首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrophysiological analysis of cloned cyclic nucleotide-gated ion channels   总被引:19,自引:0,他引:19  
Electrophysiological studies were conducted on the cloned plant cyclic nucleotide-gated ion channels AtCNGC2 and AtCNGC1 from Arabidopsis, and NtCBP4 from tobacco (Nicotiana tobacum). The nucleotide coding sequences for these proteins were expressed in Xenopus laevis oocytes or HEK 293 cells. Channel characteristics were evaluated using voltage clamp analysis of currents in the presence of cAMP. AtCNGC2 was demonstrated to conduct K(+) and other monovalent cations, but exclude Na(+); this conductivity profile is unique for any ion channel not possessing the amino acid sequence found in the selectivity filter of K(+)-selective ion channels. Application of cAMP evoked currents in membrane patches of oocytes injected with AtCNGC2 cRNA. Direct activation of the channel by cyclic nucleotide, demonstrated by application of cyclic nucleotide to patches of membranes expressing such channels, is a hallmark characteristic of this ion channel family. Voltage clamp studies (two-electrode configuration) demonstrated that AtCNGC1 and NtCBP4 are also cyclic nucleotide-gated channels. Addition of a lipophilic analog of cAMP to the perfusion bath of oocytes injected with NtCBP4 and AtCNGC1 cRNAs induced inward rectified, noninactivating K(+) currents.  相似文献   

2.
We have used the polymerase chain reaction to isolate and clone the cDNA encoding the human C5a receptor, and have injected the cDNA-derived receptor cRNA into Xenopus laevis oocytes for functional characterization of the receptor protein. Receptor activity was determined either electrophysiologically by measuring the agonist-dependent opening of [Ca2+]i-dependent Cl- channels, or by analysing the agonist-dependent efflux of 45Ca2+ from the oocytes. Using both methodologies, injection of pure C5a receptor cRNA failed to confer C5a sensitivity on the oocytes. In contrast, marked responses to C5a were observed when the receptor cRNA was supplemented with poly(A)+ RNA isolated from undifferentiated HL-60 cells, which is devoid of C5a receptor mRNA. Binding studies using radioiodinated C5a revealed that the C5a receptor polypeptide was in fact synthesized and targeted to the oocyte plasma membrane in oocytes injected with receptor cRNA alone, and that the level of receptor expression was not influenced by coinjection of poly(A)+ RNA from undifferentiated HL-60 cells. These results strongly suggest that the human C5a receptor requires a specific cofactor(s) lacking in Xenopus oocytes but present in undifferentiated HL-60 cells, to generate intracellular signals in oocytes. Identification and characterization of this factor will provide important information about the molecular mechanisms by which G-protein-coupled receptors activate phospholipase C.  相似文献   

3.
The ontogenetic development of poly(A)+ mRNAs coding for receptors to several neurotransmitters (kainate, glutamate, acetylcholine, and serotonin) and voltage-operated channels (sodium and calcium) was studied by isolating total poly(A)+ mRNA from the brains of rats at various developmental stages and injecting it into Xenopus oocytes. The oocytes translated the foreign mRNA and incorporated functional receptor/ion channel complexes into the cell membrane. Thus, recording of induced membrane currents in voltage-clamped oocytes gave a measure of the relative amounts of the different messengers. Responses induced by kainate, glutamate, acetylcholine, and serotonin all increased with age and reached a maximum in oocytes injected with mRNA from adult cortex. Messenger RNAs for the earliest ages examined, Embryonic Days 15 and 18, expressed little or no response to kainate, glutamate, or acetylcholine, while 50-70% of the adult response was reached by Postnatal Day 10. In contrast, the serotonin-induced response was already comparatively large (16% of the adult level) in oocytes injected with mRNA from Embryonic Day 15 brain and increased postnatally to adult levels. The expression of voltage-dependent sodium and calcium channels was small in oocytes injected with mRNA from embryonic animals and increased postnatally to reach a maximum in oocytes injected with mRNA from adult animals.  相似文献   

