首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between primary sequence and collagen triple-helix formation is relatively well characterized, while higher levels of structural assembly from these sequences is poorly understood. To address this gap, a new collagen-like triblock peptide design was used to study the relationship between amino acid sequence and supramolecular assembly. Four collagen-like peptides with the sequence (Glu)(5)(Gly-Xaa-Hyp-Gly-Pro-Hyp)(6)(Glu)(5) and corresponding to Xaa = alanine, proline, serine, or valine, and an analogous peptide without the glutamic acid end blocks, were solubilized in water at high concentrations (20-150 mg/mL) and analyzed in optical polarizing microscopy and transmission electron microscopy. Some of the peptides self-assembled into supramolecular structures, the nature of which was determined by the core collagen-like sequence. The globular end blocks appeared necessary for these short triple-helix-forming peptides to spontaneously organize into supramolecular structures in solution and also provided enhanced thermal stability based on CD analysis. The results indicate a strong dependence of the peptide triblock assembly behavior on the identity of the guest residue Xaa; nematic order when Xaa was valine, no organization when Xaa was serine, and banded spherulites displaying a cholesteric-like twist when Xaa was proline or alanine. According to these results, the identity of the amino acid in position Xaa of the triplet Gly-Xaa-Yaa dramatically determined the type of supramolecular assembly formed by short triple helices based on collagen-triblock like sequences. Moreover, the structural organization observed for these collagen-triblock peptides was analogous to some assemblies observed for native collagen in vivo and in vitro. The amino acid sequence in the native collagen proteins may therefore be a direct determinant of the different supramolecular architectures found in connective tissues.  相似文献   

2.
The effects of racemization of aspartic acid on triple-helical formation have been studied using a "host-guest" peptide approach where selected guest Gly-Xaa-Yaa triplets were included within a common acetyl-(Gly-Pro-Hyp)3-Gly-Xaa-Yaa-(Gly-Pro-Hyp)4-Gly-Gly-amide frame-work. Four guest triplets, Gly-Asp-Hyp and Gly-Asp-Ala where Asp is either L-Asp or D-Asp were studied. Thermal stability data indicated that incorporation of D-Asp residues prevented triple-helix formation in phosphate buffered saline, although triple-helical structures were formed in a stabilizing solvent, 67% aqueous ethylene glycol. In this solvent the melting temperatures of D-Asp containing peptides were more than 30 degrees C lower than the corresponding peptides containing L-Asp. For Gly-Asp-Ala peptides, but not Gly-Asp-Hyp, peptides, melting profiles indicated that a mixture of the D- and L-Asp containing peptides were able to form heterotrimer triple-helical molecules. These studies illustrate the dramatic destabilizing effect of D-amino acids on the triple-helix stability, but indicate that they can be accommodated in this conformation.  相似文献   

3.
The specific localization of the asymmetric form of acetylcholinesterase (AChE) in neuromuscular junctions results from the interaction of its collagen-like tail with heparan sulfate proteoglycans in the synaptic basal lamina. This interaction involves two heparin binding consensus sequences of the form XBBXB, where B is a basic residue, located in the triple-helical collagen tail: GRKGR for the N-terminal site and GKRGK for the C-terminal site. To explore the basis of the higher heparin affinity seen for the C-terminal site vs. the N-terminal site, two homologous series of (Gly-Xaa-Yaa)(8) peptides were constructed to model these triple-helical binding sites. Individual tripeptide units from each heparin binding site were introduced in a stepwise fashion into a Gly-Pro-Hyp framework, until the consensus sequence and its surrounding triplets were recreated. As each additional triplet from the binding site is inserted to replace a host Gly-Pro-Hyp triplet, the triple-helix stability decreases, and the drop in thermal stability is close to that expected if each Gly-X-Y triplet contributed independently to global stability. CD spectroscopy and calorimetry show the stability of these AChE model peptides is increased by addition of heparin, confirming binding to heparin, and the lack of significant enthalpy change indicates the binding is largely electrostatic in nature. Displacement assays measure the strength of the peptide-heparin interaction, and indicate an inverse correlation between the peptide ability to bind heparin and its thermal stability. The model peptides for the C-terminal binding site show a greater heparin affinity than the peptide models for the N-terminal binding site only when residues surrounding the consensus sequence are included.  相似文献   

