首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Moon, Jon K., and Nancy F. Butte. Combined heart rateand activity improve estimates of oxygen consumption and carbon dioxideproduction rates. J. Appl. Physiol.81(4): 1754-1761, 1996.Oxygen consumption(O2) andcarbon dioxide production (CO2) rates were measuredby electronically recording heart rate (HR) and physical activity (PA).Mean daily O2 andCO2 measurements by HR andPA were validated in adults (n = 10 women and 10 men) with room calorimeters. Thirteen linear and nonlinear functions of HR alone and HR combined with PA were tested as models of24-h O2 andCO2. Mean sleepO2 andCO2 were similar to basalmetabolic rates and were accurately estimated from HR alone[respective mean errors were 0.2 ± 0.8 (SD) and0.4 ± 0.6%]. The range of prediction errorsfor 24-h O2 andCO2 was smallestfor a model that used PA to assign HR for each minute to separateactive and inactive curves(O2, 3.3 ± 3.5%; CO2, 4.6 ± 3%). There were no significant correlations betweenO2 orCO2 errors and subject age,weight, fat mass, ratio of daily to basal energy expenditure rate, orfitness. O2,CO2, and energy expenditurerecorded for 3 free-living days were 5.6 ± 0.9 ml · min1 · kg1,4.7 ± 0.8 ml · min1 · kg1,and 7.8 ± 1.6 kJ/min, respectively. Combined HR and PA measured 24-h O2 andCO2 with a precisionsimilar to alternative methods.

  相似文献   

2.
Men with chronic heart failure (CHF) have alterationsin their skeletal muscle that are partially responsible for a decreased exercise tolerance. The purpose of this study was to investigate whether skeletal muscle alterations in women with CHF are similar tothose observed in men and if these alterations are related to exerciseintolerance. Twenty-five men and thirteen women with CHFperformed a maximal exercise test for evaluation of peak oxygen consumption (O2) and resting leftventricular ejection fraction, after which a biopsy of the vastuslateralis was performed. Twenty-one normal subjects (11 women, 10 men)were also studied. The relationship between muscle markers and peakO2 was consistent for CHF men and women.When controlling for gender, analysis showed that oxidative enzymes andcapillary density are the best predictors of peak O2. These results indicatethat aerobically matched CHF men and women have no differences inskeletal muscle biochemistry and histology. However, when CHF groupswere separated by peak exercise capacity of 4.5 metabolic equivalents(METs), CHF men with peak O2 >4.5METs had increased citrate synthase and 3-hydroxyacyl-CoA dehydrogenasecompared with CHF men with peak O2 <4.5METs. CHF men with a lower peak O2 hadincreased capillary density compared with men with higher peakO2. These observations were notreproduced in CHF women. This suggests that differences may existin how skeletal muscle adapts to decreasing peakO2 in patients with CHF.

  相似文献   

3.
Chirpaz-Oddou, M. F., A. Favre-Juvin, P. Flore, J. Eterradossi, M. Delaire, F. Grimbert, and A. Therminarias. Nitric oxide response in exhaled air during an incremental exhaustive exercise. J. Appl. Physiol. 82(4):1311-1318, 1997.This study examines the response of the exhalednitric oxide (NO) concentration (CNO) and the exhaled NOoutput(NO)during incremental exercise and during recovery in six sedentary women,seven sedentary men, and eight trained men. The protocolconsisted of increasing the exercise intensity by 30 W every 3 minuntil exhaustion, followed by 5 min of recovery. Minute ventilation(E), oxygen consumption (O2), carbon dioxideproduction, heart rate, CNO, andNOwere measured continuously. TheCNO in exhaled air decreasedsignificantly provided that the exercise intensity exceeded 65% of thepeak O2. It reached similarvalues, at exhaustion, in all three groups. TheNO increasedproportionally with exercise intensity up to exhaustion and decreasedrapidly during recovery. At exhaustion, the mean values weresignificantly higher for trained men than for sedentary men andsedentary women. During exercise,NOcorrelates well with O2,carbon dioxide production, E, and heartrate. For the same submaximal intensity, and thus a givenO2 and probably a similarcardiac output,NO appearedto be similar in all three groups, even if theE was different. These results suggestthat, during exercise,NO is mainlyrelated to the magnitude of aerobic metabolism and that thisrelationship is not affected by gender differences or by noticeabledifferences in the level of physical training.