4.
Messenger RNA injected Xenopus oocytes exhibit a differential capacity for translation. mRNAs translated in the free cytoplasm are translated efficiently whereas mRNAs translated on the rough endoplasmic reticulum (RER) membrane are translated inefficiently. If mRNA injected oocytes are injected additionally with proteins isolated from the RER, enhanced translation of RER-bound mRNAs is observed. When examined by sucrose gradient centrifugation and RNA dot blots, most of the injected RER-bound mRNA sediments less than or equal to the 80 S monosome. The RER proteins recruit these preinitiated mRNAs onto polysomes as evidenced by a shift in sedimentation to the polysome region of a sucrose gradient. When examined by immunoblotting, the RER proteins are shown to contain a protein which reacts specifically with an antibody directed against docking protein (SRP-receptor protein). However, this putative docking protein does not appear to be the protein which actually recruits the preinitiated mRNAs onto polysomes.  相似文献   

5.
To test the hypothesis that renal tissue contains multiple distinct water channels, mRNA prepared from either cortex, medulla, or papilla of rat kidney was injected into Xenopus oocytes. The osmotic water permeability (Pf) of oocytes injected with either 50 nl of water or 50 nl of renal mRNA (1 microgram/microliter) was measured 4 d after the injection. Pf was calculated from the rate of volume increase on exposure to hyposmotic medium. Injection of each renal mRNA preparation increased the oocyte Pf. This expressed water permeability was inhibited by p-chloromercuriphenylsulfonate and had a low energy of activation, consistent with the expression of water channels. The coinjection of an antisense oligonucleotide for CHIP28 protein, at an assumed > 100-fold molar excess, with either cortex, medulla, or papilla mRNA reduced the expression of the water permeability by approximately 70, 100, and 30%, respectively. Exposure of the oocyte to cAMP for 1 h resulted in a further increase in Pf only in oocytes injected with medulla mRNA. This cAMP activation was not altered by the CHIP28 antisense oligonucleotide. These results suggest that multiple distinct water channels were expressed in oocytes injected with mRNA obtained from sections of rat kidney: (a) CHIP28 water channels in cortex and medulla, (b) cAMP-activated water channels in medulla, and (c) cAMP-insensitive water channels in papilla.  相似文献   

6.
Epithelial Na+ channels were incorporated into the plasma membrane of Xenopus laevis oocytes after micro-injection of RNA from hen lower intestinal epithelium (colon and coprodeum). The animals were fed either a normal poultry food which contained NaCl (HS), or a similar food devoid of NaCl (LS). Oocytes were monitored for the expression of amiloride-sensitive sodium channels by measuring membrane potentials and currents. Oocytes injected with poly(A)+RNA prepared from HS animals or non-injected control oocytes showed no detectable sodium currents, whereas oocytes injected with LS-poly(A)+RNA had large amiloride-blockable sodium currents. These currents were almost completely saturated by sodium concentrations of 20 mM with a Km of about 2.6 mM sodium. Amiloride (10 microM) inhibits the expressed sodium channels entirely and examination of dose response relationships yielded a half-maximal inhibition concentration (Ki) of 120 nM amiloride. I-V difference curves in the presence or absence of sodium or amiloride (10 microM) indicate a potential dependence of the sodium transport which can be described by the Goldman equation. When Na+ is replaced by K+, no amiloride response was detected indicating a high selectivity for Na+ over K+. These results provide strong evidence that intestinal Na+ channels are regulated by dietary salt intake on the RNA level.  相似文献   

7.
The amiloride-blockable Na+ channel was expressed in Xenopus oocytes injected with total RNA isolated from the toad urinary bladder. This system was used to investigate mechanisms that mediate the natriferic action of aldosterone. Incubation of the epithelium with aldosterone for 3 h doubled its channel activity but did not increase the ability of isolated RNA to express functional channels in oocytes. A 20-h incubation with the hormone produced an additional increase of Na+ transport across the intact epithelium and also augmented the channel activity expressed in oocytes by nearly 10-fold. The data are in agreement with our model that aldosterone enhances the apical Na+ permeability of tight epithelia by a short term activation of pre-existing channels, followed by chronic induction of new channel protein. Blocking methyl transfer reactions, previously shown to inhibit the natriferic action of aldosterone in tight epithelia, did not alter the basal or aldosterone-induced response in oocytes.  相似文献   

