首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experiment was designed to study how gut fullness and encounter with 5-mm Asellus aquaticus influenced acceptance or rejection of less profitable 8-mm Asellus . 45-mm sticklebacks were found to always accept 5-mm prey whereas 8-mm prey were accepted with an initial probability of about 0.9. This probability decreased as the gut filled. Fish of differing sizes and sex had similar daily energy intakes per unit body size, however the acceptance of 8-mm prey was related to fish size. Whenever a fish orientated to a prey it was followed by pursuit and manipulation independently of prey size. The decision to accept or reject prey occurred after one manipulation, a criterion that was more variable for the larger prey. For one feeding session per day the total energy intake was almost constant despite the changing combination of prey sizes eaten. The fish ate prey with long handling times if the energetic contents of the stomach had not reached 450 J. Calculations were made of how many of each millimetre prey size group would satisfy the 450 J demand and how long the estimated number would take to handle. This showed that the best option is to consume 5-mm prey if given the choice.  相似文献   

2.
3.
Prey selection behaviour of three-spined sticklebacks, Gasterosteus aculeatus L., was studied in two experiments. Where possible, the experimental apparatus satisfied the assumptions of the simplest optimal diet model (the basic prey model); prey were presented sequentially, the fish could not search for and handle prey at the same time, and net energy gain, handling time and encounter rate were fixed. Experiment 1 presented fish with a range of Asellus sizes so that pursuit ( p ) and handling ( h ) time could be related to prey size. Published energy values of Asellus together with pursuit and handling times were used to calculate E /( p+h ) for Asellus measuring 3,4,5,6,7 and 9 mm. Pursuit times did not differ with prey size but handling times did. E /( p+h ) was very variable particularly at the larger prey sizes. Experiment 2 presented fish with two sequences of prey differing in the encounter rate with the most profitable prey sizes. Fish did not select the diet predicted by the basic prey model tending to always ignore the largest prey even when net energy gain would have been maximized by including them in the diet. Further analysis showed that the probability of a prey size being taken was a function of prey size, fish stomach fullness and encounter rate. It is concluded that the basic prey model is too simple to capture the behaviour of the fish. One of its main faults is that the changing state of the fish through the feeding bout is ignored.  相似文献   

4.
As a prerequisite for models of foraging behaviour of the whelk, Morula marginalba Blainville (Muricidae), the effects of variation in density of prey on the rate of feeding of the predator were examined in field conditions for three coexisting species of prey. Densities of prey used were those at which the prey, two limpets and a barnacle, occurred naturally in the rocky intertidal habitat.Large limpets, Cellana tramoserica (Sowerby) can resist attacks by predatory gastropods by raising the mantle over the outside of the shell. These experiments showed that no C. tramoserica were killed by Morula marginalba even at very great densities and with no alternative prey present. For the small limpet Patelloida latistrigata (Angas), one of the whelk's most highly preferred prey, juveniles were eaten 1.4 times as fast as adults. Fitting the random predator equation gave greater attack coefficients and shorter handling times for juvenile than adult limpets.Sizes of both predator and prey affected rates of eating barnacles, Tesseropora rosea (Krauss), but not in a simple way. Whelks of 15-mm aperture length ate adult barnacles 4.2 times faster than did 12-mm whelks, but there was no significant difference in the rates at which the two sizes of snail ate juvenile barnacles.Rates of feeding on T. rosea and Patelloida latistrigata increased significantly with prey density. These results form a basis for including the density of prey in models of spatial dispersion of the predatory gastropod Morula marginalba.  相似文献   