  相似文献   

4.
Proctor, David N., Kenneth C. Beck, Peter H. Shen, Tamara J. Eickhoff, John R. Halliwill, and Michael J. Joyner. Influence ofage and gender on cardiacoutput-O2 relationshipsduring submaximal cycle ergometry. J. Appl.Physiol. 84(2): 599-605, 1998.It is presentlyunclear how gender, aging, and physical activity status interact todetermine the magnitude of the rise in cardiac output(c) during dynamic exercise. To clarify this issue,the present study examined thec-O2 uptake(O2) relationship duringgraded leg cycle ergometry in 30 chronically endurance-trained subjects from four groups (n = 6-8/group): younger men (20-30 yr), older men (56-72yr), younger women (24-31 yr), and older women(51-72 yr). c (acetylene rebreathing), strokevolume (c/heart rate), and whole bodyO2 were measured at restand during submaximal exercise intensities (40, 70, and ~90% of peakO2). Baseline restinglevels of c were 0.6-1.2 l/min less in theolder groups. However, the slopes of thec-O2relationship across submaximal levels of cycling were similar among allfour groups (5.4-5.9 l/l). The absolute cassociated with a given O2(1.0-2.0 l/min) was also similar among groups. Resting andexercise stroke volumes (ml/beat) were lower in women than in men butdid not differ among age groups. However, older men and women showed areduced ability, relative to their younger counterparts, to maintainstroke volume at exercise intensities above 70% of peakO2. This latter effect wasmost prominent in the oldest women. These findings suggest that neitherage nor gender has a significant impact on thec-O2 relationships during submaximal cycle ergometry among chronically endurance-trained individuals.

  相似文献   

5.
Ventilatory long-term facilitation in unanesthetized rats   总被引:5,自引:0,他引:5  
Wetested the hypothesis that unanesthetized rats exhibit ventilatorylong-term facilitation (LTF) after intermittent, but not continuous,hypoxia. Minute ventilation (E) and carbon dioxide production (CO2) were measured inunanesthetized, unrestrained male Sprague-Dawley rats via barometricplethysmography before, during, and after exposure to continuous orintermittent hypoxia. Hypoxia was either isocapnic [inspiredO2 fraction (FIO2) = 0.08-0.09 and inspired CO2 fraction(FICO2) = 0.04] or poikilocapnic(FIO2 = 0.11 andFICO2 = 0.00). Sixty minutes afterintermittent hypoxia, E orE/CO2 wassignificantly greater than baseline in both isocapnic and poikilocapnicconditions. In contrast, 60 min after continuous hypoxia,E andE/CO2 were notsignificantly different from baseline values. These data demonstrateventilatory LTF after intermittent hypoxia in unanesthetized rats.Ventilatory LTF appeared similar in its magnitude (after accounting forCO2 feedback), time course, and dependence on intermittenthypoxia to phrenic LTF previously observed in anesthetized,vagotomized, paralyzed rats.

  相似文献   

6.
Treppo, Steven, Srboljub M. Mijailovich, and José G. Venegas. Contributions of pulmonary perfusion and ventilation toheterogeneity in A/measured by PET. J. Appl. Physiol. 82(4): 1163-1176, 1997. To estimate the contributions of the heterogeneity in regionalperfusion () and alveolar ventilation(A) to that of ventilation-perfusionratio (A/), we haverefined positron emission tomography (PET) techniques to image localdistributions of andA per unit of gas volume content(s and sA,respectively) and VA/ indogs. sA was assessed in two ways:1) the washout of 13NN tracer after equilibrationby rebreathing (sAi), and2) the ratio of an apneic image after a bolus intravenousinfusion of 13NN-saline solution to an image collectedduring a steady-state intravenous infusion of the same solution(sAp).sAp was systematically higher than sAi in allanimals, and there was a high spatial correlation betweens andsAp in both body positions(mean correlation was 0.69 prone and 0.81 supine) suggesting thatventilation to well-perfused units was higher than to those poorlyperfused. In the prone position, the spatial distributions ofs, sAp, and A/ were fairlyuniform with no significant gravitational gradients; however, in thesupine position, these variables were significantly more heterogeneous,mostly because of significant gravitational gradients (15, 5.5, and10%/cm, respectively) accounting for 73, 33, and 66% of thecorresponding coefficient of variation (CV)2 values. Weconclude that, in the prone position, gravitational forces in blood andlung tissues are largely balanced out by dorsoventral differences inlung structure. In the supine position, effects of gravity andstructure become additive, resulting in substantial gravitationalgradients in s andsAp, with the higherheterogeneity inA/ caused by agravitational gradient in s, only partially compensated by that in sA.