8.
TRH evokes depolarizing membrane electrical responses in Xenopus laevis oocytes injected with RNA from pituitary cells. We have shown previously that the amplitude of this response is directly proportional to the dose of TRH and the amount of RNA injected. Herein we show that the number of TRH receptors expressed on oocytes after injection of rat pituitary (GH3) cell RNA or mouse thyrotropic (TtT) tumor RNA determines the latency as well as the amplitude of the response. In oocytes injected with a maximally effective amount of GH3 cell RNA, the latency of the response decreased from a maximal duration of 103 +/- 16 to 10 +/- 1 sec when the TRH concentration was increased from 5 to 3000 nM. When oocytes injected with different amounts of GH3 cell RNA were stimulated with 3000 nM TRH, the latency decreased from 31 +/- 4 to 11 +/- 0.5 sec when the amount of RNA injected was increased from 30 to 400 ng. Specific binding of [3H]methylhistidine-TRH increased when increasing amounts of TtT poly(A)+ RNA was injected, and binding correlated with increased response amplitude. To show that these effects were caused by mRNA for the TRH receptor and did not depend on other mRNAs, TtT poly(A)+ RNA was fractionated on a sucrose gradient. Using RNA from each fraction, there was an inverse correlation between response amplitude and latency. For size-fractionated RNA, as for unfractionated RNA, there was a direct correlation between specific [3H]methylhistidine-TRH binding and response amplitude.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Despite the advances in the physiology of fruit ripening, the role and contribution of water pathways are still barely considered. Our aim was therefore to characterize aquaporins, proteins that render the molecular basis for putative regulatory mechanisms in water transport. We focused our work on strawberry ( Fragaria × ananassa ) fruit, a non-climacteric fruit of special interest because of its forced brief commercial shelf life. A full-length cDNA was isolated with high homology with plasma membrane (PM) intrinsic proteins (named FaPIP1;1), showing a profile with high expression in fruit, less in ovaries and no detection at all in other parts. Its cellular localization was confirmed at the PM. As reported in other plasma membrane intrinsic proteins subtype 1 (PIP1s), when expressing the protein in Xenopus leavis oocytes, FaPIP1;1 shows low water permeability values that only increased when it is coexpressed with a plasma membrane intrinsic protein subtype 2. Northern blotting using total RNA shows that its expression increases during fruit ripening. Moreover, functional characterization of isolated PM vesicles from red stage fruit unequivocally demonstrates the presence of active water channels, i.e. high water permeability values and a low Arrhenius activation energy, both evidences of water transport mediated by proteins. Interestingly, as many ripening-related strawberry genes, the expression pattern of FaPIP1;1 was also repressed by the presence of auxins. We therefore report a fruit specific PIP1 aquaporin with an accumulation pattern tightly associated to auxins and to the ripening process that might be responsible for increasing water permeability at the level of the PM in ripe fruit.  相似文献   

10.
Gap junctions are composed of a family of structural proteins called connexins, which oligomerize into intercellular channels and function to exchange low molecular weight metabolites and ions between adjacent cells. We have cloned a new member of the connexin family from lens cDNA, with a predicted molecular mass of 46 kD, called rat connexin46 (Cx46). Since a full-length cDNA corresponding to the 2.8-kb mRNA was not obtained, the stop codon and surrounding sequences were confirmed from rat genomic DNA. The RNA coding for this protein is abundant in lens fibers and detectable in both myocardium and kidney. Western analysis of both rat and bovine lens membrane proteins, using the anti-MP70 monoclonal antibody 6-4-B2-C6 and three anti-peptide antibodies against Cx46 demonstrates that Cx46 and MP70 are different proteins. Immunocytochemistry demonstrates that both proteins are localized in the same lens fiber junctional maculae. Synthesis of Cx46 in either reticulocyte lysate or Xenopus oocytes yields a 46-kD polypeptide; all anti-Cx46 antisera recognize a protein in rat lens membranes 5-10 kD larger, suggesting substantive lenticular posttranslational processing of the native translation product. Oocytes that have synthesized Cx46 depolarize and lyse within 24 h, a phenomenon never observed after expression of rat connexins 32 or 43 (Cx32 and Cx43). Lysis is prevented by osmotically buffering the oocytes with 5% Ficoll. Ficoll-buffered oocytes expressing Cx46 are permeable to Lucifer Yellow but not FITC-labeled BSA, indicating the presence of selective membrane permeabilities. Cx43-expressing oocytes are impermeable to Lucifer Yellow. Voltage-gated whole cell currents are measured in oocytes injected with dilute concentrations of Cx46 but not Cx43 mRNA. These currents are activated at potentials positive to -10 mV. Unlike other connexins expressed in Xenopus oocytes, these results suggest that unprocessed Cx46 induces nonselective channels in the oolemma that are voltage dependent and opened by large depolarizations.  相似文献   