4.
Conformational properties of five neuropeptides belonging to the calliFMRF-amide series with the Xaa-Pro-Yaa-Gln-Asp-Phe-Met-Arg-Phe-NH2 homologous sequences were studied by the method of theoretical conformational analysis. Three members of these group (1) (Xaa = Thr, Yaa = Gln), (2) (Xaa = Thr, Yaa = Ser), and (3) (Xaa = Yaa = Ser) can stimulate the saliva secretion from the separated salivary gland of the Calliphora vomitoria fly, whereas two other calliFMRF-amides (4) (Xaa = Lys, Yaa = Asn) and (5) (Xaa = Ala, Yaa = Gly) are inactive in this biological test. Low-energy spatial structures of the studied compounds were determined by a conformational analysis. A comparison of the stable structures of the biologically active and inactive neuropeptides revealed a similarity in their conformational properties and allowed determination of the role of separate residues in the peptide folding. The calculations demonstrated that the C-terminal hexapeptide fragment identical in all the five peptides tends to form alpha-helical structure, whereas the variable N-terminal tripeptide regions of CalliFMRF-amides (1)-(5) form more conformationally flexible structures.  相似文献   

5.
HSP47 is an essential procollagen-specific molecular chaperone that resides in the endoplasmic reticulum of procollagen-producing cells. Recent advances have revealed that HSP47 recognizes the (Pro-Pro-Gly)(n) sequence but not (Pro-Hyp-Gly)(n) and that HSP47 recognizes the triple-helical conformation. In this study, to better understand the substrate recognition by HSP47, we synthesized various collagen model peptides and examined their interaction with HSP47 in vitro. We found that the Pro-Arg-Gly triplet forms an HSP47-binding site. The HSP47 binding was observed only when Arg residues were incorporated in the Yaa positions of the Xaa-Yaa-Gly triplets. Amino acids in the Xaa position did not largely affect the interaction. The recognition of the Arg residue by HSP47 was specific to its side-chain structure because replacement of the Arg residue by other basic amino acids decreased the affinity to HSP47. The significance of Arg residues in HSP47 binding was further confirmed by using residue-specific chemical modification of types I and III collagen. Our results demonstrate that Xaa-Arg-Gly sequences in the triple-helical procollagen molecule are dominant binding sites for HSP47 and enable us to predict HSP47-binding sites in homotrimeric procollagen molecules.  相似文献   

6.
Proper folding of the (Gly‐Xaa‐Yaa)n sequence of animal collagens requires adjacent N‐ or C‐terminal noncollagenous trimerization domains which often contain coiled‐coil or beta sheet structure. Collagen‐like proteins have been found recently in a number of bacteria, but little is known about their folding mechanism. The Scl2 collagen‐like protein from Streptococcus pyogenes has an N‐terminal globular domain, designated Vsp, adjacent to its triple‐helix domain. The Vsp domain is required for proper refolding of the Scl2 protein in vitro. Here, recombinant Vsp domain alone is shown to form trimers with a significant α‐helix content and to have a thermal stability of Tm = 45°C. Examination of a new construct shows that the Vsp domain facilitates efficient in vitro refolding only when it is located N‐terminal to the triple‐helix domain but not when C‐terminal to the triple‐helix domain. Fusion of the Vsp domain N‐terminal to a heterologous (Gly‐Xaa‐Yaa)n sequence from Clostridium perfringens led to correct folding and refolding of this triple‐helix, which was unable to fold into a triple‐helical, soluble protein on its own. These results suggest that placement of a functional trimerization module adjacent to a heterologous Gly‐Xaa‐Yaa repeating sequence can lead to proper folding in some cases but also shows specificity in the relative location of the trimerization and triple‐helix domains. This information about their modular nature can be used in the production of novel types of bacterial collagen for biomaterial applications.  相似文献   

