首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
By means of functional screening using the cadmium (Cd)-sensitiveycf1 yeast mutant, we have isolated a novel cDNA clone, DcCDT1,from Digitaria ciliaris growing in a former mining area in northernJapan, and have shown that it confers Cd tolerance to the yeastcells, which accumulated almost 2-fold lower Cd levels thancontrol cells. The 521 bp DcCDT1 cDNA contains an open readingframe of 168 bp and encodes a deduced peptide, DcCDT1, thatis 55 amino acid residues in length, of which 15 (27.3%) arecysteine residues. Five DcCDT1 homologs (here termed OsCDT1–OsCDT5)have been identified in rice, and all of them were up-regulatedto varying degrees in the above-ground tissues by CdCl2 treatment.Localization of green fluorescent protein fusions suggests thatDcCDT1 and OsCDT1 are targeted to both cytoplasmic membranesand cell walls of plant cells. Transgenic Arabidopsis thalianaplants overexpressing DcCDT1 or OsCDT1 displayed a Cd-tolerantphenotype and, consistent with our yeast data, accumulated loweramounts of Cd when grown on CdCl2. Collectively, our data suggestthat DcCDT1 and OsCDT1 function to prevent entry of Cd intoyeast and plant cells and thereby enhance their Cd tolerance.  相似文献   

3.
The retromer complex is responsible for retrograde transport,which is coordinated with anterograde transport in the secretorypathway including vacuolar protein sorting. Yeast VPS35 is acomponent of the retromer complex that is essential for recognitionof specific cargo molecules. The physiological function of VPS35has not been determined in vacuolar protein sorting in higherorganisms. Arabidopsis thaliana has three VPS35 homologs designatedVPS35a, VPS35b and VPS35c. We isolated four vps35 mutants (vps35a-1,vps35b-1, vps35b-2 and vps35c-1) and then generated four doublemutants and one triple mutant. vps35a-1 vps35c-1 exhibited nounusual phenotypes. On the other hand, vps35b-1 vps35c-1 andthe triple mutant (vps35a-1 vps35b-2 vps35c-1) exhibited severephenotypes: dwarfism, early leaf senescence and fragmentationof protein storage vacuoles (PSVs). In addition, these mutantsmis-sorted storage proteins by secreting them out of the cellsand accumulated a higher level of vacuolar sorting receptor(VSR) than the wild type. VPS35 was localized in pre-vacuolarcompartments (PVCs), some of which contained VSR. VPS35 wasimmunoprecipitated with VPS29/MAG1, another component of theretromer complex. Our findings suggest that VPS35, mainly VPS35b,is involved in sorting proteins to PSVs in seeds, possibly byrecycling VSR from PVCs to the Golgi complex, and is also involvedin plant growth and senescence in vegetative organs.  相似文献   

4.
5.
GIGANTEA (GI), CONSTANS (CO) and FLOWERING LOCUS T (FT) regulatephotoperiodic flowering in Arabidopsis. In rice, OsGI, Hd1 andHd3a were identified as orthologs of GI, CO and FT, respectively,and are also important regulators of flowering. Although GIhas roles in both flowering and the circadian clock, our understandingof its biochemical functions is still limited. In this study,we purified novel OsGI-interacting proteins by using the tandemaffinity purification (TAP) method. The TAP method has beenused effectively in a number of model species to isolate proteinsthat interact with proteins of interest. However, in plants,the TAP method has been used in only a few studies, and no novelproteins have previously been isolated by this method. We generatedtransgenic rice plants and cell cultures expressing a TAP-taggedversion of OsGI. After a two-step purification procedure, theinteracting proteins were analyzed by mass spectrometry. Sevenproteins, including dynamin, were identified as OsGI-interactingproteins. The interaction of OsGI with dynamin was verifiedby co-immunoprecipitation using a myc-tagged version of OsGI.Moreover, an analysis of Arabidopsis dynamin mutants indicatedthat although the flowering times of the mutants were not differentfrom those of wild-type plants, an aerial rosette phenotypewas observed in the mutants. We also found that OsGI is presentin both the nucleus and the cytosol by Western blot analysisand by transient assays. These results indicate that the TAPmethod is effective for the isolation of novel proteins thatinteract with target proteins in plants.  相似文献   