11.
In amphibian urinary bladder epithelium, vasopressin increases passive urea permeability, concomitant with the appearance of a facilitated urea transport. Amphibian oocytes from Xenopus laevis and Rana esculenta were microinjected with total or fractionated poly(A+) RNA isolated from frog urinary bladder epithelial cells. After several (3-5) days at 18 degrees C, the urea flux was assayed by measuring the uptake and efflux of [14C]urea in water-injected and mRNA-injected oocytes. A 2 to 3-fold increase of urea transport was detected in oocytes injected either with total mRNA or with a 6-10 kilobase mRNA fraction, when compared with water-injected oocytes. This expression of urea channels was inhibited by 0.1 mM phloretin (50% inhibition) and 0.1 mM nitrophenylthiourea (up to 70% inhibition). On the contrary, no expression was detected in brain mRNA-injected oocytes. These results show the specific functional expression of the phloretin- and NPTU-sensitive urea channel (or carrier) from frog urinary bladder epithelial cells, providing an approach for the expression cloning of these urea channels.  相似文献   

12.
Calcium-activated potassium channels were expressed in Xenopus oocytes by injection of RNA transcribed in vitro from complementary DNAs derived from the slo locus of Drosophila melanogaster. Many cDNAs were found that encode closely related proteins of about 1200 aa. The predicted sequences of these proteins differ by the substitution of blocks of amino acids at five identified positions within the putative intracellular region between residues 327 and 797. Excised inside-out membrane patches showed potassium channel openings only with micromolar calcium present at the cytoplasmic side; activity increased steeply both with depolarization and with increasing calcium concentration. The single-channel conductance was 126 pS with symmetrical potassium concentrations. The mean open time of the channels was clearly different for channels having different substituent blocks of amino acids. The results suggest that alternative splicing gives rise to a large family of functionally diverse, calcium-activated potassium channels.  相似文献   

13.
As a first step in attempting to isolate the Na(+)-dependent System N transporter from rat liver we have investigated the use of prophase-arrested oocytes from Xenopus laevis for the functional expression of rat liver glutamine transporters. Individual oocytes, defolliculated by collagenase treatment, were injected with 50 nl of a 1 mg.ml-1 solution of poly(A)+ RNA (mRNA) isolated from rat liver. 50 microM L-[3H]glutamine uptake was measured 1-5 days post-injection: after 48 h, poly(A)+ RNA-injected oocytes showed a 60 +/- 12% increase in Na(+)-dependent glutamine uptake compared to controls. This increased uptake showed characteristic features of hepatic System N: that is, it tolerated Li(+)-for-Na+ substitution and was inhibited by the System N substrate L-histidine (5 mM) in Li medium, unlike endogenous Na(+)-dependent glutamine transport. In subsequent experiments rat liver poly(A)+ RNA, size-fractionated by density gradient fractionation, was injected into oocytes. Injection of poly(A)+ RNA of 1.9-2.8 kilobases (kb) in size resulted in a significant stimulation of Na(+)-dependent glutamine transport to 0.362 +/- 0.080 pmol.min-1/oocyte from 0.178 +/- 0.060 pmol.min-1/oocyte in vehicle-injected oocytes (p less than 0.01). A lighter fraction, with poly(A)+ RNA of less than 1.9 kilobases size resulted in a similar increase in Na(+)-dependent glutamine uptake which was largely Li(+)-tolerant: Li(+)-stimulated glutamine uptake in oocytes injected with this fraction increased to 0.230 +/- 0.070 pmol.min-1/oocyte from 0.098 +/- 0.029 pmol.min-1/oocyte in controls (p less than 0.05). This enhanced rate of Li(+)-stimulated glutamine uptake was inhibited 28 and 70%, respectively, by 1 and 5 mM L-histidine. Na(+)-independent uptake of glutamine rose by 72 +/- 12% in oocytes injected with poly(A)+ RNA of 2.8-3.6 kb (p less than 0.001). These results demonstrate that glutamine transporters, with characteristics associated with hepatic Systems N, L, and A (or ASC), can be expressed in X. laevis oocytes injected with specific size fractions of rat liver mRNA.  相似文献   

