首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The canopy transpiration of mountain mixed forest was investigated during summer 2006 at research plot Smrekovec in Tatra National Park in Slovakia after heavy windstorm in November 2004 on the area of 12,000 hectares. The research plot is situated in untouched forest at altitude 1249 m on the southern-east oriented slope. The forest is mixed with 80% of spruce trees and 20% of larch trees with rich under storey vegetation, 120 years old, 7th altitudinal vegetation stage. Whole tree sap flow based on up to dated stem tissue heat balance method was continuously measured in nine 120-years old larch and spruce trees. Stem basal area was used for tree-canopy up-scaling. Meteorological parameters were measured on the top of eddy stuff tower above investigated forest. Two virtual monocultures were assumed for characterizing of both species. The sap flow and tree transpiration were calculated for the whole measured period for both spruce and larch virtual forests.  相似文献   

2.
The author considers specific features of the postfire formation of a larch (Larix gmelinii) phytocenosis in Central Evenkia, the north of Central Siberia. Morphological parameters of trees, structure, height, growth, and biological productivity of the tree stand, shrub layer, live ground cover, and accumulation of detritus after progressive pyrogene succession are analyzed and discussed.  相似文献   

3.
Summary The Cs-134/137 activities were measured from different tree organs of spruce, larch and sycamore maple. Two locations in South Bavaria were monitored during a period of 2.5 years following the Chernobyl accident. Samples taken in 1985 allow to determine the Cs-137 contamination before the accident. Increasing Cs-137 activities from older to younger needle years ofPicea abies caused by root-uptake of the global weapons' fallout are due to the high phloem mobility of this element and the remaining of the needles at the tree for about 6–7 years. In contrast, the Cs-137 activity was much smaller in leaves of larch and sycamore maple. After the Chernobyl accident, the higher contamination of spruce > larch > sycamore maple is dependent on the roughness of bark, absolute bark surface and the existence of leaves during the deposition of Chernobyl-derived radioactivity. The Cs-134/137 activity (Bq/kg d.w.) was about 25-times higher in bark compared to wood ofPicea abies and 1.5–4.7 times higher in directly contaminated twig-axes than in leaves. Till the end of the investigation the major contamination of the shoots was due to direct deposition of cesium on the trees. A maximum of 5–15% of the total activity of the directly contaminated branches of the plants was calculated to be part of root-uptake, depending on the amount of initial retention. 20% of the translocated cesium into new leaves of larch and about 50% into sycamore maple resulted from root-uptake 2.5 years after the accident.  相似文献   

4.
The role of ground fires in transformation of organic substance in the ground cover of larch stands in the permafrost zone of Central Siberia was studied as well as the post-fire restoration dynamics of organic substance. Ground fires lead to is a considerable decrease in concentrations and resources of organic carbon and its individual fractions in the ground cover and their restoration takes many decades.  相似文献   

5.
Tree core samples of larch (Larix sibirica Ledeb.), spruce (Picea obovata Ledeb.) and pine (Pinus sibirica Du-Tour.) from the northern taiga of West Siberia were collected to assess their potential for summer temperature reconstructions in the Ob River region. Bootstrapped response functions showed that annual growth was mainly influenced by May to June temperatures in pine and by June to July temperatures in spruce and larch. Spruce and pine chronologies showed high positive correlations with previous October temperature. June–July temperatures were reconstructed based on spruce (1795–1996) and larch (1615–1999) tree ring chronologies. The pine chronology could not be used for a reliable temperature reconstruction, due to low values of explained May–June temperature variance (11–15%) but the species has a high potential to help clarify the May–June and October climatic influence on ring width observed in all three species. We explained the effect of the early vegetation period (May–July) and the differences in the temperature signals between spruce and larch tree ring chronologies with the influence of previous September and October temperature on tree growth with the warming effect of the Ob River and differences of the species’ photosynthetic possibilities and the activity of chloroplasts and bud meristem tissues.  相似文献   