6.
Identification of maize silicon influx transporters   总被引:1,自引:1,他引:0  
Maize (Zea mays L.) shows a high accumulation of silicon (Si),but transporters involved in the uptake and distribution havenot been identified. In the present study, we isolated two genes(ZmLsi1 and ZmLsi6), which are homologous to rice influx Sitransporter OsLsi1. Heterologous expression in Xenopus laevisoocytes showed that both ZmLsi1 and ZmLsi6 are permeable tosilicic acid. ZmLsi1 was mainly expressed in the roots. By contrast,ZmLsi6 was expressed more in the leaf sheaths and blades. Differentfrom OsLsi1, the expression level of both ZmLsi1 and ZmLsi6was unaffected by Si supply. Immunostaining showed that ZmLsi1was localized on the plasma membrane of the distal side of rootepidermal and hypodermal cells in the seminal and crown roots,and also in cortex cells in lateral roots. In the shoots, ZmLsi6was found in the xylem parenchyma cells that are adjacent tothe vessels in both leaf sheaths and leaf blades. ZmLsi6 inthe leaf sheaths and blades also exhibited polar localizationon the side facing towards the vessel. Taken together, it canbe concluded that ZmLsi1 is an influx transporter of Si, whichis responsible for the transport of Si from the external solutionto the root cells and that ZmLsi6 mainly functions as a Si transporterfor xylem unloading.  相似文献   

7.
Nitric oxide (·NO) has been shown to participate in plantresponse against pathogen infection; however, less is knownof the participation of other NO-derived molecules designatedas reactive nitrogen species (RNS). Using two sunflower (Helianthusannuus L.) cultivars with different sensitivity to infectionby the pathogen Plasmopara halstedii, we studied key componentsinvolved in RNS and ROS metabolism. We analyzed the superoxideradical production, hydrogen peroxide content, L-arginine-dependentnitric oxide synthase (NOS) and S-nitrosoglutathione reductase(GSNOR) activities. Furthermore, we examined the location andcontents of ·NO, S-nitrosothiols (RSNOs), S-nitrosoglutathione(GSNO) and protein 3-nitrotyrosine (NO2-Tyr) by confocal laserscanning microscopy (CLSM) and biochemical analyses. In thesusceptible cultivar, the pathogen induces an increase in proteinsthat undergo tyrosine nitration accompanied by an augmentationin RSNOs. This rise of RSNOs seems to be independent of theenzymatic generation of ·NO because the L-arginine-dependentNOS activity is reduced after infection. These results suggestthat pathogens induce nitrosative stress in susceptible cultivars.In contrast, in the resistant cultivar, no increase of RSNOsor tyrosine nitration of proteins was observed, implying anabsence of nitrosative stress. Therefore, it is proposed thatthe increase of tyrosine nitration of proteins can be considereda general biological marker of nitrosative stress in plantsunder biotic conditions.  相似文献   

8.
The protein complexes of pea (Pisum sativum L.) etioplasts,etio-chloroplasts and chloroplasts were examined using 2D BlueNative/SDS–PAGE. The most prominent protein complexesin etioplasts were the ATPase and the Clp and FtsH proteasecomplexes which probably have a crucial role in the biogenesisof etioplasts and chloroplasts. Also the cytochrome b6f (Cytb6f) complex was assembled in the etioplast membrane, as wellas Rubisco, at least partially, in the stroma. These complexesare composed of proteins encoded by both the plastid and nucleargenomes, indicating that a functional cross-talk exists betweenpea etioplasts and the nucleus. In contrast, the proteins andprotein complexes that bind chlorophyll, with the PetD subunitand the entire Cyt b6f complex as an exception, did not accumulatein etioplasts. Nevertheless, some PSII core components suchas PsbE and the luminal oxygen-evolvong complex (OEC) proteinsPsbO and PsbP accumulated efficiently in etioplasts. After 6h de-etiolation, a complete PSII core complex appeared with40% of the maximal photochemical efficiency, but a fully functionalPSII was recorded only after 24 h illumination. Similarly, thecore complex of PSI was assembled after 6 h illumination, whereasthe PSI–light-harvesting complex I was stably assembledonly in chloroplasts illuminated for 24 h. Moreover, a batteryof proteins responsible for defense against oxidative stressaccumulated particularly in etioplasts, including the stromaland thylakoidal forms of ascorbate peroxidase, glutathione reductaseand PsbS.  相似文献   

9.
10.
11.
The pollen grains of most angiosperms contain stores of RNAsand their translation products required for pollen germinationand subsequent early elongation of pollen tubes. Polypyrimidinetract-binding protein (PTB), which is involved in the regulationof pre-mRNA alternative splicing, internal ribosomal entry site(IRES)-mediated translation and mRNA localization/sorting, isknown to act as a bridging molecule between RNAs and a varietyof cellular factors to fulfill cellular functions in both thenucleus and cytoplasm. Moreover, it has been reported that PTBplays roles in the differentiation and development of animalcells and tissues. In the Arabidopsis genome, there are twoPTB-related genes, tentatively termed AtPTB1 and AtPTB2. Inthe present study, the physiological functions of AtPTBs wereinvestigated using genetic and cytological approaches. The AtPTBpromoter was highly active in vegetative cells of mature pollengrains, and AtPTB was localized in the nucleus and cytoplasmof these vegetative cells. Mutations in the AtPTB genes resultedin decreased germination efficiency, and this effect was rescuedby introduction of the AtPTB2 promoter::AtPTB2–GFP. Takentogether, these findings suggest that AtPTB is involved in pollengermination through possible RNA metabolism processes in late-maturingand mature pollen grains.  相似文献   