7.
Conformational properties of five neuropeptides belonging to the calliFMRF-amide series with the Xaa-Pro-Yaa-Gln-Asp-Phe-Met-Arg-Phe-NH2 homologous sequences were studied by the method of theoretical conformational analysis. Three members of these group [(1) (Xaa = Thr, Yaa = Gln), (2) (Xaa = Thr, Yaa = Ser), and (3) (Xaa = Yaa = Ser)] can stimulate the saliva secretion from the separated salivary gland of the Calliphora vomitoria fly, whereas two other calliFMRF-amides [(4) (Xaa = Lys, Yaa = Asn) and (5) (Xaa = Ala, Yaa = Gly)] are inactive in this biological test. Low-energy spatial structures of the studied compounds were determined by a conformational analysis. A comparison of the stable structures of the biologically active and inactive neuropeptides revealed a similarity in their conformational properties and allowed determination of the role of separate residues in the peptide folding. The calculations demonstrated that the C-terminal hexapeptide fragment identical in all the five peptides tends to form -helical structure, whereas the variable N-terminal tripeptide regions of calliFMRF-amides (1)–(5) form more conformationally flexible structures.  相似文献   

8.
We have determined the amino acid sequence of the alpha chain of a fibril-forming collagen from the body wall of the marine invertebrate Riftia pachyptila (vestimentifera) by Edman degradation. The pepsin-solubilized collagen chain consists of a 1011-residue triple-helical domain and short remnants of N- and C-telopeptides. The triple-helical sequence showed one imperfection of the collagen Gly-Xaa-Yaa triplet repeat structure due to a Gly-->Ala substitution. This imperfection is correlated to a prominent kink in the molecule observed by electron microscopy. No strong sequence similarity was found with the fibril-forming vertebrate collagen types I-III, V and XI except for the invariant Gly residues. However, one of the two consensus cross-linking sequences was well conserved. The Riftia collagen shared with the vertebrate collagens many post-translational modifications. About 50% of the Pro and Lys residues are found in the Yaa position and were extensively hydroxylated to 4-hydroxyproline (4Hyp) and hydroxylysine (Hyl). A few proline residues in Xaa position were partially hydroxylated to either 4Hyp or 3Hyp. Despite the low sequence similarity, Riftia collagen was a potent adhesion substrate for two human cell lines. Cell adhesion could be inhibited by antibodies against the integrin beta 1 subunit but not by RGD peptides. This biological activity is apparently conserved in fibril-forming collagens of distantly related species but does not require the two RGD sequences present in Riftia collagen.  相似文献   

9.
The single-crystal structures of three collagen-like host-guest peptides, (Pro-Pro-Gly)(4) -Hyp-Yaa-Gly-(Pro-Pro-Gly)(4) [Yaa = Thr, Val, Ser; Hyp = (4R)-4-hydroxyproline] were analyzed at atomic resolution. These peptides adopted a 7/2-helical structure similar to that of the (Pro-Pro-Gly)(9) peptide. The stability of these triple helices showed a similar tendency to that observed in Ac-(Gly-Hyp-Yaa)(10) -NH(2) (Yaa = Thr, Val, Ser) peptides. On the basis of their detailed structures, the differences in the triple-helical stabilities of the peptides containing a Hyp-Thr-Gly, Hyp-Val-Gly, or Hyp-Ser-Gly sequence were explained in terms of van der Waals interactions and dipole-dipole interaction between the Hyp residue in the X position and the Yaa residue in the Y position involved in the Hyp(X):Yaa(Y) stacking pair. This idea also explains the inability of Ac-(Gly-Hyp-alloThr)(10) -NH(2) and Ac-(Gly-Hyp-Ala)(10) -NH(2) peptides to form triple helices. In the Hyp(X):Thr(Y), Hyp(X):Val(Y), and Hyp(X):Ser(Y) stacking pairs, the proline ring of the Hyp residues adopts an up-puckering conformation, in agreement with the residual preference of Hyp, but in disagreement with the positional preference of X in the Gly-Xaa-Yaa sequence.  相似文献   

