首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel methodology is described for the assignment of disulfide bonds in proteins of known sequence. The denatured protein is subjected to limited reduction by tris(2-carboxyethyl)phosphine (TCEP) in pH 3.0 citrate buffer to produce a mixture of partially reduced protein isomers; the nascent sulfhydryls are immediately cyanylated by 1-cyano-4-dimethylamino-pyridinium tetrafluoroborate (CDAP) under the same buffered conditions. The cyanylated protein isomers, separated by and collected from reversed-phase HPLC, are subjected to cleavage of the peptide bonds on the N-terminal side of cyanylated cysteines in aqueous ammonia to form truncated peptides that are still linked by residual disulfide bonds. The remaining disulfide bonds are then completely reduced to give a mixture of peptides that can be mass mapped by MALDI-MS. The masses of the resulting peptide fragments are related to the location of the paired cysteines that had undergone reduction, cyanylation, and cleavage. A side reaction, beta-elimination, often accompanies cleavage and produces overlapped peptides that provide complementary confirmation for the assignment. This strategy minimizes disulfide bond scrambling and is simple, fast, and sensitive. The feasibility of the new approach is demonstrated in the analysis of model proteins that contain various disulfide bond linkages, including adjacent cysteines. Experimental conditions are optimized for protein partial reduction, sulfhydryl cyanylation, and chemical cleavage reactions.  相似文献   

2.
Qi J  Wu J  Somkuti GA  Watson JT 《Biochemistry》2001,40(15):4531-4538
The disulfide structure of sillucin, a highly knotted, cysteine-rich, antimicrobial peptide, isolated from Rhizomucor pusillus, has been determined to be Cys2--Cys7, Cys12--Cys24, Cys13--Cys30, and Cys14--Cys21 by disulfide mass mapping based on partial reduction and CN-induced cleavage enabled by cyanylation. The denatured 30-residue peptide was subjected to partial reduction by tris(2-carboxyethyl)phosphine hydrochloride at pH 3 to produce a mixture of partially reduced sillucin species; the nascent sulfhydryl groups were immediately cyanylated by 1-cyano-4-(dimethylamino)pyridinium tetrafluoroborate. The cyanylated species, separated and collected during reversed phase high-performance liquid chromatography, were treated with aqueous ammonia, which cleaved the peptide chain on the N-terminal side of cyanylated cysteine residues. The CN-induced cleavage mixture was analyzed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry before and after complete reduction of residual disulfide bonds in partially reduced and cyanylated species to mass map the truncated peptides to the sequence. Because the masses of the CN-induced cleavage fragments of both singly and doubly reduced and cyanylated sillucin are related to the linkages of the disulfide bonds in the original molecule, the presence of certain truncated peptide(s) can be used to positively identify the linkage of a specific disulfide bond or exclude the presence of other possible linkages.  相似文献   

3.
Elucidating disulfide linkage patterns is a crucial part of protein characterization, for which mass spectrometry (MS) is now an indispensable analytical tool. In many cases, MS-based disulfide connectivity assignment is straightforwardly achieved using one-step protein fragmentation in the unreduced form followed by mass measurement of bridged fragments. By contrast, venom proteins, which are receiving increasing interest as potential therapeutics, are a challenge for MS-based disulfide assignment due to their numerous closely spaced cysteines and knotted disulfide structure, requiring creative strategies to determine their connectivity. Today, these include the use of an array of reagents for enzymatic and/or chemical cleavage, partial reduction, differential cysteine labeling and tandem MS. This review aims to describe the toolkit of techniques available to MS users approaching both straightforward and complex disulfide bridge assignments, with a particular focus on strategies utilizing standard instrumentation found in a well-equipped analytical or proteomics laboratory.  相似文献   