  相似文献   

7.
Kinetics of oxygen uptake at the onset of exercise in boys and men   总被引:3,自引:0,他引:3  
The objective of this study was to compare theO2 uptake(O2) kinetics at the onsetof heavy exercise in boys and men. Nine boys, aged 9-12 yr, and 8 men, aged 19-27 yr, performed a continuous incremental cyclingtask to determine peak O2(O2 peak).On 2 other days, subjects performed each day four cycling tasks at 80 rpm, each consisting of 2 min of unloaded cycling followed twice bycycling at 50%O2 peak for 3.5 min,once by cycling at 100%O2 peak for 2 min,and once by cycling at 130%O2 peak for 75 s.O2 deficit was not significantlydifferent between boys and men (respectively, 50%O2 peak task: 6.6 ± 11.1 vs. 5.5 ± 7.3 ml · min1 · kg1;100% O2 peak task:28.5 ± 8.1 vs. 31.8 ± 6.3 ml · min1 · kg1;and 130%O2 peaktask: 30.1 ± 5.7 vs. 35.8 ± 5.3 ml · min1 · kg1).To assess the kinetics, phase I was excluded from analysis. Phase IIO2 kinetics could bedescribed in all cases by a monoexponential function. ANOVA revealed nodifferences in time constants between boys and men (respectively, 50%O2 peaktask: 22.8 ± 5.1 vs. 26.4 ± 4.1 s; 100%O2 peak task: 28.0 ± 6.0 vs. 28.1 ± 4.4 s; and 130%O2 peak task: 19.8 ± 4.1 vs. 20.7 ± 5.7 s). In conclusion, O2 deficit and fast-componentO2 on-transientsare similar in boys and men, even at high exercise intensities, whichis in contrast to the findings of other studies employing simplermethods of analysis. The previous interpretation that children relyless on nonoxidative energy pathways at the onset of heavy exercise isnot supported by our findings.

  相似文献   

8.
Inhibition of carbonic anhydrase (CA) isassociated with a lower plasma lactate concentration([La]pl)during fatiguing exercise. We hypothesized that a lower[La]plmay be associated with faster O2uptake (O2) kinetics during constant-load exercise. Seven men performed cycle ergometer exercise during control (Con) and acute CA inhibition with acetazolamide (Acz,10 mg/kg body wt iv). On 6 separate days, each subject performed 6-minstep transitions in work rate from 0 to 100 W (below ventilatory threshold,<ET)or to a O2 corresponding to~50% of the difference between the work rate atET and peakO2(>ET).Gas exchange was measured breath by breath. Trials were interpolated at1-s intervals and ensemble averaged to yield a single response. The mean response time (MRT, i.e., time to 63% of total exponential increase) for on- and off-transients was determined using a two- (<ET) or athree-component exponential model(>ET).Arterialized venous blood was sampled from a dorsal hand vein andanalyzed for[La]pl.MRT was similar during Con (31.2 ± 2.6 and 32.7 ± 1.2 s for onand off, respectively) and Acz (30.9 ± 3.0 and 31.4 ± 1.5 s for on and off, respectively) for work rates<ET. Atwork rates >ET, MRTwas similar between Con (69.1 ± 6.1 and 50.4 ± 3.5 s for on andoff, respectively) and Acz (69.7 ± 5.9 and 53.8 ± 3.8 s for on and off, respectively). On- and off-MRTs were slower for>ET thanfor <ETexercise.[La]plincreased above 0-W cycling values during<ET and>ET exercise but was lower at the end of the transition during Acz (1.4 ± 0.2 and 7.1 ± 0.5 mmol/l for<ET and>ET,respectively) than during Con (2.0 ± 0.2 and 9.8 ± 0.9 mmol/lfor <ETand >ET,respectively). CA inhibition does not affectO2 utilization at the onset of<ET or>ETexercise, suggesting that the contribution of oxidative phosphorylationto the energy demand is not affected by acute CA inhibition with Acz.

