首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Plaxton WC 《Plant physiology》1988,86(4):1064-1069
Cytosolic pyruvate kinase from endosperm of germinating castor beans (Ricinus communis L.; cv Hale) has been purified 3100-fold to apparent homogeneity and a final specific activity of 203 micromole pyruvate produced/minute per milligram protein. Purification steps included: heat treatment, polyethylene glycol fractionation, Q-Sepharose, ADP-agarose, Mono-Q and Phenyl Superose chromatography. Nondenaturing polyacrylamide gel electrophoresis of the final sample resulted in a single protein staining band which co-migrated with pyruvate kinase activity. Two protein staining bands of 57 and 56 kilodaltons were observed following SDS polyacrylamide gel electrophoresis of the final preparation. The native molecular mass was found to be about 240 kilodaltons. This enzyme appears to be a tetramer composed of two different subunits. The presence of dithioerythritol (2 millimolar) was required for optimal activity of the purified enzyme.  相似文献   

2.
Summary Endoplasmic reticulum, mitochondria, and glyoxysomes were obtained from germinating castor bean endosperm,Ricinus communis, by sucrose gradient centrifugation. When each of the three organelle preparations was diluted in 150 mM KCl and centrifuged, all of the component membrane material, measured as phospholipid, was sedimented. Also, the respective membrane enzymes, phosphorylcholine-glyceride transferase, cytochrome c oxidase and alkaline lipase were recovered. The endoplasmic reticulum retained most (60%) of its protein. The mitochondria lost almost no protein while the glyoxysomes lost much of their soluble contents.The isolated endoplasmic reticulum was in the form of vesicles, 0.02 to 1 m, lacking bound ribosomes. The size, 0.5 to 0.8 m, and the structure of the mitochondria were unchanged by the purification procedure. The mitochondria were contracted, whereas the glyoxysomes were distended. The diameter of the glyoxysomes remained 0.4 to 1.5 m, but they lost much of their internal matrix. The small amount of matrix that survived was not especially associated with the membrane. The glyoxysome membrane was about the same thickness as that of the endoplasmic reticulum, 70 Å.  相似文献   

3.
Subcellular organelles from castor bean (Ricinus communis) endosperm were isolated on discontinuous sucrose gradients from germinating seeds which were 1 to 7 days postimbibition. Marker enzyme activities of the organelles were measured (fumarase, catalase, and triose phosphate isomerase) and the homogeneity of the organelle fractions was examined by electron microscopy. Pyruvate dehydrogenase complex activity was measured only in the mitochondrial fraction and attempts to activate or release the enzyme from the proplastid were not successful. A pathway is proposed for the most efficient use of endosperm carbon for de novo fatty acid biosynthesis that does not require the presence of the pyruvate dehydrogenase complex in the proplastid to provide acetyl-coenzymeA.  相似文献   

4.
De Luca V  Dennis DT 《Plant physiology》1978,61(6):1037-1039
Proplastids from developing castor bean (Ricinus communis) endosperm have a pyruvate kinase activity which is extremely unstable on isolation from the organelle. It can be stabilized by 20 mm 2-mercaptoethanol in 20% ethylene glycol. In contrast the soluble pyruvate kinase is stable at 60 C for 10 minutes. The two activities have different pH optima. The soluble and the proplastid activities are eluted from a diethylaminoethyl-Sephadex A-25 sievorptive column at different ionic strengths.  相似文献   

5.
Homogenates from germinating castor bean endosperm were fractionated by sucrose density gradient centrifugation and examined for mixed function oxidase activity. Activity of cinnamic acid 4-hydroxylase and p-chloro-N-methylaniline N-demethylase was highest in the endoplasmic reticulum fraction. Activity of both enzymes is dependent on NADPH and on molecular oxygen; both activities are inhibited by carbon monoxide. When challenged with a number of potential inhibitors the enzymes responded in ways fairly typical of mixed function oxidases from other plants and animals. The N-demethylase appears to be specific for N-methylarylamines. In the absence of NADPH, cumene hydroperoxide is able to support N-demethylation. The mechanistic significance of this activity is discussed.  相似文献   