4.
Lysosomal degradation of ganglioside GM2 by hexosaminidase A requires the presence of a small, non-enzymatic cofactor, the GM2-activator protein (GM2AP). Lack of functional protein leads to the AB variant of GM2-gangliosidosis, a fatal lysosomal storage disease. Although its possible mode of action and functional domains have been discussed frequently in the past, no structural information about GM2AP is available so far. Here, we determine the complete disulfide bond pattern of the protein. Two of the four disulfide bonds present in the protein were open to classical determination by enzymatic cleavage and mass spectrometry. The direct localization of the remaining two bonds was impeded by the close vicinity of cysteines 136 and 138. We determined the arrangement of these disulfide bonds by MALDI-PSD analysis of disulfide linked peptides and by partial reduction, cyanylation and fragmentation in basic solution, as described recently (Wu F, Watson JT, 1997, Protein Sci 6:391-398).  相似文献   

5.
In insects, the transport of airborne, hydrophobic odorants and pheromones through the sensillum lymph is accomplished by olfactory-binding proteins (CBPs). We report the structural characterization of a honeybee OBP called ASP1 found in workers and drones, previously observed to bind queen pheromone components. A novel method based on ion-spray mass spectrometry analysis of cyanylation-induced cleavage products of partially reduced protein with Tris(2-carboxyethyl)phosphine was needed to determine the recombinant ASP1 disulfide bond pairing. It was observed to be Cys(I)-Cys(III), Cys(II)-Cys(V), Cys(IV)-Cys(VI), similar to those already described for other OBPs from honeybee and Bombyx mori suggesting that this pattern occurs commonly throughout the diverse family of insect OBPs. Circular dichroism revealed that ASP1 is an all-alpha protein in accordance with NMR preliminary data, but unlike lipocalin-like vertebrate OBPs.  相似文献   

6.
The two protomers of the purified regulatory subunit from porcine cAMP-dependent protein kinase I have been shown to be covalently cross-linked by interchain disulfide bonding. Limited proteolysis which cleaves the polypeptide chain into two fragments demonstrated that the disulfide bonding was associated exclusively with the fragment that corresponded to the NH2-terminal region of the polypeptide chain. This NH2-terminal fragment accounted for approximately 15 to 20% of the molecule. The disulfide bonding was further characterized by alkylating the cysteines in the native regulatory subunit. Following oxidation with performic acid, each regulatory subunit contained 7 cysteic acid residues; however, under denaturing conditions, but without prior reduction, only 5 cysteine residues could be alkylated with iodoacetic acid. Following limited proteolysis, all five of these cysteines were associated with the larger COOH-terminal, cAMP binding domain. In contrast, if the denatured subunit was first reduced prior to alkylation, all 7 cysteine residues were alkylated. The 2 cysteines that were only accessible to alkylation after prior reduction were both associated with the NH2-terminal end of the polypeptide chain ultimately with a 5,400 peptide. Alkylation of the isolated, denatured NH2-terminal domain with iodoacetic acid resulted in no covalent modification unless the fragment was first reduced with dithiothreitol. The NH2-terminal and COOH-terminal domains were shown to be linked by a region of the polypeptide chain that is rich in both proline and arginine. It is the arginine-rich site that is readily prone to proteolytic cleavage.  相似文献   

7.
Human alpha defensins are a class of antimicrobial peptides with additional antiviral activity. Such antimicrobial peptides constitute a major part of mammalian innate immunity. Alpha defensins contain six cysteines, which form three well defined disulfide bridges under oxidizing conditions. Residues C3-C31, C5-C20, and C10-C30 form disulfide pairs in the native structure of the peptide. The major tissue in which HD5 is expressed is the crypt of the small intestine, an anaerobic niche that should allow for substantial pools of both oxidized and (partly) reduced HD5. We used ion mobility coupled to mass spectrometry to track the structural changes in HD5 upon disulfide bond reduction. We found evidence of stepwise unfolding of HD5 with sequential reduction of the three disulfide bonds. Alkylation of free cysteines followed by tandem mass spectrometry of the corresponding partially reduced states revealed a dominant pathway of reductive unfolding. The majority of HD5 unfolds by initial reduction of C5-C20, followed by C10-C30 and C3-C31. We find additional evidence for a minor pathway that starts with reduction of C3-C31, followed by C5-C20 and C10-C30. Our results provide insight into the pathway and conformational landscape of disulfide bond reduction in HD5.  相似文献   