10.
4(R)-Hydroxyproline in the Yaa position of the -Gly-Xaa-Yaa-repeated sequence of collagen plays a crucial role in the stability of the triple helix. Since the peptide (4(R)-Hyp-Pro-Gly)10 does not form a triple helix, it was generally believed that polypeptides with a -Gly-4(R)-Hyp-Yaa-repeated sequence do not form a triple helix. Recently, we found that acetyl-(Gly-4(R)-Hyp-Thr)10-NH2 forms a triple helix in aqueous solutions. To further study the role of 4(R)-hydroxyproline in the Xaa position, we made a series of acetyl-(Gly-4(R)-Hyp-Yaa)10-NH2 peptides where Yaa was alanine, serine, valine, and allo-threonine. We previously hypothesized that the hydroxyl group of threonine might form a hydrogen bond to the hydroxyl group of 4(R)hydroxyproline. In water, only the threonine- and the valine-containing peptides were triple helical. The remaining peptides did not form a triple helix in water. In 1,2- and in 1,3-propanediol at 4 degrees C, all the soluble peptides were triple helical. From the transition temperature of the triple helices, it was found that among the examined residues, threonine was the most stable residue in the acetyl-(Gly-4(R)-Hyp-Yaa)10-NH2 peptide. The transition temperatures of the valine- and allo-threonine-containing peptides were 10 degrees lower than those of the threonine peptide. Surprisingly, the serine-containing peptide was the least stable. These results indicate that the stability of these peptides depends on the presence of a methyl group as well as the hydroxyl group and that the stereo configuration of the two groups is essential for the stability. In the threonine peptide, we hypothesize that the methyl group shields the interchain hydrogen bond between the glycine and the Xaa residue from water and that the hydroxyl groups of threonine and 4(R)hydroxyproline can form direct or water-mediated hydrogen bonds.  相似文献   

11.
Collagen has a triple helical structure comprising strands with a repeating Xaa-Yaa-Gly sequence. L-Proline (Pro) and 4(R)-hydroxyl-L-proline (4(R)Hyp) residues are found most frequently in the Xaa and Yaa positions. However, in natural collagen, 3(S)-hydroxyl-L-proline (3(S)Hyp) occurs in the Xaa positions to varying extents and is most common in collagen types IV and V. Although 4(R)Hyp residues in the Yaa positions have been shown to be critical for the formation of a stable triple helix, the role of 3(S)Hyp residues in the Xaa position is not well understood. Indeed, recent studies have demonstrated that the presence of 3(S)Hyp in the Xaa positions of collagen-like peptides actually has a destabilizing effect relative to peptides with Pro in these locations. Whether this destabilization is reflected in a local unfolding or in other structural alterations of the collagen triple helix is unknown. Thus, to determine what effect the presence of 3(S)Hyp residues in the Xaa positions has on the overall conformation of the collagen triple helix, we determined the crystal structure of the polypeptide H-(Gly-Pro-4(R)Hyp)3-(Gly-3(S)Hyp-4(R)Hyp)2-(Gly-Pro-4(R)Hyp)4-OH to 1.80 A resolution. The structure shows that, despite the presence of the 3(S)Hyp residues, the peptide still adopts a typical 7/2 superhelical symmetry similar to that observed in other collagen structures. The puckering of the Xaa position 3(S)Hyp residues, which are all down (Cgamma-endo), and the varphi/psi dihedral angles of the Xaa 3(S)Hyp residues are also similar to those of typical collagen Pro Xaa residues. Thus, the presence of 3(S)Hyp in the Xaa positions does not lead to large structural alterations in the collagen triple helix.  相似文献   