14.
The slow component of the delayed rectifier potassium current (IKs) plays an important role during repolarization in the human heart. Life-threatening arrhythmias can be triggered by sympathetic stimulation, presumably acting on IKs. The ion channel responsible for the IKs current is made of two proteins, the KvLQT1 protein and the MinK protein. In this study, we investigated the effects of adrenergic stimulation on the KvLQT1/MinK channel by coexpressing KvLQT1/MinK channels with the human beta(3)-adrenoreceptor subunit heterologously in Xenopus oocytes. Western blot experiments revealed that beta(3)-adrenoreceptor proteins appear in the cell membrane of Xenopus oocytes, when the corresponding cRNA was injected. In electrophysiological measurements we found that stimulation with the beta-adrenergic agonist isoproterenol increased the current amplitude of the beta(3)/KvLQT1/MinK complex up to 237% with an ED(50) of 8 nm, a value similar to that found on IKs in guinea pig cardiomyocytes. When oocytes with beta(3)/KvLQT1/MinK were preincubated with cholera toxin (2 microg/ml), an activator of G(S) proteins, the basal current amplitude of the beta(3)/KvLQT1/MinK complex was increased 3.1-fold, and the current amplitude increase by isoproterenol was drastically reduced, indicating that the signal transduction cascade was mediated via G(s) proteins. The knowledge about functional coupling of the human beta(3)-adrenoreceptor to KvLQT1/MinK channels reveals interesting aspects about the genesis and therapy of arrhythmias.  相似文献   

15.
Water rapidly crosses the plasma membranes of red blood cells (RBCs) and renal tubules through highly specialized channels. CHIP28 is an abundant integral membrane protein in RBCs and renal tubules, and Xenopus laevis oocytes injected with CHIP28 RNA exhibit high osmotic water permeability, Pf [Preston et al. (1992) Science 256, 385-387]. Purified CHIP28 from human RBCs was reconstituted into proteoliposomes in order to establish if CHIP28 is itself the functional unit of water channels and to characterize its physiological behavior. CHIP28 proteoliposomes exhibit Pf which is up to 50-fold above that of control liposomes, but permeability to urea and protons is not increased. Like intact RBC, the Pf of CHIP28 proteoliposomes is reversibly inhibited by mercurial sulfhydryl reagents and exhibits a low Arrhenius activation energy. The magnitude of CHIP28-mediated water flux (11.7 x 10(-14) cm3/s per CHIP28) corresponds to the known Pf of intact RBCs. These results demonstrate that CHIP28 protein functions as a molecular water channel and also indicate that CHIP28 is responsible for most transmembrane water movement in RBCs.  相似文献   

16.
The ontogenesis of mRNAs coding for GABA and glycine receptors in the cerebral cortex of the rat was examined by extracting poly(A)+ mRNA from the brains of embryonic, postnatal or adult rats and injecting it into Xenopus oocytes. The ability of a messenger to express functional receptors was then assayed by measuring the membrane currents elicited by the agonists. The size of the GABA-induced current increased progressively with age, being undetectable in oocytes injected with mRNA from embryonic day 15 and reaching a maximum in oocytes injected with mRNA from postnatal day 30. In contrast, the glycine-induced response was negligible in oocytes injected with mRNA from the cerebral hemispheres of embryos 15 days old; it increased sharply to a maximum with newborn animals and then decreased with age to become very small with mRNA from adult cortex. GABA and glycine receptors induced by mRNA from the cerebral cortex of all ages are associated with chloride channels.  相似文献   