8.
Protein-disulfide isomerase (PDI) is an essential catalyst of disulfide formation and isomerization in the eukaryotic endoplasmic reticulum. PDI has two active sites at either end of the molecule, each containing two cysteines that facilitate thiol-disulfide exchange. In addition to its four catalytic cysteines, PDI possesses two non-active site cysteines whose location and separation distance varies by organism. In higher eukaryotes, the non-active site cysteines are located in the C-terminal half of the protein sequence and are separated by 30 amino acids. In contrast, the internal cysteines of PDI from lower eukaryotes are located near the N-terminal active site and are much closer together in sequence. The function of these cysteines and the significance of their unique location in yeast PDI have been unclear. Previous data (Xiao, R., Wilkinson, B., Solovyov, A., Winther, J. R., Holmgren, A., Lundstrom-Ljung, J., and Gilbert, H. F. (2004) J. Biol. Chem. 279, 49780-49786) suggest that the internal cysteines exist as a disulfide in the endoplasmic reticulum of Saccharomyces cerevisiae. By coupling mass spectrometry with a gel-shift technique that allows us to measure the redox potentials of the PDI active sites in the presence and absence of the non-active site cysteines, we find that the non-active site cysteines form a disulfide that is stable even in a very reducing environment and demonstrate that this disulfide exists to destabilize the N-terminal active site disulfide, making it a better oxidant by 18-fold. Consistent with this finding, we show that mutating the non-active site cysteines to alanines disrupts both the oxidase and isomerase activities of PDI in vitro.  相似文献   

9.
Each chain of the native trimeric P22 tailspike protein has eight cysteines that are reduced and buried in its hydrophobic core. However, disulfide bonds have been observed in the folding pathway and they are believed to play a critical role in the registration of the three chains. Interestingly, in the presence of sodium dodecyl sulfate (SDS) only monomeric chains, rather than disulfide-linked oligomers, have been observed from a mixture of folding intermediates. Here we show that when the oligomeric folding intermediates were separated from the monomer by native gel electrophoresis, the reduction of intermolecular disulfide bonds did not occur in the subsequent second-dimension SDS-gel electrophoresis. This result suggests that when tailspike monomer is present in free solution with SDS, the partially unfolded tailspike monomer can facilitate the reduction of disulfide bonds in the tailspike oligomers.  相似文献   

10.
The disulfide bonds in the galactose-specific lectin SEL 24K from the egg of the Chinook salmon Oncorhynchus tshawytscha were determined by mass spectrometry. Four predictive in silico tools were used to determine the oxidation state of cysteines in the sequence and possible location of the disulfide bonds. A combination of tryptic digestion, HPLC separation, and chemical modifications were used to establish the location of seven disulfide bonds and one pair of free cysteines. After proteolysis, peptides containing one or two disulfide bonds were identified by reduction and mass spectral comparison. MALDI mass spectrometry was supported by chemical modification (iodoacetamide) and in silico digestion. The assignments of disulfide bonds were further confirmed by mass spectral fragmentation studies including in-source dissociation (ISD) and collision-induced dissociation (CID). The experimentally determined disulfide bonds and free Cys residues were only partially consistent with those generated by several automated public-domain algorithms.  相似文献   

11.
Cysteine-linked antibody-drug conjugates (ADCs) produced from IgG2 monoclonal antibodies (mAbs) are more heterogeneous than ADCs generated from IgG1 mAbs, as IgG2 ADCs are composed of a wider distribution of molecules, typically containing 0 – 12 drug-linkers per antibody. The three disulfide isoforms (A, A/B, and B) of IgG2 antibodies confer differences in solvent accessibilities of the interchain disulfides and contribute to the structural heterogeneity of cysteine-linked ADCs. ADCs derived from either IgG2-A or IgG2-B mAbs were compared to better understand the role of disulfide isoforms on attachment sites and distribution of conjugated species. Our characterization of these ADCs demonstrated that the disulfide configuration affects the kinetics of disulfide bond reduction, but has minimal effect on the primary sites of reduction. The IgG2-A mAbs yielded ADCs with higher drug-to-antibody ratios (DARs) due to the easier reduction of its interchain disulfides. However, hinge-region cysteines were the primary conjugation sites for both IgG2-A and IgG2-B mAbs.  相似文献   