6.
In natural forest, disturbance changes tree species composition which in turn affects soil properties. Two areas in the Central Forest State Biosphere Reserve, in the Russian Southern Taiga Zone, differed in the intensity of disturbance: Norway spruce was the dominant species at one site, while at the other spruce was mixed with broadleaves. The presence of broadleaves was due to large gaps in the canopy having been formed, which have triggered vegetation succession. At both sites, five plots were selected to evaluate how the presence of broadleaves influences the properties of the soils under spruce. Soil samples were taken close to spruce trees and the O, A and E horizons were analysed. A difference in the distribution of organic matter in the soil horizons was evident, with a higher concentration in the O and A horizons at the spruce dominated site, while a more homogeneous distribution was found under spruce at the site where broadleaves were abundant. The organic matter did not only differ in quantity, but also in quality as estimated by the C/N ratio, and therefore affected the CEC and element relative availability. No differences at the two sites were found for water-extractable and exchangeable elements, but the ratio between the exchangeable and the acid-extractable forms were different, suggesting a higher relative availability of the elements at the spruce dominated site, and thus potentially higher leaching. Both theoretical and empirical studies have suggested that podzolisation and accumulation of organic matter in the O horizon are related to stagnation of ecosystem processes and ecosystem decline. Our data suggest that the presence to windthrow sites and the inclusion of broadleaf species acts to slow or even reverse podzolisation even in spruce dominated sites.  相似文献   

7.
Secondary succession in two subtropical forests   总被引:4,自引:0,他引:4  
Li  X.  Wilson  S.D.  Song  Y. 《Plant Ecology》1999,143(1):13-21
We studied secondary succession in two subtropical evergreen broad-leaved forests near Shanghai, China that had been harvested 2–60 years earlier. Shrubs were thinned in one of the forests to about 60% of their original density for the first 20 years after harvesting. The other was not disturbed after harvesting. Five stands were sampled in each forest. Species composition and richness varied little during succession. Biomass, soil organic matter, total soil nitrogen, and soil water all increased with time. Soil organic matter and total nitrogen were significantly less in thinned forest than in undisturbed forests, but soil moisture did not vary with shrub thinning. Total tree density did not change over time, suggesting that species replacements were not driven by self-thinning. The eventual replacement of shrubs by trees occurred because shrub density decreased whereas tree density remained constant and tree mass increased.  相似文献   

8.
We measured the seasonal dynamics of major and trace elements concentrations in foliage of larch, main conifer species of Siberia, and we analyzed cryogenic soils collected in typical permafrost-dominated habitats in the Central Siberia. This region offers a unique opportunity to study element fractionation between the soil and the plant because of (i) the homogeneous geological substratum, (ii) the monospecific stands (Larix gmelinii) and (iii) the contrasted habitats (North-facing slope, South-facing slope, and Sphagnum peatbog) in terms of soil temperature, moisture, thickness of the active layer, tree biomass and rooting depth. The variation of these parameters from one habitat to the other allowed us to test the effects of these parameters on the element concentration in larch foliage considered with high seasonal resolution. Statistical treatment of data on larch needles collected 4 times in 3 locations during entire growing season (June–September) demonstrated that : (1) there is a high similarity of foliar chemical composition of larch trees in various habitats suggesting intrinsically similar requirements of larch tree growth for nutrients, (2) the variation of elemental concentrations in larch needles is controlled by the period (within the growing season) and not by the geographical location (South-facing slope, North-facing slope or bog zone) and (3) there are three groups of elements according to their patterns of elements concentration in needles over the growing season from June to September can be identified: (1): nutrient elements [P, Cu, Rb, K, B, Na, Zn, Ni and Cd] showing a decrease of concentration from June to September similar to the behaviour of major nutrients such as N, P and K; (2): accumulating elements [Ca, Mg, Mo, Co, Sr, Mn, Pb and Cr] showing an increase of concentration from June–July to September; (3): indifferent elements [Al, Zr, Fe, Ba, Ti, REEs (Pr, Nd, Ce, La, Gd, Er, Dy, Tb, Lu, Yb, Tm, Sm, Ho, Eu), Y, Th and U] showing a decrease of concentration from June to July and then an increase of concentration to September. A number of micronutrients (e.g., Cu, Zn) demonstrate significant resorption at the end of growing season suggesting possible limitation by these elements. Although the intrinsic requirement seems to be similar among habitats, the total amount of element stored within the different habitats is drastically different due to the differences in standing tree biomass. The partitioning coefficients between soil and larch appear to be among the lowest compared to other environments with variable plants, soils and climates. Applying the “space for time” substitution scenario, it follows that under ongoing climate warming there will be an increase of the element stock following enhanced above-ground biomass accumulation, even considering zero modification of element ratios and their relative mobility. In this sense, the habitats like south-facing slopes can serve as resultant of climate warming effect on element cycling in larch ecosystems for the larger territory of Central Siberia.  相似文献   