  相似文献   

9.
Chilibeck, P. D., D. H. Paterson, D. A. Cunningham, A. W. Taylor, and E. G. Noble. Muscle capillarization,O2 diffusion distance, andO2 kinetics in old andyoung individuals. J. Appl. Physiol.82(1): 63-69, 1997.The relationships between muscle capillarization, estimated O2diffusion distance from capillary to mitochondria, andO2 uptake(O2) kineticswere studied in 11 young (mean age, 25.9 yr) and 9 old (mean age, 66.0 yr) adults. O2kinetics were determined by calculating the time constants () forthe phase 2 O2 adjustment to andrecovery from the average of 12 repeats of a 6-min, moderate-intensityplantar flexion exercise. Muscle capillarization was determined fromcross sections of biopsy material taken from lateral gastrocnemius.Young and old groups had similarO2 kinetics(O2-on = 44 vs. 48 s;O2-off = 33 vs. 44 s, for young and old, respectively), muscle capillarization, andestimated O2 diffusion distances.Muscle capillarization, expressed as capillary density or averagenumber of capillary contacts per fiber/average fiber area, and theestimates of diffusion distance were significantly correlated toO2-off kinetics in theyoung (r = 0.68 to 0.83;P < 0.05). We conclude that1) capillarization andO2 kinetics during exerciseof a muscle group accustomed to everyday activity (e.g., walking) arewell maintained in old individuals, and2) in the young, recovery of O2 after exercise isfaster, with a greater capillary supply over a given muscle fiber areaor shorter O2 diffusion distances.

  相似文献   

10.
Persons with type II diabetes mellitus(DM), even without cardiovascular complications have a decreasedmaximal oxygen consumption (O2 max) andsubmaximal oxygen consumption(O2) duringgraded exercise compared with healthy controls. Weevaluated the hypothesis that change in the rate ofO2 in response to the onsetof constant-load exercise (measured byO2-uptakekinetics) was slowed in persons with type II DM. Ten premenopausalwomen with uncomplicated type II DM, 10 overweight, nondiabeticwomen, and 10 lean, nondiabetic women had aO2 max test. On twoseparate occasions, subjects performed 7-min bouts of constant-loadbicycle exercise at workloads below and above the lactate threshold toenable measurements of O2kinetics and heart rate kinetics (measuring rate of heart rate rise).O2 maxwas reduced in subjects with type II DM compared with both lean andoverweight controls (P < 0.05).Subjects with type II DM had slowerO2 and heart rate kineticsthan did controls at constant workloads below the lactate threshold.The data suggest a notable abnormality in the cardiopulmonary responseat the onset of exercise in people with type II DM. The findings mayreflect impaired cardiac responses to exercise, although an additional defect in skeletal muscle oxygen diffusion or mitochondrial oxygen utilization is also possible.

  相似文献   

11.
Saiki, Chikako, and Jacopo P. Mortola. Effect of2,4-dinitrophenol on the hypometabolic response to hypoxia of conscious adult rats. J. Appl. Physiol. 83(2):537-542, 1997.During acute hypoxia, a hypometabolic response iscommonly observed in many newborn and adult mammalian species. Wehypothesized that, if hypoxic hypometabolism were entirely a regulatedresponse with no limitation in O2availability, pharmacological uncoupling of the oxidativephosphorylation should raise O2consumption(O2) bysimilar amounts in hypoxia and normoxia. Metabolic, ventilatory, andcardiovascular measurements were collected from conscious rats in airand in hypoxia, both before and after intravenous injection of themitochondrial uncoupler 2,4-dinitrophenol (DNP). In hypoxia (10%O2 breathing, 60% arterialO2 saturation),O2, as measured by anopen-flow technique, was less than in normoxia (~80%). SuccessiveDNP injections (6 mg/kg, 4 times) progressively increasedO2 in both normoxia andhypoxia by similar amounts. Body temperature slightly increased innormoxia, whereas it did not change in hypoxia. The DNP-stimulatedO2 during hypoxia couldeven exceed the control normoxic value. A single DNP injection (17 mg/kg iv) had a similar metabolic effect; it also resulted inhypotension and a drop in systemic vascular resistance. We concludethat pharmacological stimulation ofO2 counteracts theO2 drop determined byhypoxia and stimulates O2not dissimilarly from normoxia. Hypoxic hypometabolism is likely toreflect a regulated process of depression of thermogenesis, with nolimitation in cellular O2availability.