12.
The NH(2)-terminal somatomedin B (SMB) domain (residues 1-44) of human vitronectin contains eight Cys residues organized into four disulfide bonds and is required for the binding of type 1 plasminogen activator inhibitor (PAI-1). In the present study, we map the four disulfide bonds in recombinant SMB (rSMB) and evaluate their functional importance. Active rSMB was purified from transformed Escherichia coli by immunoaffinity chromatography using a monoclonal antibody that recognizes a conformational epitope in SMB (monoclonal antibody 153). Plasmon surface resonance (BIAcore) and competitive enzyme-linked immunosorbent assays demonstrate that the purified rSMB domain and intact urea-activated vitronectin have similar PAI-1 binding activities. The individual disulfide linkages present in active rSMB were investigated by CNBr cleavage, partial reduction and S-alkylation, mass spectrometry, and protein sequencing. Two pairs of disulfide bonds at the NH(2)-terminal portion of active rSMB were identified as Cys(5)-Cys(9) and Cys(19)-Cys(21). Selective reduction/S-alkylation of these two disulfide linkages caused the complete loss of PAI-1 binding activity. The other two pairs of disulfide bonds in the COOH-terminal portion of rSMB were identified as Cys(25)-Cys(31) and Cys(32)-Cys(39) by protease-generated peptide mapping of partially reduced and S-alkylated rSMB. These results suggest a linear uncrossed pattern for the disulfide bond topology of rSMB that is distinct from the crossed pattern present in most small disulfide bond-rich proteins.  相似文献   

13.
The Escherichia coli periplasmic protein DsbC is active both in vivo and in vitro as a protein disulfide isomerase. For DsbC to attack incorrectly formed disulfide bonds in substrate proteins, its two active-site cysteines should be in the reduced form. Here we present evidence that, in wild-type cells, these two cysteines are reduced. Further, we show that a pathway involving the cytoplasmic proteins thioredoxin reductase and thioredoxin and the cytoplasmic membrane protein DsbD is responsible for the reduction of these cysteines. Thus, reducing potential is passed from cytoplasmic electron donors through the cytoplasmic membrane to DsbC. This pathway does not appear to utilize the cytoplasmic glutathione-glutaredoxin pathway. The redox state of the active-site cysteines of DsbC correlates quite closely with its ability to assist in the folding of proteins with multiple disulfide bonds. Analysis of the activity of mutant forms of DsbC in which either or both of these cysteines have been altered further supports the role of DsbC as a disulfide bond isomerase.  相似文献   

14.
The relationship between activation of the latent ATPase activity of isolated chloroplast coupling factor 1 (CF1) and reduction of a disulfide in the gamma subunit has been assessed. The sulfhydryl residues involved in the disulfide bond are distinct from residues normally accessible to maleimide modification during incubation of thylakoids in the dark or the light. Dithiothreitol-induced activation is time dependent, and correlates with reduction of the disulfide. Sulfhydryl residues exposed during activation can be reoxidized to disulfide by incubation with iodosobenzoate , with a concomitant loss of ATPase activity. Activation and deactivation are reversible, but deactivation is prevented by treatment of the reduced enzyme with N-ethylmaleimide. Heat activation does not reduce the disulfide bond unless dithiothreitol is present during activation. Prior heating of CF1, which partially activates the enzyme, renders the disulfide more susceptible to subsequent dithiol reduction. The activity obtained when heat and dithiothreitol are used together is approximately equal to the sum of the partial activations obtained with heat or dithiothreitol alone. Iodosobenzoate has no effect on heat-activated CF1. Enzyme activated by heating in the presence of dithiothreitol can be partially deactivated, consistent with reversal of the activity attributable to the dithiol effect. Fluorescence polarization of anilinonaphthylmaleimide bound to the reduced enzyme indicates that the sulfhydryl residues involved in the disulfide are in a less rigid environment than the other two sulfhydryl residues in the gamma subunit. Polarization of anilinonaphthylmaleimide bound to these sulfhydryls is reduced by heat treatment of CF1. The increased susceptibility of the disulfide to reduction upon heat treatment, and the activation of ATPase activity with or without disulfide bond cleavage are indicative of conformational changes within the gamma subunit that occur during the conversion of CF1 from a latent to an active ATPase. In addition the results are consistent with at least two distinct conformational forms of CF1 that can hydrolyze ATP.  相似文献   