12.
Several phosphonamide peptides having the general structure R-PO(OH)-Xaa-Yaa-Zaa were synthesized and tested for inhibition of Clostridium histolyticum collagenase. Inhibition was found to depend on the nature of R, Xaa, Yaa and Zaa such that the maximal affinity (Ki = 5 nM) was observed when R = p-nitrophenylethyl, Xaa = Gly, Yaa = Pro and Zaa = 2-aminohexanoic acid; this represents the tightest binding of inhibitor reported to date for any bacterial collagenase. Substitution of the p-nitrophenylethyl by a methyl group led to a 500-fold decrease of the potency, highlighting the existence of optimal interaction between the nitrophenylethyl side chain and one subsite of the enzyme. Replacement of the NH group in glycine residue (Xaa position) by -O- or -N-CH3 produces significantly less potent inhibitors, presumably due in part to the loss of a hydrogen bond between the inhibitor and collagenase active site. These phosphonamidates are thought to be acting as transition-state analogues of the peptide substrate.  相似文献   

13.
Bhate M  Wang X  Baum J  Brodsky B 《Biochemistry》2002,41(20):6539-6547
The collagen model peptide T1-892 includes a C-terminal nucleation domain, (Gly-Pro-Hyp)(4), and an N-terminal (Gly-X-Y)(6) sequence taken from type I collagen. In osteogenesis imperfecta (OI) and other collagen diseases, single base mutations often convert one Gly to a larger residue, and T1-892 homologues modeling such mutations were synthesized with Gly to Ala substitutions in either the (Gly-Pro-Hyp)(4) domain, Gly25Ala, or the (Gly-X-Y)(6) domain, Gly10Ala. CD and NMR studies show the Gly10Ala peptide forms a normal triple-helix at the C-terminal end and propagates from the C- to the N-terminus until the Gly --> Ala substitution is encountered. At this point, triple-helix folding is terminated and cannot be reinitiated, leaving a nonhelical N-terminus. A decreased thermal stability is observed as a result of the shorter length of the triple-helix. In contrast, introduction of the Gly to Ala replacement at position 25, in the nucleation domain, shifts the monomer/trimer equilibrium toward the monomer form. The increased monomer and lower trimer populations are reflected in the dramatic decrease in triple-helix content and stability. Unlike the Ala replacement at position 10, the Ala substitution in the (Gly-Pro-Hyp)(4) region can still be incorporated into a triple-helix, but at a greatly decreased rate of folding, since the original efficient nucleation site is no longer operative. The specific consequences of Gly to Ala replacements in two distinctive sequences in this triple-helical peptide may help clarify the variability in OI clinical severity resulting from mutations at different sites along type I collagen chains.  相似文献   

14.
The endoplasmic reticulum-resident chaperone heat-shock protein 47 (HSP47) plays an essential role in procollagen biosynthesis. The function of HSP47 relies on its specific interaction with correctly folded triple-helical regions comprised of Gly-Xaa-Yaa repeats, and Arg residues at Yaa positions have been shown to be important for this interaction. The amino acid at the Yaa position (Yaa(-3)) in the N-terminal-adjoining triplet containing the critical Arg (defined as Arg(0)) was also suggested to be directly recognized by HSP47 (Koide, T., Asada, S., Takahara, Y., Nishikawa, Y., Nagata, K., and Kitagawa, K. (2006) J. Biol. Chem. 281, 3432-3438). Based on this finding, we examined the relationship between the structure of Yaa(-3) and HSP47 binding using synthetic collagenous peptides. The results obtained indicated that the structure of Yaa(-3) determined the binding affinity for HSP47. Maximal binding was observed when Yaa(-3) was Thr. Moreover, the required relative spatial arrangement of these key residues in the triple helix was analyzed by taking advantage of heterotrimeric collagen-model peptides, each of which contains one Thr(-3) and one Arg(0). The results revealed that HSP47 recognizes the Yaa(-3) and Arg(0) residues only when they are on the same peptide strand. Taken together, the data obtained led us to define the HSP47-binding structural epitope in the collagen triple helix and also define the HSP47-binding motif in the primary structure. A motif search against human protein database predicted candidate clients for this molecular chaperone. The search result indicated that not all collagen family proteins require the chaperoning by HSP47.  相似文献   

