultaneous fractionation of the higher mass protein standards to the correct fraction also occurred. To assess the MF10's ability to fractionate more complex samples, human plasma was used to enrich for the peptidome below 5 kDa in the presence of the proteome. Peptide enrichment was achieved while simultaneously fractionating higher mass proteins to three other mass restricted fractions. The utility of this approach is demonstrated with the identification (with at least 2 ppm mass accuracy) of 76 unique peptides, equating to 22 proteins enriched to the 1-5 kDa fraction of the MF10.  相似文献   

15.
The recovery of lactoferrin and lactoperoxidase from sweet whey was studied using colloidal gas aphrons (CGAs), which are surfactant-stabilized microbubbles (10-100 microm). CGAs are generated by intense stirring (8000 rpm for 10 min) of the anionic surfactant AOT (sodium bis-2-ethylhexyl sulfosuccinate). A volume of CGAs (10-30 mL) is mixed with a given volume of whey (1-10 mL), and the mixture is allowed to separate into two phases: the aphron (top) phase and the liquid (bottom) phase. Each of the phases is analyzed by SDS-PAGE and surfactant colorimetric assay. A statistical experimental design has been developed to assess the effect of different process parameters including pH, ionic strength, the concentration of surfactant in the CGAs generating solution, the volume of CGAs and the volume of whey on separation efficiency. As expected pH, ionic strength and the volume of whey (i.e. the amount of total protein in the starting material) are the main factors influencing the partitioning of the Lf.Lp fraction into the aphron phase. Moreover, it has been demonstrated that best separation performance was achieved at pH = 4 and ionic strength = 0.1 mol/L i.e., with conditions favoring electrostatic interactions between target proteins and CGAs (recovery was 90% and the concentration of lactoferrin and lactoperoxidase in the aphron phase was 25 times higher than that in the liquid phase), whereas conditions favoring hydrophobic interactions (pH close to pI and high ionic strength) led to lower performance. However, under these conditions, as confirmed by zeta potential measurements, the adsorption of both target proteins and contaminant proteins is favored. Thus, low selectivity is achieved at all of the studied conditions. These results confirm the initial hypothesis that CGAs act as ion exchangers and that the selectivity of the process can be manipulated by changing main operating parameters such as type of surfactant, pH and ionic strength.  相似文献   

16.
The extracellular polymeric substances (EPS) extracted from three granular and one flocculant anaerobic sludges were characterised by size exclusion chromatography (SEC) using two serially linked chromatographic columns in order to obtain more detailed chromatograms. A Superdex peptide 10/300 GL (0.1–7 kDa) and Superdex 20010/300GL (10–600 kDa) from Amersham Biosciences were used in series with a mobile phase at pH 7 with an ionic strength of 0.223 M (phosphate buffer 50 mM and NaCl 150 mM). A part of the EPS molecules displays hydrophobic and/or ionic interactions with the column packing. Interactions could be modified by changing the mobile phase ionic strength or polarity (addition of acetonitrile). The detection wavelength (210 or 280 nm) affects strongly the EPS chromatogram. For a sludge originating from the same type of biofilms (i.e., anaerobic granules), the differences in EPS fingerprints are mainly due to differences in the absorbance of the chromatographic peaks, linked to EPS molecules content and composition. The EPS fingerprint changes significantly when the EPS originate from another type of anaerobic sludges. In addition, EPS fingerprints were affected by the extraction method used (centrifugation only; heat and centrifugation or cationic exchange resin and centrifugation). This phenomenon was observed mainly for the largest and smallest molecules and molecules which display interactions with column packing.  相似文献   