6.
The pathway of glutamine synthesis in germinating castor beanendosperm was investigated by feeding experiments with (2,3-14C)succinateand by determining enzyme activities related to pyruvate formationand utilization. 14C of (2,3-14C)succinate was rapidly and sequentiallyincorporated into amino acids in the following order: aspartateor alanine, glutamate and glutamine. 14CO2 was slowly released,especially during the early hours of incubation. Fluorocitrateinhibited 14CO2 release while aminooxyacetate stimulated itslightly. Fluorocitrate inhibited the incorporation of 14C intoglutamate and glutamine. Aminooxyacetate inhibited 14C incorporationinto aspartate, alanine, glutamate and glutamine. Glutaminesynthetase activity was detected in a soluble fraction. NAD-malicenzyme activity was detected in mitochondria by sucrose densitygradient centrifugation. Activities of pyruvate decarboxylaseand aldehyde dehydrogenasewere detected. Aldehyde dehydrogenasewas partially purified about 60-fold by ammonium sulfate fractionationand the DEAE-cellulose chromatography. The Km values of theenzyme were 0.71 miu for NAD and 0.43 mM for acetaldehyde. Basedon these results and properties of pyruvate kinase reportedpreviously (9), the metabolism of pyruvate in cytosol and mitochondriawas discussed in connection with glutamine synthesis in germinatingcastor bean endosperm. (Received August 25, 1978; )  相似文献   

7.
Isozymes of pyruvate kinase (PK) have been isolated from developing castor bean endosperm. One isozyme, PKc, is localized in the cytosol, and the other, PKp, is in the plastid. Both isozymes need monovalent and divalent cations for activity, requirements which can be filled by K+ and Mg2+. Both isozymes are inhibited by citrate, pyruvate, and ATP. PKc has a much broader pH profile than PKp and is also more stable. Both have the same Km (0.05 millimolar) for PEP, but PKp has a 10-fold higher Km (0.3 millimolar) for ADP than PKc (0.03 millimolar). PKc also has a higher affinity for alternate nucleotide substrates than PKp. The two isozymes have different kinetic mechanisms. Both have an ordered sequential mechanism and bind phosphoenolpyruvate before ADP. However, the plastid isozyme releases ATP first, whereas pyruvate is the first product released from the cytosolic enzyme. The properties of the two isozymes are similar to those of their counterparts in green tissue.  相似文献   

8.
CTP: cholinephosphate cytidylyltransferase (EC 2.7.7.15) has been purified approximately 600-fold from postgermination endosperm of castor bean. The enzyme was solubilized with n-octyl beta-D-glucopyranoside and then subjected to ion exchange and gel filtration chromatography. The Km's of the purified enzymatic activity were 0.37 and 1.1 mM for CTP and choline phosphate, respectively. Magnesium was required for activity. The purified cytidylyltransferase activity was inhibited by both phosphate and ATP. The extent of ATP inhibition was dependent on preincubation time, temperature, and Mg2+ and Ca2+ concentrations. The possible regulation of cytidylyltransferase in castor bean endosperm by protein phosphorylation is discussed.  相似文献   

9.
The intracellular distribution of enzymes capable of catalyzing the reactions from oxaloacetate to sucrose in germinating castor bean endosperm has been studied by sucrose density gradient centrifugation. One set of glycolytic enzyme activities was detected in the plastids and another in the cytosol. The percentages of their activities in the plastids were less than 10% of total activities except for aldolase and fructose diphosphatase. The activities of several of the enzymes present in the plastids seem to be too low to account for the in vivo rate of gluconeogenesis whereas those in the cytosol are quite adequate. Furthermore, phosphoenolypyruvate carboxykinase, sucrose phosphate synthetase, and sucrose synthetase, which catalyze the first and final steps in the conversion of oxaloacetate to sucrose, were found only in the cytosol. It is deduced that in germinating castor bean endosperm the complete conversion of oxaloacetate to sucrose and CO2 occurs in the cytosol. The plastids contain some enzymes of the pentose phosphate pathway, pyruvate dehydrogenase and fatty acid synthetase in addition to the set of glycolytic enzymes. This suggests that the role of the plastid in the endosperm of germinating castor bean is the production of fatty acids from sugar phosphates, as it is known to be in the endosperm during seed development.  相似文献   

10.
Donaldson RP 《Plant physiology》1977,59(6):1064-1066
Lipids from the endosperm of germinating castor bean (Ricinus communis var. Hale) were separated by thin layer chromatography and quantitated by gas chromatography. During the later stages of lipid breakdown (4-6 days germination at 30 C), several lipid classes were found in addition to the storage triglycerides, which are triricinoleins for the most part. One was identified as free ricinoleic acid, the proportion of which increased as germination progressed. After 6 days germination, ricinoleic acid comprised more than 30% of the total lipid. The appearance of this fatty acid implies that lipase activity (lipolysis) is not strictly coordinated with beta oxidation in this tissue.  相似文献   