17.
Expression of mRNAs of the aquaporin family in mouse oocytes and embryos   总被引:6,自引:0,他引:6  
The molecular basis of water and cryoprotectant permeability in mammalian oocytes and embryos is poorly understood. Therefore, we investigated the expression of mRNAs of water channel proteins (aquaporins) in mouse oocytes and embryos by RT-PCR. The total RNA of mouse oocytes at metaphase II and embryos at the 4-cell, morula, and blastocyst stages was isolated, reverse-transcribed, and subjected to nested PCR amplification. Aquaporins were expressed in both oocytes and embryos, but the types were different among the developmental stages: aquaporins 3 and 7 were expressed in oocytes and embryos at all stages examined, but aquaporins 8 and 9 were expressed only in blastocysts. On the other hand, aquaporins 1, 2, 4, 5, and 6 were not detected in any of the stages examined. The present study shows for the first time that aquaporins are expressed in mammalian oocytes and embryos. These aquaporins may play a role in water transport and conceivably also in cryoprotectant transport across the plasma membrane in these cells.  相似文献   

18.
将从正常大鼠和热损伤大鼠的中枢纹状体提取的poly(A) mRNA ,注入非洲爪蟾卵母细胞表达。用电生理方法检测多巴胺诱发的膜电位和电流的变化 ,分析热损伤对中枢多巴胺受体表达的影响。结果表明 ,注射大鼠纹状体mRNA后 ,卵母细胞的静息电位与注射前没有变化 ,但多巴胺能诱发膜电流。经验证 ,此受体电流的主要载流离子是Cl-。注射热损伤大鼠纹状体mRNA的卵母细胞对多巴胺反应的敏感性降低 ,与正常大鼠组相比有显著性差异。因此可以断定 ,热损伤对大鼠纹状体中多巴胺受体的基因表达产生了明显的影响 ,并可能有离子通道的参与。  相似文献   

19.
Zhao YQ  Zhang BL  Wang LM  Xing C  Li M  Fan M 《生理学报》2000,52(4):287-289
将从下沉大鼠和热损伤大鼠的中枢纹状体提取的poly(A)^+mRNA,注入非洲爪蟾卵母细胞表达。用电生理方法检测多巴胺诱发的膜电位和电流的变化,分析热损伤对中枢多巴胺受体表达的影响。结果表明,注射大鼠纹状体mRNA后,卵母细胞的静息电位与注射 前没有变化,但多巴胺能诱发膜电流。经验证,此受体电流的主要载流离子是C1^-。注射热务大鼠纹状体mRNA的卵母细胞对多巴胺反应的敏感性降低,与正常大鼠组相比  相似文献   

20.
C Maurel  R T Kado  J Guern    M J Chrispeels 《The EMBO journal》1995,14(13):3028-3035
The vacuolar membrane protein alpha-TIP is a seed-specific protein of the Major Intrinsic Protein family. Expression of alpha-TIP in Xenopus oocytes conferred a 4- to 8-fold increase in the osmotic water permeability (Pf) of the oocyte plasma membrane, showing that alpha-TIP forms water channels and is thus a new aquaporin. alpha-TIP has three putative phosphorylation sites on the cytoplasmic side of the membrane (Ser7, Ser23 and Ser99), one of which (Ser7) has been shown to be phosphorylated. We present several lines of evidence that the activity of this aquaporin is regulated by phosphorylation. First, mutation of the putative phosphorylation sites in alpha-TIP (Ser7Ala, Ser23Ala and Ser99Ala) reduced the apparent water transport activity of alpha-TIP in oocytes, suggesting that phosphorylation of alpha-TIP occurs in the oocytes and participates in the control of water channel activity. Second, exposure of oocytes to the cAMP agonists 8-bromoadenosine 3',5'-cyclic monophosphate, forskolin and 3-isobutyl-1-methylxanthine, which stimulate endogenous protein kinase A (PKA), increased the water transport activity of alpha-TIP by 80-100% after 60 min. That the protein can be phosphorylated by PKA was demonstrated by phosphorylating alpha-TIP in isolated oocyte membranes with the bovine PKA catalytic subunit. Third, the integrity of the three sites at positions 7, 23 and 99 was necessary for the cAMP-dependent increase in the Pf of oocytes expressing alpha-TIP, as well as for in vitro phosphorylation of alpha-TIP. These findings demonstrate that the alpha-TIP water channel can be modulated via phosphorylation of Ser7, Ser23 and Ser99.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号