17.
Rat liver endoplasmic reticulum (ER) membranes were investigated for the presence of proteins having structural relationships with sarcoplasmic reticulum (SR) proteins. Western immunoblots of ER proteins probed with polyclonal antibodies raised against the 100-kDa SR Ca-ATPase of rabbit skeletal muscle identified a single reactive protein of 100 kDa. Also, the antibody inhibited up to 50% the Ca-ATPase activity of isolated ER membranes. Antisera raised against the major intraluminal calcium binding protein of rabbit skeletal muscle SR, calsequestrin (CS), cross-reacted with an ER peptide of about 63 kDa, by the blotting technique. Stains-All treatment of slab gels showed that the cross-reactive peptide stained metachromatically blue, similarly to SR CS. Two-dimensional electrophoresis (Michalak, M., Campbell, K. P., and MacLennan, D. H. (1980) J. Biol. Chem. 255, 1317-1326) of ER proteins showed that the CS-like component of liver ER, similarly to skeletal CS, fell off the diagonal line, as expected from the characteristic pH dependence of the rate of mobility of mammalian CS. In addition, the CS-like component of liver ER was released from the vesicles by alkaline treatment and was found to be able to bind calcium, by a 45Ca overlay technique. From these findings, we conclude that a 100-kDa membrane protein of liver ER is the Ca-ATPase, and that the peripheral protein in the 63-kDa range is closely structurally and functionally related to skeletal CS.  相似文献   

18.
Polyelectrolyte microcapsules (PEMCs) have been prepared by coating red blood cells with the polyelectrolytes poly(styrenesulfonate), poly(allylamine hydrochloride), and dextran sulfate applying the layer-by-layer technique with subsequent dissolution of the core. The capsule permeability for human serum albumin (HSA) was studied as a function of the ionic strength and pH by means of confocal microscopy. PEMCs produced with dextran sulfate and poly(allylamine hydrochloride) show a significant increase in permeability for HSA at salt concentrations over 1 mM. For PEMCs prepared with poly(styrenesulfonate) and poly(allylamine hydrochloride) the limiting salt concentration is 5 mM. No pH dependence for permeation was observed. A correlation between the permeation and adsorption of HSA on the PEMC walls was investigated. Finally, a mechanism for the permeability, combining electrostatic interactions, and the presence of pores in the polymer layers is presented confirmed by the considerable increase of permeation of charged molecules in the presence of salt and the permeation of neutral molecules regardless of the ionic strength.  相似文献   

19.
Two different kinds of oxygen evolving photosystem II (PSII) core complexes were isolated in the present study by solubilization of PSII enriched thylakoid membranes from spinach with the non-ionic detergent 6-O-(N-heptylcarbamoyl)-methyl-α-D-glucopyranoside (Hecameg) under different conditions. The PSII core complex isolated at higher ionic strength was similar to that isolated by using octyl-β-D-glucopyranoside (OGP) and lacked the 23 and 17 kDa extrinsic proteins of the oxygen evolving complex but retained the 22 kDa PsbS protein. Solubilization of the PSII membranes with Hecameg at lower ionic strength allowed the isolation of another PSII complex that retained all the three extrinsic proteins (33, 23 and 17 kDa) of the oxygen evolving complex but was depleted of the 22 kDa PsbS protein. This complex exhibited high rates of oxygen evolution and was found to be more sensitive to DCMU indicating a better structural and functional integrity and may be treated as the minimal functional unit required for PSII photochemistry. The detergent Hecameg is relatively inexpensive and the methodology remains simple since it does not require any chromatography or density gradient ultracentrifugation.  相似文献   

20.
In order to investigate effects of temperature in the physiological range (from 10 to 50 degrees C) on structural, physical and functional properties of the N-form of human serum albumin (HSA), the temperature dependences of fluorescence parameters of Trp-214 residue of HSA and of the specifically bound dye ANS, as well as of association constants of ANS binding in the primary and secondary binding sites on HSA molecule were measured. The temperature-induced changes of these properties of HSA are essentially dependent on pH (7.0 or 5,6) and ionic strength (0.001-0.008 or 0.2 M NaCl). At pH 7.0 and 0.2 M NaCl the environment of Trp-214 remained invariant at temperature changes between 10 and 50 degrees C. On the other hand, the affinity to ANS of a primary binding site doubled and that of secondary ones halved. These affinity changes seem to be due, are least partly, to the heating-induced dissociation of Cl-ions, which are inhibitors of the primary dye binding. By lowering pH (to 5.6) and ionic strength the temperature-induced changes in the Trp-214 environment were observed. The changes are interpreted as indole group transition into the buried region, inaccesible to water (the "closing" of a structural slit). The affinity of secondary binding sites of ANS was halved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号