15.
Basic fibroblast growth factor has 4 cysteine residues in its amino acid sequence, two of which are perfectly conserved within the fibroblast growth factor family of proteins suggesting a disulfide bond at this position. Furthermore, thiol titration of bovine pituitary basic fibroblast growth factor (bFGF) indicates the presence of two free thiols, which is consistent with an intramolecular disulfide. Direct analysis of natural and recombinant fibroblast growth factor proteins have not confirmed the existence of such a disulfide. Instead, the two nonconserved cysteines of bFGF purified from bovine pituitaries are S-thiolated with glutathione. Inclusion of 75 mM N-ethylmaleimide during the homogenization of the pituitaries effectively blocks the S-thiolation, demonstrating that this modification is an artifact of the purification procedure. Analysis of the N-ethylmaleimide purified bovine pituitary bFGF suggests that the natural protein is in the correct redox state when all 4 cysteines are in the reduced form.  相似文献   

16.
The cyclotides are a recently discovered family of plant proteins that have the fascinating structural feature of a continuous cyclic backbone and, putatively, a knotted arrangement of their three conserved disulfide bonds. We here show definite chemical proof of the I-IV, II-V, III-VI knotted disulfide connectivity of the prototypic cyclotide kalata B1. This has been achieved by a new approach for disulfide analysis, involving partial reduction and stepwise alkylation including introduction of charges and enzymatic cleavage sites by aminoethylation of cysteines. The approach overcomes the intrinsic difficulties for disulfide mapping of cyclotides, i.e. the cyclic amide backbone, lack of cleavage sites between cysteines, and a low or clustered content of basic amino acids, and allowed a direct determination of the disulfide bonds in kalata B1 using analysis by mass spectrometry. The established disulfide connectivity is unequivocally shown to be cystine knotted by a topological analysis. This is the first direct chemical determination of disulfides in native cyclotides and unambiguously confirms the unique cyclic cystine knot motif.  相似文献   

17.
Among alpha 3-fucosyltransferases (alpha3-FucTs) from most species, four cysteine residues appear to be highly conserved. Two of these cysteines are located at the N-terminus and two at the C-terminus of the catalytic domain. FucT VII possesses two additional cysteines in close proximity to each other located in the middle of the catalytic domain. We identified the disulfide bridges in a recombinant, soluble form of human FucT VII. Potential free cysteines were modified with a biotinylated alkylating reagent, disulfide bonds were reduced and alkylated with iodoacetamide, and the protein was digested with either trypsin or chymotrypsin, before characterization by high-performance liquid chromatography/electrospray ionization mass spectrometry. More than 98% of the amino acid sequence for the truncated enzyme (beginning at amino acid 53) was verified. Mass spectrometry analysis also demonstrated that both potential N-linked sites are occupied. All six cysteines in the FucT VII sequence were shown to be disulfide-linked. The pairing of the cysteines was determined by proteolytic cleavage of nonreduced protein and subsequent analysis by mass spectrometry. The results demonstrated that Cys(68)-Cys(76), Cys(211)-Cys(214), and Cys(318)-Cys(321) are disulfide-linked. We have used this information, together with a method of fold recognition and homology modeling, using the (alpha/beta)(8)-barrel fold of Escherichia coli dihydrodipicolinate synthase as a template to propose a model for FucT VII.  相似文献   