11.
14C-labeled microsomes were prepared by feeding [1-14 C]acetateto endosperm tissues from 4-day-old seedlings of castor beanseeds and incubated with unlabeled mitochondria from the sametissues. The loss of 14C-lipids from the microsomes was accompaniedby an increase of 14C-lipids in the mitochondria. The additionof 105,000?g supernatant and also pH 5.1-treated supernatant,both of which had been prepared from castor bean endospermsat the same stage, markedly enhanced the lipid transfer frommicrosomes to mitochondria. The activity in this fraction wasprecipitated by ammonium sulfate and lost with trypsin or heattreatment. The transfer of lipids was limited to phospholipids.Thus, it is concluded that in castor bean endosperms, phospholipidsare transferred from the endoplasmic reticulum to the mitochondriaby a phospholipid-exchange protein contained in the cytosol. (Received August 8, 1977; )  相似文献   

12.
α-Mannosidase and β-N-acetylhexosaminidase, which could function in the cleavage of glycosidic linkages in the native Ricinus communis lectins, and β-galactosidase were purified some 100-fold from the endosperm tissue of castor bean seedlings. The procedure used ammonium sulphate precipitation followed by chromatography on CM-cellulose, hydroxyapatite and Sephacryl S-300 to separate the three activities. All three glycosidases were present, with the lectins, in the protein bodies of dry seed and increased in activity during the time that lectins are broken down in the vacuoles. The enzymes show optimal activity in the range pH 3–5.5. The α-mannosidase had a Km of 0.77 mM for p- nitrophenyl-α-D-mannopyranoside. The β-galactosidase showed a Km of 1.39 mM for p-nitrophenyl-β-D-galactopyranoside. The β-N-acetylhexasominidase had a Km of 0.47 mM for p-nitrophenyl-N-acetyl-β-N-glucosamide and a Km of 0.33 mM for p-nitrophenyl-N-acetyl-β-D-galactosamide. Effects of competitive inhibitors and cations were described.  相似文献   

13.
Castor bean seeds germinated for 40 br under a condition ofunlimited water availability were placed for 1 to 5 days ina condition such as to interrupt any further water uptake. Thefollowing phenomena were observed: a) the rate of synthesisof glucose-6-phosphate, phosphogluconate and NADP isocitratedehydrogenases progressively decreased, then completely stopped;b) polysomes disappeared while monosomes correspondingly increased;c) the endogenous capacity of isolated ribosomes to incorporateamino acid into proteins fell to zero, while in the presenceof poly-U phenylalanine incorporation remained practically constant.When the seeds were placed again in contact with water, theenzyme activities began to increase again; polyribosomes werereformed both from old ribosomes preexisting in the treatedendosperms and from new synthesized ribosomes; the endogenouscapacity of the ribosomes to perform protein synthesis (on anRNA basis) regained their original levels. These data suggest that some factor affecting mRNA or its interactionwith ribosomes, rather than a modification of ribosomal structureis responsible for the stoppage of protein synthesis causedby interrupting water uptake. (Received July 15, 1968; )  相似文献   

14.
15.
The cytoplasmic form of fructose 1,6-bisphosphatase (FBPase) was purified over 60-fold from germinating castor bean endosperm (Ricinus communis). The kinetic properties of the purified enzyme were studied. The preparation was specific for fructose 1,6-bisphosphate and exhibited optimum activity at pH 7.5. The affinity of the enzyme for fructose 1,6-bisphosphate was reduced by AMP, which was a mixed linear inhibitor. Fructose 2,6-bisphosphate also inhibited FBPase and induced a sigmoid response to fructose 1,6-bisphosphate. The effects of fructose 2,6-bisphosphate were enhanced by low levels of AMP. The latter two compounds interacted synergistically in inhibiting FBPase, and their interaction was enhanced by phosphate which, by itself, had little effect. The enzyme was also inhibited by ADP, ATP, UDP and, to a lesser extent, phosphoenolpyruvate. There was no apparent synergism between UDP, a mixed inhibitor, and fructose 2,6-bisphosphate. Similarly ADP, a predominantly competitive inhibitor, did not interact with fructose 2,6-bisphosphate. Possible roles for fructose 2,6-bisphosphate and the other effectors in regulating FBPase are discussed.  相似文献   