5.
Over a number of decades the process of prey choice has been investigated using fishes as model predators. Using fishes for the model has allowed the proximate factors that determine how a mobile predator finds and chooses to eat the prey encountered within a variable 3‐D environment to be estimated. During prey choice a number of constraints exist, in particular most fish predators will eat their prey whole thus their jaws and gut create functional limitations once a prey has been attacked. By considering the relationship between the size of the prey and the predator's feeding apparatus and feeding motivation this study explores the link between mechanistic studies and theoretical, optimal foraging based predictions. How the prediction of prey choices made by the fish following prey encounter can be reconciled with what is likely to be found in the fish's stomach is discussed. This study uses a progression of empirical examples to illustrate how the limits of functional constraints and prey choice at different stages of motivation to feed can be taken into account to improve predictions of predator prey choice.  相似文献   

6.
We tested some predictions relating metabolic constraints offoraging behavior and prey selection by comparing food handlingand utilization in four sympatric shrew species: Sorex minutus(mean body mass = 3.0 g), S. araneus (8.0 g), Neomys anomalus(10.0 g), and N. fodiens (14.4 g). Live fly larvae, mealwormlarvae, and aquatic arthropods were offered to shrews as smallprey (body mass <0.1 g). Live earthworms, snails, and smallfish were offered as large prey (>0.3 g). The larvae werethe high-nutrition food (>8 kJ/g), and the other prey werethe low-nutrition food (<4 kJ/g). The smallest shrew, S.minutus, utilized (ate + hoarded) <30% of offered food,and the other species utilized >48% of food. The largerthe shrew, the more prey it ate per capita. However, highlyenergetic insect larvae composed 75% of food utilized by S.minutus and only >40% of the food utilized by the other species. Thus, inverse relationships appeared between shrewbody mass and mass-specific food mass utilization and betweenshrew body mass and mass-specific food energy utilization:the largest shrew, N. fodiens, utilized the least food massand the least energy quantity per 1 g of its body mass. Also,the proportion of food hoarded by shrews decreased with increase in size of shrew. With the exception of S. araneus, the sizeof prey hoarded by the shrews was significantly larger thanthe size of prey eaten. Tiny S. minutus hoarded and ate smallerprey items than the other shrews, and large N. fodiens hoardedlarger prey than the other shrews.  相似文献   

7.
We investigated the effect of 'prey' density on frequency-dependent selection by human 'predators'. Eighty subjects were presented with computer-generated populations of two cryptically coloured characters on the screen of a colour monitor. Each subject was given the prey at a single combination of one of two frequencies and one of five densities, and was instructed to delete the prey as fast as possible with a light-pen. The results suggested that the degree of selection was inversely proportional to prey density, but there was no evidence that any frequency-dependent component of selection was affected.  相似文献   

8.
9.
Laboratory experiments were conducted with two predatory fishes, Lagodon rhomboides (Linnaeus) and Syngnathus floridae (Jordan & Gilbert), to determine if prey selection was a result of predator preference or prey accessibility. Prey consisted of two species of caridean shrimp, Tozeuma carolinense (Kingsley) and Hippolyte zostericola (Smith), that commonly inhabit seagrass meadows. Natural diets of both predators revealed that selection ofTozeuma and Hippolyte was not related to their field densities. My experiments demonstrated that natural prey selection was a consequence of prey accessibility, not predator preference. Experiments examining the role of prey size in predator preference revealed that large individuals were significantly preferred over small individuals. Observations of prey behavior indicated that prey motion affected predator choice. These results suggest that predator preference was primarily determined by prey visibility and that the combined effects of prey size and motion contributed to the visibility of these prey.  相似文献   

10.
An optimal foraging model was used to predict prey selection based on both energy maximization and number maximization strategies. The influence of chemical cues and relative abundance on rainbow trout diet selection was examined under laboratory conditions.
In most fish, diet composition was strongly influenced by chemical cues. No fish followed an energy maximization strategy, and selection of prey based on taste persisted despite large caloric penalties associated with these choices. In the absence of chemical cues, diet composition was based on relative abundance of prey (a number maximization strategy). Within the feasible constraints of the optimal foraging model lie a large number of possible diet combinations which would provide sufficient energy for growth and reproduction. This provides a wide scope for feeding flexibility. Response to prey chemical cues may be the basis for observations of individual diet variability in trout.  相似文献   