15.
Xu Y  Hyde T  Wang X  Bhate M  Brodsky B  Baum J 《Biochemistry》2003,42(29):8696-8703
Protein folding is determined by molecular features in the unfolded state, as well as the native folded structure. In the unfolded state, imino acids both restrict conformational space and present cis-trans isomerization barriers to folding. Because of its high proline and hydroxyproline content, the collagen triple-helix offers an opportunity to characterize the impact of imino acids on the unfolded state and folding kinetics. Here, NMR and CD spectroscopy are used to characterize the role of imino acids in a triple-helical peptide, T1-892, which contains an 18-residue sequence from type I collagen and a C-terminal (Gly-Pro-Hyp)(4) domain. The replacement of Pro or Hyp by an Ala in the (Gly-Pro-Hyp)(4) region significantly decreases the folding rate at low but not high concentrations, consistent with less efficient nucleation. To understand the molecular basis of the decreased folding rate, changes in the unfolded as well as the folded states of the peptides were characterized. While the trimer states of the peptides are all similar, NMR dynamics studies show monomers with all trans (Gly-Pro-Hyp)(4) are less flexible than monomers containing Pro --> Ala or Hyp --> Ala substitutions. Nucleation requires all trans bonds in the (Gly-Pro-Hyp)(4) domain and the constrained monomer state of the all trans nucleation domain in T1-892 increases its competency to initiate triple-helix formation and illustrates the impact of the unfolded state on folding kinetics.  相似文献   

16.
We present a novel method for the isolation and analysis of the bone collagen (I) α2 chain carboxytelopeptide as a species biomarker. Conventional methods for the analysis and sequencing of mixtures of proteins and peptides commonly involve using the protease trypsin to cleave proteins present in the sample. However, in the study of collagen, these methods result in very complex mixtures of peptides that are difficult to analyze and the acquired results are not reproducible. Here we use bacterial collagenase (from Clostridium histolyticum) for its ability to cleave the highly unusual Gly-Xaa-Yaa repeating sequence of collagen, where Xaa usually is Pro and Yaa often is Hyp. Followed by a simple isolation step using a reverse phase solid phase extraction cartridge, the α2 (I) chain carboxytelopeptide can be readily analyzed by matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) and the results can be used to distinguish between different species of origin.  相似文献   

17.
Important stabilizing features for the collagen triple helix include the presence of Gly as every third residue, a high content of imino acids, and interchain hydrogen bonds. Host-guest peptides have been used previously to characterize triple-helix propensities of individual residues and Gly-X-Y triplets. Here, comparison of the thermal stabilities of host-guest peptides of the form (Gly-Pro-Hyp)3-Gly-X-Y-Gly-X'-Y'-(Gly-Pro-Hyp)3 extends the study to adjacent tripeptide sequences, to encompass the major classes of potential direct intramolecular interactions. Favorable hydrophobic interactions were observed, as well as stabilizing intrachain interactions between residues of opposite charge in the i and i + 3 positions. However, the greatest gain in triple-helix stability was achieved in the presence of Gly-Pro-Lys-Gly-Asp/Glu-Hyp sequences, leading to a T(m) value equal to that seen for a Gly-Pro-Hyp-Gly-Pro-Hyp sequence. This stabilization is seen for Lys but not for Arg and can be assigned to interchain ion pairs, as shown by molecular modeling. Computational analysis shows that Lys-Gly-Asp/Glu sequences are present at a frequency much greater than expected in collagen, suggesting this interaction is biologically important. These results add significantly to the understanding of which surface ion pairs can contribute to protein stability.  相似文献   