16.
During germination and early growth of castor bean (Ricinus communis), all cellular constituents of the endosperm are eventually transferred to the growing embryo. The present results bear on the transport of breakdown products of nucleic acids. The total content of nucleic acids and nucleotides declines rapidly between day 4 and day 8 of seedling development. Concomitant with this decline, a secretion of adenosine, guanosine, and adenine from excised endosperms into the incubation medium takes place, accompanying a much more extensive release of sucrose and amino acids. Release of nucleotides could not be detected. The rates of release were linear for at least 5 hours for all compounds measured, indicating that they were liberated due to a coordinated metabolism. Uptake studies with cotyledons removed from the seedling showed that these have the ability to absorb all the substances released from the endosperm. Besides sucrose and amino acids, both nucleosides and free purine and pyrimidine bases were taken up by the cotyledons with high efficiency. AMP was also transported whereas ATP was not. Kinetic analyses were carried out to estimate the maximal uptake capacities of the cotyledons. Rates of uptake were linear for at least 1 to 2 hours and saturation kinetics were observed for all substances investigated. It is concluded that nucleosides can serve best as transport metabolites of nucleic acids, inasmuch as they are taken up by the cotyledons with the highest efficiency, the Vmax/Km ratios being considerably higher than those found for free purine and pyrimidine bases. For both adenosine and adenine transport, the Vmax was about 2 micromoles per hour per gram fresh weight, and the Km values were 0.12 and 0.37 millimolar, respectively. The rates of metabolite release from the endosperm and the capacity of the absorption system in the cotyledons are shown to account for the observed rates of disappearance of nucleic acids from the endosperm and efficient transport to the growing embryo.  相似文献   

17.
Pyruvate kinase from spinach (Spinacea oleracea L.) leaves consists of two isoforms, separable by blue agarose chromatography. Both isoforms share similar pH profiles and substrate and alternate nucleotide Km values. In addition, both isoforms are inhibited by oxalate and ATP and activated by AMP. The isoforms differ in their response to three key metabolites; citrate, aspartate, and glutamate. The first isoform is similar to previously reported plant pyruvate kinases in its sensitivity to citrate inhibition. The Ki for this inhibition is 1.2 millimolar citrate. The second isoform is not affected by citrate but is regulated by aspartate and glutamate. Aspartate is an activator with a Ka of 0.05 millimolar, and glutamate is an inhibitor with a Ki of 0.68 millimolar. A pyruvate kinase with these properties has not been previously reported. Based on these considerations, we suggest that the activity of the first isoform is regulated by respiratory metabolism. The second isoform, in contrast, may be regulated by the demand for carbon skeletons for use in ammonia assimilation.  相似文献   

18.
Beta oxidation in glyoxysomes from castor bean endosperm   总被引:36,自引:0,他引:36  
  相似文献   

19.
Stewart CR  Beevers H 《Plant physiology》1967,42(11):1587-1595
During germination of the castor bean all of the contents of the endosperm are ultimately transported to the embryo through the cotyledon or respired. A net loss of nitrogen from the endosperm begins about the fourth day, i.e. at the time when embryo growth and fat breakdown are also beginning. Amino acid analysis of the exudate from the cotyledons, still enclosed in the endosperm, showed that the amounts of aspartate, glutamate, glycine, and alanine were very low and that glutamine made up 40% of the amino acids in the exudate.

Amino acids labeled with 14C were applied to intact excised endosperms to follow utilization. Aspartate, glutamate, alanine, glycine, serine, and leucine were converted to sugar to varying extents. Proline, arginine, valine, and phenylalanine were not appreciably converted to sugars. Proline and glutamate were converted to glutamine. When 14C-glutamate, aspartate, and alanine were added to the outer endosperm of intact seedlings, only sugars and glutamine contained appreciable label in the exudate. When 14C-valine was added, it was virtually the only labeled compound in the exudate.

The results show that amino acids which on deamination can give rise to intermediates in the pathway of conversion of fat to sucrose are largely converted to sucrose and the nitrogen transported as glutamine. Other amino acids released from the endosperm protein are transported intact into the seedling axis. Some carbon from the gluconeogenic amino acids is also transported as glutamine.

  相似文献   

20.
Occurrence of RNA in glyoxysomes from castor bean endosperm   总被引:1,自引:5,他引:1       下载免费PDF全文
Gerhardt BP  Beevers H 《Plant physiology》1969,44(10):1475-1477
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号