9.
This article shows the phytocoenotic role of individual postfire trees of the Gmelin larch under conditions of the permafrost zone of Central Siberia. On the basis of the vital state of the trees, the limits of their influence on the recovery of the species of the lower layers of phytocenosis are defined and the formation of the new stand generation is shown.  相似文献   

10.
Large amounts (36.4 Mg ha−1 or 179 m3 ha−1) of buried dead wood were found in overmature (146–204-year-old) black spruce (Picea mariana (Mill.) B.S.P.) forests in the high boreal region of eastern Canada. Amounts of this size indicate that burial reduces rates of wood decay producing an important component of long-term carbon (C) storage. Radiocarbon-derived ages of black spruce stems buried near the bottom of the organic soil horizon at three old-growth sites were up to 515 years old. Together with information on current stand age, this suggests that the stems have been dead for more than 250 years. Most aboveground dead wood decays or becomes fragmented within about 70 years of tree death in these forests. The presence of old yet well-preserved buried wood suggests that decay rates are greatly reduced when downed dead wood is quickly overgrown by moss. Thus, the nature and type of ground-layer vegetation influences the accumulation of organic matter in these forests. This process of dead wood burial and the resultant addition to a large and long-enduring belowground C pool should be considered when estimating dead wood abundance for habitat or forest C accounting and cycling.  相似文献   

11.
Plantations of fast-growing hybrid trees, such as hybrid poplars and hybrid larch, are increasingly used for wood and timber production, but they are also believed to impair forest biodiversity. Most studies that have assessed how such plantations may alter the diversity and composition of understorey plants were established in agricultural landscapes or have compared tree plantations with old-growth natural forests. Moreover, many important aspects of biodiversity have been overlooked in previous studies, such as functional and beta-diversity. Here, we present results from a study that was aimed at quantifying alpha- and beta-diversity of understorey plant species and functional groups in hybrid poplar (9–10 years) and hybrid larch plantations (16 years) located within a forested landscape of Quebec, Canada. These hybrid plantations were compared to naturally regenerated secondary forests and to native plantations of black spruce of the same origin (clear cut) and similar age. Our results indicate that fast-growing hybrid plantations do not present lower taxonomic and functional alpha-biodiversity indices, but may harbour more diverse communities, in part through the introduction of plant species that are associated with open habitats. We provide further evidence that planted forests may be as heterogeneous as naturally regenerated forests in terms of understorey plant composition. Plant species and functional composition differed slightly between stand types (naturally regenerated forests, native and fast-growing hybrid plantations), with plantations offering a greater potential for colonisation by ruderal species, while being detrimental to species of closed forest habitats. Lastly, plantations of fast-growing hybrids do not induce greater changes in understorey vegetation relative to native plantations of black spruce, at least during the first stand rotation.  相似文献   