12.
13.
PSII, the oxygen-evolving complex of photosynthetic organisms,contains an intriguingly large number of low molecular weightproteins. PsbX, one of these proteins, is ubiquitous in PSIIcomplexes of cyanobacteria and plants. In previous studies,deletion of the PsbX protein in cyanobacteria has not resultedin clear phenotypic changes. Here we report the constructionof an antisense (AS-PsbX) line in Arabidopsis thaliana with<10% of wild-type PsbX levels. AS-PsbX plants are capableof photoautotrophic growth, but biochemical, biophysical andimmunological evidence demonstrates that reduction of PsbX contentsleads to reduced levels of functional assembled PSII core complexes,while the light-harvesting antennae are not affected. In addition,levels of phosphorylation of the core proteins D1, D2 and CP43are severely reduced in the antisense plants relative to theirwild-type counterparts. We conclude that PsbX is important foraccumulation of functional PSII.  相似文献   

14.
Pollen represents an important nitrogen sink in flowers to ensurepollen viability. Since pollen cells are symplasmically isolatedduring maturation and germination, membrane transporters arerequired for nitrogen import across the pollen plasma membrane.This study describes the characterization of the ammonium transporterAtAMT1;4, a so far uncharacterized member of the ArabidopsisAMT1 family, which is suggested to be involved in transportingammonium into pollen. The AtAMT1;4 gene encodes a functionalammonium transporter when heterologously expressed in yeastor when overexpressed in Arabidopsis roots. Concentration-dependentanalysis of 15N-labeled ammonium influx into roots of AtAMT1;4-transformedplants allowed characterization of AtAMT1;4 as a high-affinitytransporter with a Km of 17 µM. RNA and protein gel blotanalysis showed expression of AtAMT1;4 in flowers, and promoter–genefusions to the green fluorescent protein (GFP) further definedits exclusive expression in pollen grains and pollen tubes.The AtAMT1;4 protein appeared to be localized to the plasmamembrane as indicated by protein gel blot analysis of plasmamembrane-enriched membrane fractions and by visualization ofGFP-tagged AtAMT1;4 protein in pollen grains and pollen tubes.However, no phenotype related to pollen function could be observedin a transposon-tagged line, in which AtAMT1;4 expression isdisrupted. These results suggest that AtAMT1;4 mediates ammoniumuptake across the plasma membrane of pollen to contribute tonitrogen nutrition of pollen via ammonium uptake or retrieval.  相似文献   

15.
Phosphatidylglycerol (PG) depletion suppressed the oxygen-evolvingactivity of Synechocystis PCC6803 pgsA mutant cells. Shortageof PG led to decreased photosynthetic activity, which, similarto the effect of high light exposure, is likely to generatethe production of reactive oxygen species (ROS) or free radicals.Protection of the PG-depleted cells against light-induced damageincreased the echinenone and myxoxanthophyll content of thecells. The increased carotenoid content was localized in a solublefraction of the cells as well as in isolated thylakoid and cytoplasmicmembranes. The soluble carotenoid fraction contained carotenederivatives, which may bind to proteins. These carotene–proteincomplexes are similar to orange carotenoid protein that is involvedin yielding protection against free radicals and ROS. An increasein the content of myxoxanthophyll and echinenone upon PG depletionsuggests that PG depletion regulates the biosynthetic pathwayof specific carotenoids.  相似文献   