18.
Thioredoxin (Trx1) is a redox-active protein containing two active site cysteines (Cys-32 and Cys-35) that cycle between the dithiol and disulfide forms as Trx1 reduces target proteins. Examination of the redox characteristics of this active site dithiol/disulfide couple is complicated by the presence of three additional non-active site cysteines. Using the redox Western blot technique and matrix assisted laser desorption ionization time-of-flight mass spectrometry mass spectrometry, we determined the midpoint potential (E0) of the Trx1 active site (-230 mV) and identified a second redox-active dithiol/disulfide (Cys-62 and Cys-69) in an alpha helix proximal to the active site, which formed under oxidizing conditions. This non-active site disulfide was not a substrate for reduction by thioredoxin reductase and delayed the reduction of the active site disulfide by thioredoxin reductase. Within actively growing THP1 cells, most of the active site of Trx1 was in the dithiol form, whereas the non-active site was totally in the dithiol form. The addition of increasing concentrations of diamide to these cells resulted in oxidation of the active site at fairly low concentrations and oxidation of the non-active site at higher concentrations. Taken together these results suggest that the Cys-62-Cys-69 disulfide could provide a means to transiently inhibit Trx1 activity under conditions of redox signaling or oxidative stress, allowing more time for the sensing and transmission of oxidative signals.  相似文献   

19.
2-DE is still a relatively cumbersome and labor intensive method. Given the successful cysteinyl protection concept with hydroxyethyl disulfide (specific oxidation) during the first dimension separation, the possibility for a simplified equilibration procedure was investigated. This was achieved by maintaining the S-mercaptoethanol modified cysteinyls throughout the 2-D workflow including second dimension separation, spot handling, protein digestion, and protein identification. The traditional equilibration protocol encompassing thiol reduction and alkylation was compared with a one-step protocol employing continuous exposure to hydroxyethyl disulfide. Both equilibration protocols gave equally well-resolved spot maps with analytical protein loads regardless of IPG strip pH range. Using preparative protein loads, narrow range IPG strips gave comparable results for the two protocols while preparative load on wide range IPG strips was the only condition where classical reduction/alkylation outperformed hydroxyethyl disulfide equilibration. Moreover, with analytical protein loads, the hydroxyethyl disulfide equilibration time could be significantly reduced without apparent loss of spot map quality or quantitative protein transfer from the first- to the second dimension gel. MALDI-TOF mass spectrometric protein identification was successfully performed with either iodoacetamide or hydroxyethyl disulfide as the cysteine modifier, yielding comparable identification results with high confidence in protein assignment, sequence coverage, and detection of cysteine-containing peptides. The results provide a novel and simplified protocol for 2-DE where the concept of hydroxyethyl disulfide as the cysteinyl protecting agent is extended to cover the entire 2-D work flow.  相似文献   

20.
Guanylin is a recently isolated peptide consisting of 15 amino acid residues with four cysteines, which may form two intramolecular disulfide bridges, and stimulates intestinal membrane guanylate cyclase. The position of the disulfide linkages of guanylin was predicted from its structural similarity to a heat stable enterotoxin which is thought to be responsible for secretory diarrhoea. Both guanylin, with disulfide positions 4–12 and 7–15, and its disulfide isomer, with disulfides positions 4–15 and 7–12, were chemically synthesized by the solid-phase method and purified. Two specific disulfides were selectively formed and confirmed by sequencing, mass spectrometry and high-performance liquid chromatography in combination with enzymatic cleavage. The structure of both isomers has been investigated in solution by 1H nuclear magnetic resonance spectroscopy. Guanylin exists as a mixture of two stable conformations which have compact spiral structures, from comparison with literature data. In contrast, the disulfide isomer of guanylin shows only a single conformation with an elongated curved plate-like structure. Binding assays were performed using labelled guanylin with membranes obtained from rat jejunum. Both disulfide isomers were investigated by the cGMP assay. Both binding and cGMP assays indicated that the relevant form of disulfide bridges in the intact guanylin was as predicted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号