12.
Menyailo  Oleg V.  Hungate  Bruce A.  Zech  Wolfgang 《Plant and Soil》2002,242(2):183-196
The effects of grassland conversion to forest vegetation and of individual tree species on microbial activity in Siberia are largely unstudied. Here, we examined the effects of the six most commonly dominant tree species in Siberian forests (Scots pine, spruce, Arolla pine, larch, aspen and birch) on soil C and N mineralization, N2O-reduction and N2O production during denitrification 30 years after planting. We also documented the effect of grassland conversion to different tree species on microbial activities at different soil depths and their relationships to soil chemical properties. The effects of tree species and grassland conversion were more pronounced on N than on C transformations. Tree species and grassland conversion did significantly alter substrate-induced respiration (SIR) and basal respiration, but the differences were not as large as those observed for N transformations. Variances in SIR and basal respiration within species were markedly lower than those in N transformations. Net N mineralization, net nitrification, and denitrification potential were highest under Arolla pine and larch, intermediate under deciduous aspen and birch, and lowest beneath spruce and Scots pine. Tree species caused similar effects on denitrification potential, net N mineralization, and net nitrification, but effects on N2O reduction rate were idiosyncratic, indicating a decoupling of N2O production and reduction. We predict that deciduous species should produce more N2O in the field than conifers, and that Siberian forests will produce more N2O if global climate change alters tree species composition. Basal respiration and SIR showed inverse responses to tree species: when basal respiration increased in response to a given tree species, SIR declined. SIR may have been controlled by NH4 + availability and related therefore to N mineralization, which was negatively affected by grassland conversion. Basal respiration appeared to be less limited by NH4 + and controlled mostly by readily available organic C (DOC), which was higher in concentration under forests than in grassland and therefore basal respiration was higher in forested soils. We conclude that in the Siberian artificial afforestation experiment, soil C mineralization was not limited by N.  相似文献   

13.
A model simulating the regeneration, growth and death of trees and the consequent carbon and nitrogen dynamics of the forest ecosystem was applied to determine the effect of expected temperature rise on tree species composition and the accumulation of organic matter in the boreal forest ecosystem in Finland (between latitudes 60°–70° N). In the southern and middle boreal zones a temperature rise of 2–3° C (temperature for 2 x CO2) over a period of one hundred years increased the competitive capacity of Scots pine (Pinus sylvestris) and birch species (Betula pendula and B. pubescens), and slowed down the invasion by Norway spruce (Picea abies). In the northern boreal zone a corresponding rise in temperature promoted the invasion of sites by Norway spruce. The accumulation of organic matter was promoted only slightly compared to that taking place in the current climatic conditions.A further doubling of temperature (temperature for 4 x CO2) over an additional period of two hundred years led to the replacement of coniferous stands with deciduous onesin the southern and middle boreal zones. In the northern boreal zone an admixture of coniferous and deciduous species replaced pure coniferous stands with the latter taking over sites formerly classified as tundra woodland. In the southern and middle boreal zones the replacement of coniferous species induced a substantial decrease in the amount of organic matter; this returned to its former level following the establishment of deciduous species. In the northern boreal zone there was no major change in the amount of organic matter such as occurred in the case of the tundra woodland where the amount of organic matter accumulated was nearly as high as in the northern boreal zone.  相似文献   

14.
The influence of the Ob River runoff in its lower reaches on the radial growth of main forest-forming tree species-the Siberian spruce (Picea obovata Ledeb.), Siberian stone pine (Pinus sibirica Du Tour.), and larch (Larix sibirica Ledeb.)-was studied in the north of Western Siberia in various test sites both at the riverside and at a distance of 3 to 80 km from the Ob River floodplain. Differences in responses of the radial growth to air temperature in October and repeated frost damage of tree annual rings are observed in the Siberian spruce and Siberian stone pine depending on the distance from the river. The correlations of the radial growth of trees and frost damage with the effect of the Ob River runoff are discussed.  相似文献   