  相似文献   

12.
Dysoxia canbe defined as ATP flux decreasing in proportion toO2 availability with preserved ATPdemand. Hepatic venous -hydroxybutyrate-to-acetoacetate ratio(-OHB/AcAc) estimates liver mitochondrial NADH/NAD and may detectthe onset of dysoxia. During partial dysoxia (as opposed to anoxia),however, flow may be adequate in some liver regions, diluting effluentfrom dysoxic regions, thereby rendering venous -OHB/AcAc unreliable.To address this concern, we estimated tissue ATP whilegradually reducing liver blood flow of swine to zero in a nuclearmagnetic resonance spectrometer. ATP flux decreasing withO2 availability was taken asO2 uptake(O2) decreasing inproportion to O2 delivery(O2);and preserved ATP demand was taken as increasingPi/ATP.O2, tissuePi/ATP, and venous -OHB/AcAcwere plotted againstO2to identify critical inflection points. Tissue dysoxia required meanO2for the group to be critical for bothO2 and forPi/ATP. CriticalO2values for O2 andPi/ATP of 4.07 ± 1.07 and 2.39 ± 1.18 (SE) ml · 100 g1 · min1,respectively, were not statistically significantly different but notclearly the same, suggesting the possibility that dysoxia might havecommenced after O2 begandecreasing, i.e., that there could have been"O2 conformity." CriticalO2for venous -OHB/AcAc was 2.44 ± 0.46 ml · 100 g1 · min1(P = NS), nearly the same as that forPi/ATP, supporting venous -OHB/AcAc as a detector of dysoxia. All issues considered, tissue mitochondrial redox state seems to be an appropriate detector ofdysoxia in liver.

  相似文献   

13.
Proctor, David N., and Michael J. Joyner. Skeletalmuscle mass and the reduction ofO2 max in trainedolder subjects. J. Appl. Physiol.82(5): 1411-1415, 1997.The role of skeletal muscle mass in theage-associated decline in maximalO2 uptake (O2 max) is poorlydefined because of confounding changes in muscle oxidative capacity andin body fat and the difficulty of quantifying active muscle mass duringexercise. We attempted to clarify these issues byexamining the relationship between several indexes of muscle mass, asestimated by using dual-energy X-ray absorptiometry and treadmillO2 max in 32 chronically endurance-trained subjects from four groups(n = 8/group): young men(20-30 yr), older men (56-72 yr), young women(19-31 yr), and older women (51-72 yr).O2 max per kilogrambody mass was 26 and 22% lower in the older men (45.9 vs. 62.0 ml · kg1 · min1)and older women (40.0 vs. 51.5 ml · kg1 · min1).These age differences were reduced to 14 and 13%, respectively, whenO2 max was expressedper kilogram of appendicular muscle. When appropriately adjusted forage and gender differences in appendicular muscle mass by analysis ofcovariance, whole body O2 max was 0.50 ± 0.09 l/min less (P < 0.001) in theolder subjects. This effect was similar in both genders.These findings suggest that the reducedO2 max seen in highlytrained older men and women relative to their younger counterparts isdue, in part, to a reduced aerobic capacity per kilogram of activemuscle independent of age-associated changes in body composition, i.e.,replacement of muscle tissue by fat. Because skeletal muscleadaptations to endurance training can be well maintained in oldersubjects, the reduced aerobic capacity per kilogram of muscle likelyresults from age-associated reductions in maximalO2 delivery (cardiac outputand/or muscle blood flow).