11.
Jaguars Panthera onca inhabiting tropical or subtropical evergreen moist forest have often been classified as opportunistic predators because they consume prey relative to its availability. However, these studies failed to address simultaneously the distribution of predator and prey through time and space, which may lead to an incomplete or erroneous understanding of jaguar foraging strategies. In this study, we reconstructed jaguar diet from scat, and used camera traps to investigate jaguar prey availability and the distribution of jaguar and its prey through space and time. We focused our examination of predator–prey temporal and spatial relations on forest infrastructure comprising man-made paths, small mammal trails, tapir Tapirus bairdi trail and trail-less, forested areas as they represent distinct habitats for prey selection. Overall, we observed high overlap between the prey used and available, suggestive of opportunistic foraging. However, jaguars exhibited selective tendencies in discriminating between larger prey. Jaguars used collared peccary Tayassu tajacu greater than its availability, while preying upon the equally abundant and similarly distributed white-lipped peccary Tayassu pecari and tapir less than predicted based upon availability. Armadillo Dasypus novemcinctus and paca Agouti paca , 56.6% of total consumption, were consumed relative to availability but exhibited low spatial overlap with jaguar. Armadillo and paca used trail-less, forested areas and small mammal trails not used by jaguar and were photographed more frequently at greater distances from man-made paths, major thoroughfares for jaguars. This study suggests that although forest jaguars use prey relative to its abundance, jaguars may rely on foraging strategies other than chance encounters for exploiting prey.  相似文献   

12.
The foraging behaviour of painted stork Mycteria leucocephala was studied during 2004–2006 at 14 different sites in the Delhi region, India. Observations were recorded on 131 individuals, including 29 juvenile birds using a video camera. Recordings were also made at the nesting colony in Delhi zoo to study the prey sizes regurgitated to nestlings. The results confirm that the painted stork is a tactile forager and exclusively piscivorous. Foraging group size ranged from 1 to 18 individuals. Per 5 min foot stirring rates in the vegetated habitats were significantly higher than in non-vegetated habitats. The attempt rate and feeding rate in the breeding season were significantly higher than that in the non-breeding season. Prey sizes taken in the breeding season were significantly smaller than those taken in the non-breeding season. About 80% fish fed to the chicks were smaller than 10 cm. Young chicks were offered smaller prey compared with older chicks. The variations in foraging parameters are discussed in relation to habitats and their conservation in the Delhi region.  相似文献   

13.
14.
Knowledge of prey sizes consumed by a predator aids in the estimation of predation impact. Young-of-the-year bluefish, Pomatomus saltatrix, attack their prey tail-first and often bite their prey in half; this poses a unique problem in determining prey sizes from stomach content analysis. We developed a series of linear regressions to estimate original prey lengths from measurements of eye diameter and caudal peduncle depth for striped bass, Morone saxatilis, bay anchovy, Anchoa mitchilli, American shad, Alosa sapidissima, blueback herring, Alosa aestivalis, Atlantic silverside, Menidia menidia, and white perch, Morone americana. We then used these regressions to estimate original prey sizes from pieces of prey found in stomachs of bluefish collected in the Hudson River estuary from 1990–1993. Lengths of prey that were swallowed whole were compared to estimated lengths of prey that were consumed in pieces. Lengths of prey that were consumed in pieces were larger than prey that were consumed whole. We determined the prey length/predator length ratio at which bluefish began shifting from swallowing their prey whole to partial consumption. Shifting occurred at a ratio of approximately 0.35 irrespective of prey species, suggesting that prey length plays an important role in predator foraging decisions and may contribute to gape limitations. Shifts in foraging mode effectively reduce gape limitation and allow bluefish to consume larger prey sizes which may increase their effect on prey populations.  相似文献   