16.
Recent molecular analyses in several plant species revealedthat TERMINAL FLOWER1 (TFL1) and CENTRORADIALIS (CEN) homologsare involved in regulating the flowering time and/or maintainingthe inflorescence meristem. In apple (Malusxdomestica Borkh.),four TFL1/CEN-like genes, MdTFL1, MdTFL1a, MdCENa and MdCENb,were found and mapped by a similar position on putatively homoeologouslinkage groups. Apple TFL1/CEN-like genes functioned equivalentlyto TFL1 when expressed constitutively in transgenic Arabidopsisplants, suggesting that they have a potential to complementthe TFL1 function. Because MdTFL1 and MdTFL1a were expressedin the vegetative tissues in both the adult and juvenile phases,they could function redundantly as a flowering repressor anda regulator of vegetative meristem identity. On the other hand,MdCENa was mainly expressed in fruit receptacles, cultured tissuesand roots, suggesting that it is involved in the developmentof proliferating tissues but not in the control of the transitionfrom the juvenile to the adult phase. In contrast, MdCENb wassilenced in most organs probably due to gene duplication bythe polyploid origin of apple. The expression patterns of MdTFL1and MdCENa in apple were also supported by the heterologousexpression of β-glucuronidase fused with their promoterregions in transgenic Arabidopsis. Our results suggest thatfunctional divergence of the roles in the regulation of vegetativemeristem identity may have occurred among four TFL1/CEN-likegenes during evolution in apple.  相似文献   

17.
18.
Selaginella tamariscina, one of the most primitive vascularplants, can remain alive in a desiccated state and resurrectwhen water becomes available. To evaluate the nature of desiccationtolerance in this plant, we compared the composition of solublesugars and saturation ratios of phospholipids (PLs) betweenhydrated and desiccated tissues of S. tamariscina using gaschromatography. In this study, differences in gene expressionand ABA contents were also analyzed during dehydration. Theresults revealed that trehalose (at >130 mg g–1 DW)was the major soluble sugar, and low saturated fatty acid contentin PLs (0.31) was maintained in both hydrated and desiccatedtissues. In addition, the ABA content of S. tamariscina increased3-fold, and genes involved in ABA signaling and cellular protectionwere up-regulated while photosystem-related genes were down-regulatedduring dehydration. The biochemical and molecular findings suggestthat both constitutive and inducible protective molecules contributeto desiccation tolerance of S. tamariscina.  相似文献   

19.
Causes of cytoplasmic male sterility (CMS) in plants have beenstudied for two decades, and mitochondrial chimeric genes havebeen predicted to induce CMS. However, it is unclear what happensafter CMS-associated proteins accumulate in mitochondria. Inour previous study of microarray analysis, we found that 140genes are aberrantly regulated in anthers of CW-type CMS ofrice (Oryza sativa L.). In the present study, we investigatedDCW11, one of the down-regulated genes in CW-CMS encoding aprotein phosphatase 2C (PP2C). DCW11 mRNA was preferentiallyexpressed in anthers, with the highest expression in maturepollen. As predicted by the N-terminal sequence, DCW11 signalpeptide–green fluorescent protein (GFP) fusion proteinwas localized in mitochondria. Knockdown of DCW11 in wild-typerice by RNA interference caused a major loss of seed-set fertility,without visible defect in pollen development. Since this knockdownphenotype resembled that of CW-CMS, we concluded that the down-regulationof DCW11 is correlated with CW-CMS. This idea was supportedby the up-regulation of alternative oxidase 1a (AOX1a), whichis known to be regulated by mitochondrial retrograde signaling,in DCW11 knockdown lines. Down-regulation of DCW11 and up-regulationof AOX1a were also observed in two other types of rice CMS.Our result indicates that DCW11 could play a role as a mitochondrialsignal transduction mediator in pollen germination.  相似文献   

20.
The chloroplast NAD(P)H dehydrogenase (NDH) complex, which reducesplastoquinones in thylakoid membranes, is involved in PSI cyclicelectron flow and chlororespiration. In addition to land plants,the NDH complex is conserved in cyanobacteria. In this study,we identified a novel NDH-related gene of Arabidopsis, NDH-dependentcyclic electron flow 5 (NDF5, At1g55370). Post-illuminationincreases in chlorophyll fluorescence were absent in ndf5 mutantplants, which indicated that NDF5 is essential for NDH activity.Sequence analysis did not reveal any known functional motifsin NDF5, but there was some homology in amino acid sequencebetween NDF5 and NDF2, a known NDH subunit. NDF5 and NDF2 homologswere present in higher plants, but not cyanobacteria. A singlehomolog, which had similarity to both NDF5 and NDF2, was identifiedin the moss Physcomitrella patens. Immunoblot analysis showedthat NDF5 localizes to membrane fractions of chloroplasts. Thestability of NdhH, a subunit of the NDH complex, as well asNDF5 and NDF2, was decreased in ndf5, ndf2 and double ndf2/ndf5mutants, resulting in a loss of NDH activity in these mutants.These results indicated that both NDF5 and NDF2 have essentialfunctions in the stabilization of the NDH complex. We proposethat NDF5 and NDF2 were acquired by land plants during evolution,and that in higher plants both NDF5 and NDF2 are critical toregulate NDH activity and each other's protein stability, aswell as the stability of additional NDH subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号