  相似文献   

14.
Respiratory muscle work compromises leg blood flow during maximal exercise   总被引:10,自引:0,他引:10  
Harms, Craig A., Mark A. Babcock, Steven R. McClaran, DavidF. Pegelow, Glenn A. Nickele, William B. Nelson, and Jerome A. Dempsey.Respiratory muscle work compromises leg blood flow during maximalexercise. J. Appl. Physiol.82(5): 1573-1583, 1997.We hypothesized that duringexercise at maximal O2 consumption (O2 max),high demand for respiratory muscle blood flow() would elicit locomotor muscle vasoconstrictionand compromise limb . Seven male cyclists(O2 max 64 ± 6 ml · kg1 · min1)each completed 14 exercise bouts of 2.5-min duration atO2 max on a cycleergometer during two testing sessions. Inspiratory muscle work waseither 1) reduced via aproportional-assist ventilator, 2)increased via graded resistive loads, or3) was not manipulated (control).Arterial (brachial) and venous (femoral) blood samples, arterial bloodpressure, leg (legs;thermodilution), esophageal pressure, andO2 consumption(O2) weremeasured. Within each subject and across all subjects, at constantmaximal work rate, significant correlations existed(r = 0.74-0.90;P < 0.05) between work of breathing(Wb) and legs (inverse), leg vascular resistance (LVR), and leg O2(O2 legs;inverse), and between LVR and norepinephrine spillover. Mean arterialpressure did not change with changes in Wb nor did tidal volume orminute ventilation. For a ±50% change from control in Wb,legs changed 2 l/min or 11% of control, LVRchanged 13% of control, and O2extraction did not change; thusO2 legschanged 0.4 l/min or 10% of control. TotalO2 max was unchangedwith loading but fell 9.3% with unloading; thusO2 legsas a percentage of totalO2 max was 81% incontrol, increased to 89% with respiratory muscle unloading, anddecreased to 71% with respiratory muscle loading. We conclude that Wbnormally incurred during maximal exercise causes vasoconstriction inlocomotor muscles and compromises locomotor muscle perfusion andO2.

  相似文献   

15.
Hyde, Richard W., Edgar J. Geigel, Albert J. Olszowka, JohnA. Krasney, Robert E. Forster II, Mark J. Utell, and Mark W. Frampton.Determination of production of nitric oxide by the lower airwaysof humanstheory. J. Appl. Physiol.82(4): 1290-1296, 1997.Exercise and inflammatory lung disorderssuch as asthma and acute lung injury increase exhaled nitric oxide(NO). This finding is interpreted as a rise in production of NO by thelungs (NO)but fails to take into account the diffusing capacity for NO(DNO) that carries NO into thepulmonary capillary blood. We have derived equations to measureNO from thefollowing rates, which determine NO tension in the lungs(PL) at any moment from 1) production(NO);2) diffusion, whereDNO(PL) = rate of removal by lung capillary blood; and3) ventilation, whereA(PL)/(PB  47) = the rate of NO removal by alveolar ventilation(A) and PB is barometric pressure. During open-circuit breathingwhen PL is not in equilibrium,d/dtPL[VL/(PB  47)] (where VL is volumeof NO in the lower airways) = NO  DNO(PL)  A(PL)/(PB  47). When PL reaches asteady state so that d/dt = 0 andA iseliminated by rebreathing or breath holding, then PL = NO/DNO.PL can be interpreted as NOproduction per unit of DNO. Thisequation predicts that diseases that diminishDNO but do not alterNO willincrease expired NO levels. These equations permit precise measurementsof NO thatcan be applied to determining factors controlling NO production by thelungs.