18.
The hereditary bone disorder osteogenesis imperfecta is often caused by missense mutations in type I collagen that change one Gly residue to a larger residue and that break the typical (Gly-Xaa-Yaa)(n) sequence pattern. Site-directed mutagenesis in a recombinant bacterial collagen system was used to explore the effects of the Gly mutation position and of the identity of the residue replacing Gly in a homogeneous collagen molecular population. Homotrimeric bacterial collagen proteins with a Gly-to-Arg or Gly-to-Ser replacement formed stable triple-helix molecules with a reproducible 2 °C decrease in stability. All Gly replacements led to a significant delay in triple-helix folding, but a more dramatic delay was observed when the mutation was located near the N terminus of the triple-helix domain. This highly disruptive mutation, close to the globular N-terminal trimerization domain where folding is initiated, is likely to interfere with triple-helix nucleation. A positional effect of mutations was also suggested by trypsin sensitivity for a Gly-to-Arg replacement close to the triple-helix N terminus but not for the same replacement near the center of the molecule. The significant impact of the location of a mutation on triple-helix folding and conformation could relate to the severe consequences of mutations located near the C terminus of type I and type III collagens, where trimerization occurs and triple-helix folding is initiated.  相似文献   

19.
Sweet is stable: glycosylation stabilizes collagen   总被引:2,自引:0,他引:2  
For most collagens, the melting temperature (T(m)) of the triple-helical structure of collagen correlates with the total content of proline (Pro) and 4-trans-hydroxyproline (Hyp) in the Xaa and Yaa positions of the -Gly-Xaa-Yaa- triplet repeat. The cuticle collagen of the deep-sea hydrothermal vent worm Riftia pachyptila, despite a very low content of Pro and Hyp, has a relatively high thermal stability. Rather than Hyp occupying the Yaa position, as is normally found in mammalian collagens, this position is occupied by threonine (Thr) which is O-glycosylated. We compare the triple-helix forming propensities in water of two model peptides, Ac-(Gly-Pro-Thr)(10)-NH(2) and Ac-(Gly-Pro-Thr(Galbeta))(10)-NH(2), and show that a collagen triple-helix structure is only achieved after glycosylation of Thr. Thus, we show for the first time that glycosylation is required for the formation of a stable tertiary structure and that this modification represents an alternative way of stabilizing the collagen triple-helix that is independent of the presence of Hyp.  相似文献   

20.
The collagen triple helix is characterized by the repeating sequence motif Gly-Xaa-Yaa, where Xaa and Yaa are typically proline and (2S,4R)-4-hydroxyproline (4(R)Hyp), respectively. Previous analyses have revealed that H-(Pro-4(R)Hyp-Gly)(10)-OH forms a stable triple helix, whereas H-(4(R)Hyp-Pro-Gly)(10)-OH does not. Several theories have been put forth to explain the importance of proline puckering and conformation in triple helix formation; however, the details of how they affect triple helix stability are unknown. Underscoring this, we recently demonstrated that the polypeptide Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2) forms a triple helix that is more stable than Ac-(Gly-Pro-4(R)Hyp)(10)-NH(2). Here we report crystal the structure of the H-(Gly-4(R)Hyp-4(R)Hyp)(9)-OH peptide at 1.55 A resolution. The puckering of the Yaa position 4(R)Hyp in this structure is up (Cgamma exo), as has been found in other collagen peptide structures. Notably, however, the 4(R)Hyp in the Xaa position also takes the up pucker, which is distinct from all other collagen structures. Regardless of the notable difference in the Xaa proline puckering, our structure still adopts a 7/2 superhelical symmetry similar to that observed in other collagen structures. Thus, the basis for the observed differences in the thermodynamic data of the triple helix<--> coil transition between our peptide and other triple helical peptides likely results from contributions from the unfolded state. Indeed, the unfolded state of the H-(Gly-4(R)Hyp-4(R)Hyp)(9)-OH peptide seems to be stabilized by a preformed polyproline II helix in each strand, which could be explained by the presence of a unique repeating intra-strand water-mediated bridge observed in the H-(Gly-4(R)Hyp-4(R)Hyp)(9)-OH structure, as well as a higher amount of trans peptide bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号