15.
Zielonka  Tomasz  Piątek  Grzegorz 《Plant Ecology》2004,172(1):63-72
This is a study of the colonization pattern of herbs and dwarf shrubs on rotten logs in subalpine spruce forests (Plagiothecio Piceetum) in the Tatra Mountains. On four study plots (total area 1.43 ha.) all dead logs were measured and the decomposition stage was estimated using the 8-degree scale. For each log the cover of all vascular species, bryophytes and lichens was determined according to the methods of classical phytosociology. Constancy and an index of coverage were calculated for all vascular species growing on logs. The total volume of logs was relatively high (93 m3 ha–1) and constituted 22% of the volume of living trees. Logs and stumps covered 411 m2 ha–1. These values are similar to those known from natural spruce forest from Carpathians and Scandinavia. The 8 stages of decomposition were equally represented, which indicates a constant supply of dead wood to the forest floor over time. The colonization of dead wood starts with lichens, followed by bryophytes and finally herbs and tree saplings. The first vascular plant colonists of dead logs appear at decay stage nr. 3 at least 20 years after tree death. The most suitable condition for most of the herb species corresponds to decay stage nr. 6 ca. 50 years after tree death. The herb cover is distinctively dominated by Vaccinium myrtillus. Simultaneously with herb species, tree seedlings colonize the logs. Constancy and abundance of Norway spruce saplings increases with advanced decomposition. It seems that the herb cover of logs does not hinder the regeneration of spruce.  相似文献   

16.
Question: Have past windstorm events influenced the structure and composition of mountain forests in the Tatra Mountains? Can severe and infrequent wind disturbances lead to dynamic coexistence of two tree species with different ecological requirements? Location: Subalpine mixed spruce‐larch forest at 1200‐1300 m a.s.l. in the Slovakian Tatra Mountains. A forested site affected by catastrophic large‐scale windthrow on 19 November 2004. Methods: Sixty‐seven spruce and 30 larch cross‐sections from the oldest cohorts were collected in a regular pattern in a 100‐ha plot. Tree‐ring series were analysed to reconstruct growth releases associated with past windthrows. A boundary‐line release criterion was applied to detect disturbance year. Spatial patterns of release signals were statistically detected with Mantel's test. We compared reconstructed years of disturbance events with historical records. Results: Releases in both species showed three main pulses. More than 85% showed major or moderate releases in 1865‐1879, 48% in 1915‐1924, and 25% in 1940‐1949. All of these disturbance events affected the whole 100‐ha area. Releases were spatially patterned in the first disturbances, but distributed randomly in the last. Releases co‐occurred in time with enhanced production of compression wood, suggesting disturbances were of wind origin. Reconstructed dates of windthrows were confirmed using historical data on storms. Conclusions: At least three windthrows of major and moderate severity took place in the last 150 years on southern slopes of the Tatra Mountains. This disturbance regime may contribute to coexistence of spruce and larch through differences in vulnerability and response to heavy windstorms.  相似文献   

17.
Wood growth constitutes the main process for long‐term atmospheric carbon sequestration in vegetation. However, our understanding of the process of wood growth and its response to environmental drivers is limited. Current dynamic global vegetation models (DGVMs) are mainly photosynthesis‐driven and thus do not explicitly include a direct environmental effect on tree growth. However, physiological evidence suggests that, to realistically model vegetation carbon allocation under increased climatic stressors, it is crucial to treat growth responses independently from photosynthesis. A plausible growth response function suitable for global simulations in DGVMs has been lacking. Here, we present the first soil water‐growth response function and parameter range for deciduous and evergreen conifers. The response curve was calibrated against European larch and Norway spruce in a dry temperate forest in the Swiss Alps. We present a new data‐driven approach based on a combination of tree ring width (TRW) records, growing season length and simulated subdaily soil hydrology to parameterize ring width increment simulations. We found that a simple linear response function, with an intercept at zero moisture stress, used in growth simulations reproduced 62.3% and 59.4% of observed TRW variability for larch and spruce respectively and, importantly, the response function slope was much steeper than literature values for soil moisture effects on photosynthesis and stomatal conductance. Specifically, we found stem growth stops at soil moisture potentials of ?0.47 MPa for larch and ?0.66 MPa for spruce, whereas photosynthesis in trees continues down to ?1.2 MPa or lower, depending on species and measurement method. These results are strong evidence that the response functions of source and sink processes are indeed very different in trees, and need to be considered separately to correctly assess vegetation responses to environmental change. The results provide a parameterization for the explicit representation of growth responses to soil water in vegetation models.  相似文献   