  相似文献   

16.
VO2 max is associated with ACE genotype in postmenopausal women   总被引:6,自引:0,他引:6  
Relationships have frequently been found betweenangiotensin-converting enzyme (ACE) genotype and various pathologicaland physiological cardiovascular outcomes and functions. Thuswe sought to determine whether ACE genotype affected maximalO2 consumption (O2 max) and maximalexercise hemodynamics in postmenopausal women with different habitualphysical activity levels. Age, body composition, and habitual physicalactivity levels did not differ among ACE genotype groups. However, ACEinsertion/insertion (II) genotype carriers had a 6.3 ml · kg1 · min1higher O2 max(P < 0.05) than the ACEdeletion/deletion (DD) genotype group after accounting for the effectof physical activity levels. The ACE II genotype group also had a 3.3 ml · kg1 · min1higher O2 max(P < 0.05) than the ACEinsertion/deletion (ID) genotype group. The ACE ID group tended to havea higher O2 max thanthe DD genotype group, but the difference was not significant. ACEgenotype accounted for 12% of the variation inO2 max among womenafter accounting for the effect of habitual physical activity levels.The entire difference inO2 max among ACEgenotype groups was the result of differences in maximal arteriovenousO2 difference (a-vDO2).ACE genotype accounted for 17% of the variation in maximal a-vDO2 inthese women. Maximal cardiac output index did not differ whatsoeveramong ACE genotype groups. Thus it appears that ACE genotype accountsfor a significant portion of the interindividual differences inO2 max among thesewomen. However, this difference is the result of genotype-dependentdifferences in maximala-vDO2 andnot of maximal stroke volume and maximal cardiac output.

  相似文献   

17.
Li, M. H., J. Hildebrandt, and M. P. Hlastala.Quantitative analysis of transpleural flux in the isolated lung.J. Appl. Physiol. 82(2): 545-551, 1997.In this study, the loss of inert gas through the pleura of anisolated ventilated and perfused rabbit lung was assessed theoreticallyand experimentally. A mathematical model was used to represent an idealhomogeneous lung placed within a box with gas flow(box) surrounding the lung. Thealveoli are assumed to be ventilated with room air(A) andperfused at constant flow () containinginert gases (x) with various perfusate-air partition coefficients(p,x).The ratio of transpleural flux of gas(plx)to its total delivery to the lung via pulmonary artery( ),representing fractional losses across the pleura, can be shown todepend on four dimensionless ratios:1)p,x,2) the ratio of alveolar ventilation to perfusion(A/), 3) the ratioof the pleural diffusing capacity(Dplx) to the conductance ofthe alveolar ventilation (Dplx /Ag,where g is the capacitancecoefficient of gas), and 4) theratio of extrapleural (box) ventilation to alveolar ventilation(box/A).Experiments were performed in isolated perfused and ventilated rabbitlungs. The perfusate was a buffer solution containing six dissolvedinert gases covering the entire 105-fold range ofp,x usedin the multiple inert gas elimination technique. Steady-state inert gasconcentrations were measured in the pulmonary arterial perfusate,pulmonary venous effluent, exhaled gas, and box effluent gas. Theexperimental data could be described satisfactorily by thesingle-compartment model. It is concluded that a simple theoreticalmodel is a useful tool for predicting transpleural flux from isolatedlung preparations, with known ventilation and perfusion, for inertgases within a wide range of .

  相似文献   

18.
We evaluated the hypotheses that endurance training increasesrelative lipid oxidation over a wide range of relative exercise intensities in fed and fasted states and that carbohydrate nutrition causes carbohydrate-derived fuels to predominate as energy sources during exercise. Pulmonary respiratory gas-exchange ratios [(RER) = CO2production/O2 consumption(O2)] were determinedduring four relative, graded exercise intensities in both fed andfasted states. Seven untrained (UT) men and seven category 2 and 3 US Cycling Federation cyclists (T) exercised in the morning in random order, with target power outputs of 20 and 40% peakO2(O2 peak) for 2 h,60% O2 peak for 1.5 h, and 80%O2 peak fora minimum of 30 min after either a 12-h overnight fast or 3 h after astandardized breakfast. Actual metabolic responses were 22 ± 0.33, 40 ± 0.31, 59 ± 0.32, and 75 ± 0.39%O2 peak. T subjectsshowed significantly (P < 0.05)decreased RER compared with UT subjects at absolute workloads when fedand fasted. Fasting significantly decreased RER values compared withthe fed state at 22, 40, and 59%O2 peak inT and at 40 and 59%O2 peak in UTsubjects. Training decreased (P < 0.05) mean RER values compared with UT subjects at 22%O2 peak when theyfasted, and at 40%O2 peak when fed orfasted, but not at higher relative exercise intensities in eithernutritional state. Our results support the hypothesis that endurancetraining enhances lipid oxidation in men after a 12-h overnight fast at low relative exercise intensities (22 and 40%O2 peak). However, atraining effect on RER was not apparent at high relative exercise intensities (59 and 75%O2 peak). Becausemost athletes train and compete at exercise intensities >40% maximalO2, they will not oxidize agreater proportion of lipids compared with untrained subjects,regardless of nutritional state.  相似文献   