15.
Very little is known about how nocturnal primates find their food. Here we studied the sensory basis of food perception in wild-caught gray mouse lemurs (Microcebus murinus) in Madagascar. Mouse lemurs feed primarily on fruit and arthropods. We established a set of behavioral experiments to assess food detection in wild-born, field-experienced mouse lemurs in short-term captivity. Specifically, we investigated whether they use visual, auditory, and motion cues to find and to localize prey arthropods and further whether olfactory cues are sufficient for finding fruit. Visual cues from motionless arthropod dummies were not sufficient to allow reliable detection of prey in choice experiments, nor did they trigger prey capture behavior when presented on the feeding platform. In contrast, visual motion cues from moving prey dummies attracted their attention. Behavioral observations and experiments with live and recorded insect rustling sounds indicated that the lemurs make use of prey-generated acoustic cues for foraging. Both visual motion cues and acoustic prey stimuli on their own were sufficient to trigger approach and capture behavior in the mouse lemurs. For the detection of fruit, choice experiments showed that olfactory information was sufficient for mouse lemurs to find a piece of banana. Our study provides the first experimental data on the sensory ecology of food detection in mouse lemurs. Further research is necessary to address the role of sensory ecology for food selection and possibly for niche differentiation between sympatric Microcebus species.  相似文献   

16.
The influence of prey mobility and species on prey selection by the coccinellid Harmonia axyridis Pallas was determined under laboratory conditions for two prey species, Hyaliodes vitripennis (Say) and Tetranychus urticae Koch. Prey selection was influenced by prey mobility. In the presence of active prey, the coccinellid selected T. urticae while in presence of immobilized prey, H. vitripennis was preferred. Harmonia axyridis searching time was longer in the presence of active H. vitripennis than in the presence of active T. urticae. Moreover, the coccinellid capture rate was lower for active H. vitripennis caused by effective defensive mechanisms. Prey suitability was affected by prey mobility and species. Immobilized H. vitripennis were the most profitable prey, i.e. induced a shorter developmental time and no mortality. However, active H. vitripennis were not a suitable food source for H. axyridis. Our results suggested that three factors are involved in prey selection by H. axyridis: (i) prey mobility; (ii) prey defensive mechanisms; and (iii) prey species.  相似文献   

17.
Numerous species of birds break hard-shelled prey items by droppingthemfrom a height. This intriguing prey-extraction method providesan excellentopportunity for studying foraging behavior becausea single, easily measurablequantity—height of drop—maybe influenced by a wide variety ofidentifiable characteristicsof the prey (e.g., breakability, weight) andsocial environment(e.g., alone or in the presence of kleptoparasites). Usingadynamic, state variable modeling approach, this paper presentsthe firsttheoretical framework for avian prey-dropping systemsthat incorporates thediversity of prey characteristics andsocial situations. The model yielded aseries of qualitativepredictions about prey-dropping behavior that can betestedreadily in any prey-dropping system. In particular, the resultsindicatedthat quantitative and qualitative differences in item breakabilityandpotential kleptoparasitism should have a significant effecton the heightand pattern of prey dropping.  相似文献   

18.
19.
20.
Cormorants hunt both benthic (sedentary) and pelagic (motile) prey but it is not known if the energy costs of foraging on these prey differ. We used respirometry to measure the costs of diving in double-crested cormorants (Phalacrocorax auritus) foraging either for sedentary (fish pieces) or motile (juvenile salmon) prey in a deep dive tank. Short dives for sedentary prey were more expensive than dives of similar duration for motile prey (e.g. 20% higher for a 10s dive) whereas the reverse was true for long dives (i.e. long dives for motile prey were more expensive than for sedentary prey). Across dives of all durations, the foraging phase of the dive was more expensive when the birds hunted motile prey, presumably due to pursuit costs. The period of descent in all the dives undertaken appears to have been more expensive when the birds foraged on sedentary prey, probably due to a higher swimming speed during this period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号