18.
Peculiarities of forming and growth of post-fire larch (Larix sibirica Ledeb.) forests at the southern range of their distribution in the Northern Mongolia were studied. Regularities of the stand structure and dynamics of biological productivity are analyzed and discussed in the paper. It has been proved that the structure of the organic mass of the post-fire herb-carex type larch tree stands at the southern border of forest vegetation distribution is closely related to their biometric indices as-age, density, and productivity. In comparison with tree stands from the other areas of forest vegetation, the total phytomass stock of larch phytocenoses appropriately increases by zonal gradient from forest-tundra border to the Transbaikalian southern taiga and northern regions of Mongolia. Regeneration of forest cover by edificator and formation of the original larch coenopopulation is a positive trend from an environmental point of view, because the Siberian larch in young and middle-age period in the area has a sufficiently high growth energy and rate of phytomass production, with more than twice exceeding mature forests in fixed carbon of the atmosphere and has positive values of carbon balance and total destruction of organic matter by the “input-output” parameters.  相似文献   

19.
Extreme climatic events are key factors in initiating gradual or sudden changes in forest ecosystems through the promotion of severe, tree-killing disturbances such as fire, blowdown, and widespread insect outbreaks. In contrast to these climatically-incited disturbances, little is known about the more direct effect of drought on tree mortality, especially in high-elevation forests. Therefore projections of drought-induced mortality under future climatic conditions remain uncertain. For a subalpine forest landscape in the Rocky Mountains of northern Colorado (USA), we quantified lag effects of drought on mortality of Engelmann spruce Picea engelmannii , subalpine fir Abies lasiocarpa , and lodgepole pine Pinus contorta . For the period 1910–2004, we related death dates of 164 crossdated dead trees to early-season and late-season droughts. Following early-season droughts, spruce mortality increased over five years and fir mortality increased sharply over 11 years. Following late-season droughts, spruce showed a small increase in mortality within one year, whereas fir showed a consistent period of increased mortality over two years. Pine mortality was not affected by drought. Low pre-drought radial growth rates predisposed spruce and fir to drought-related mortality. Spruce and fir trees that died during a recent drought (2000–2004) had significantly lower pre-drought growth rates than live neighbour trees. Overall, we found large interspecific differences in drought-related mortality with fir showing the strongest effect followed by spruce and pine. This direct influence of climatic variability on differential tree mortality has the potential for driving large-scale changes in subalpine forests of the Rocky Mountains.  相似文献   

20.
Aim We investigate the timing and factors responsible for the transformation of closed‐crown forests into lichen–spruce woodlands. Location The study area extends between 70° and 72° W in the closed‐crown forest zone from its southern limit near 47°30′ N to its northern limit at the contact with the lichen–spruce woodland zone around 52°10′ N. A total of 24 lichen–spruce woodlands were selected. Methods Radiocarbon dating of charcoals at mineral soil contact and within the organic horizons allowed the principal factors causing the degradation of the closed‐crown forest to be identified, i.e. light fires, successive fires and the occurrence of a spruce budworm epidemic followed by a fire. Results Charcoals dated in the organic horizon were less than 200 years old, suggesting a recent transformation of the closed‐crown forest following surface fires. Before their transformation into lichen–spruce woodlands, stands were occupied by old, dense forests that originated from fires dating back to 1000 yr bp . The radiocarbon dating of charcoals in the organic horizon indicated that several stands burned twice in less than 50 years, while others burned shortly after a spruce budworm epidemic. Light fires are frequent within the lichen–spruce woodlands according to multiple charcoal layers found within the organic matter horizon. Main conclusions While closed‐crown forests are predicted to expand under climate warming, compound disturbances diminish the natural regeneration of the closed‐crown forests in the south and favour the expansion of lichen–spruce woodlands. As black spruce germinates on mineral soils, surface fires accentuate the expansion of the lichen–spruce woodlands southward. Under global warming, warmer springs will lead to earlier low‐intensity fires that do not remove as much organic matter, and hence prevent conditions suitable for black spruce regeneration. Also, spruce budworm reduces seed production for a certain time. The occurrence of fire during this period is critical for regeneration of black spruce.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号