19.
Gonzalez, Norberto C., Richard L. Clancy, Yoshihiro Moue,and Jean-Paul Richalet. Increasing maximal heart rate increases maximal O2 uptake in ratsacclimatized to simulated altitude. J. Appl.Physiol. 84(1): 164-168, 1998.Maximal exerciseheart rate (HRmax) is reducedafter acclimatization to hypobaric hypoxia. The lowHRmax contributes to reducemaximal cardiac output(max) andmay limit maximal O2 uptake(O2 max). Theobjective of these experiments was to test the hypothesisthat the reduction inmax afteracclimatization to hypoxia, due, in part, to the lowHRmax, limitsO2 max. Ifthis hypothesis is correct, an increase in max wouldresult in a proportionate increase inO2 max. Rats acclimatized to hypobaric hypoxia [inspiredPO2(PIO2) = 69.8 ± 3 Torr for 3 wk] exercised on a treadmill in hypoxic (PIO2 = 71.7 ± 1.1 Torr) or normoxic conditions(PIO2 = 142.1 ± 1.1 Torr). Each rat ran twice: in one bout the rat was allowed to reach itsspontaneous HRmax, which was 505 ± 7 and 501 ± 5 beats/min in hypoxic and normoxic exercise,respectively; in the other exercise bout,HRmax was increased by 20% to the preacclimatization value of 600 beats/min by atrial pacing. This resulted in an ~10% increase inmax, since theincrease in HRmax was offset by a10% decrease in stroke volume, probably due to shortening of diastolicfilling time. The increase inmax was accompanied by a proportionate increase in maximal rate of convective O2 delivery(max × arterial O2 content), maximal workrate, and O2 max inhypoxic and normoxic exercise. The data show that increasingHRmax topreacclimatization levels increasesO2 max, supportingthe hypothesis that the lowHRmax tends to limitO2 max after acclimatization to hypoxia.

  相似文献   

20.
Smaller lungs in women affect exercise hyperpnea   总被引:2,自引:0,他引:2  
We subjected 29 healthy young women (age: 27 ± 1 yr) with a wide range of fitness levels [maximal oxygenuptake (O2 max): 57 ± 6 ml · kg1 · min1;35-70ml · kg1 · min1]to a progressive treadmill running test. Our subjects had significantly smaller lung volumes and lower maximal expiratory flow rates, irrespective of fitness level, compared with predicted values for age-and height-matched men. The higher maximal workload in highly fit(O2 max > 57 ml · kg1 · min1,n = 14) vs. less-fit(O2 max < 56 ml · kg1 · min1,n = 15) women caused a higher maximalventilation (E) with increased tidal volume (VT)and breathing frequency (fb) atcomparable maximal VT/vitalcapacity (VC). More expiratory flow limitation (EFL; 22 ± 4% ofVT) was also observed duringheavy exercise in highly fit vs. less-fit women, causing higherend-expiratory and end-inspiratory lung volumes and greater usage oftheir maximum available ventilatory reserves.HeO2 (79% He-21%O2) vs. room air exercise trialswere compared (with screens added to equalize external apparatusresistance). HeO2 increasedmaximal expiratory flow rates (20-38%) throughout the range ofVC, which significantly reduced EFL during heavy exercise. When EFL wasreduced with HeO2, VT,fb, andE (+16 ± 2 l/min) weresignificantly increased during maximal exercise. However, in theabsence of EFL (during room air exercise),HeO2 had no effect onE. We conclude that smaller lungvolumes and maximal flow rates for women in general, and especiallyhighly fit women, caused increased prevalence of EFL during heavyexercise, a relative hyperinflation, an increased reliance onfb, and a greater encroachment onthe ventilatory "reserve." Consequently,VT andE are mechanically constrained duringmaximal exercise in many fit women because the demand for highexpiratory flow rates encroaches on the airways' maximum flow-volumeenvelope.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号