首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The breast and ovarian cancer-specific tumor suppressor RING finger protein BRCA1 has been identified as an E3 ubiquitin (Ub) ligase through in vitro studies, which demonstrated that its RING finger domain can autoubiquitylate and monoubiquitylate histone H2A when supplied with Ub, E1, and UBC4 (E2). Here we report that the E3 ligase activity of the N-terminal 110 amino acid residues of BRCA1, which encodes a stable domain containing the RING finger, as well as that of the full-length BRCA1, was significantly enhanced by the BARD1 protein (residues 8-142), whose RING finger domain itself lacked Ub ligase activity in vitro. The results of mutagenesis studies indicate that the enhancement of BRCA1 E3 ligase activity by BARD1 depends on direct interaction between the two proteins. Using K48A and K63A Ub mutants, we found that BARD1 stimulated the formation of both Lys(48)- and Lys(63)-linked poly-Ub chains. However, the enhancement of BRCA1 autoubiquitylation by BARD1 mostly resulted in poly-Ub chains linked through Lys(63), which could potentially activate biological pathways other than BRCA1 degradation. We also found that co-expression of BRCA1 and BARD1 in living cells increased the abundance and stability of both proteins and that this depended on their ability to heterodimerize.  相似文献   

2.
Mutations of the von Hippel-Lindau (VHL) tumor suppressor gene predispose individuals to a variety of human tumors, including renal cell carcinoma, hemangioblastoma of the central nervous system, and pheochromocytoma. Here we report on the identification and characterization of the Drosophila homolog of VHL. The predicted amino acid sequence of Drosophila VHL protein shows 29% identity and 44% similarity to that of human VHL protein. Biochemical studies have shown that Drosophila VHL protein binds to Elongins B and C directly, and via this Elongin BC complex, associates with Cul-2 and Rbx1. Like human VHL, Drosophila VHL complex containing Cul-2, Rbx1, Elongins B and C, exhibits E3 ubiquitin ligase activity. In addition, we provide evidence that hypoxia-inducible factor (HIF)-1alpha is the ubiquitination target of both human and Drosophila VHL complexes.  相似文献   

3.
The tumor‐suppressor protein BRCA1 works with BARD1 to catalyze the transfer of ubiquitin onto protein substrates. The N‐terminal regions of BRCA1 and BARD1 that contain their RING domains are responsible for dimerization and ubiquitin ligase activity. This activity is a common feature among hundreds of human RING domain‐containing proteins. RING domains bind and activate E2 ubiquitin‐conjugating enzymes to promote ubiquitin transfer to substrates. We show that the identity of residues at specific positions in the RING domain can tune activity levels up or down. We report substitutions that create a structurally intact BRCA1/BARD1 heterodimer that is inactive in vitro with all E2 enzymes. Other substitutions in BRCA1 or BARD1 RING domains result in hyperactivity, revealing that both proteins have evolved attenuated activity. Loss of attenuation results in decreased product specificity, providing a rationale for why nature has tuned BRCA1 activity. The ability to tune BRCA1 provides powerful tools for understanding its biological functions and provides a basis to assess mechanisms for rescuing the activity of cancer‐associated variations. Beyond the applicability to BRCA1, we show the identity of residues at tuning positions that can be used to predict and modulate the activity of an unrelated RING E3 ligase. These findings provide valuable insights into understanding the mechanism and function of RING E3 ligases like BRCA1.  相似文献   

4.
Autoubiquitination of the BRCA1*BARD1 RING ubiquitin ligase   总被引:7,自引:0,他引:7  
The RING finger of BRCA1 confers ubiquitin ligase activity that is markedly enhanced when complexed with another RING-containing protein, BARD1, and is required for the function of this tumor suppressor protein in protecting genomic integrity. Here, we report that co-expression of BRCA1-(1-639) and BARD1 in bacteria can assemble a potent ubiquitin ligase activity. Purified BRCA1-(1-639)*BARD1 stimulated the Ubc5c-mediated monoubiquitination of histone H2A/H2AX in vitro, suggesting a possible role for BRCA1*BARD1 in modifying chromatin structure. Moreover, the truncated BRCA1*BARD1 complex exhibited efficient autoubiquitination activity in vitro capable of assembling non-lysine 48-linked polyubiquitin chains on both BRCA1-(1-639) and BARD1. When co-expressed in cells by transient transfection, the recombinant BRCA1-(1-300).BARD1 complex was found to be associated with polyubiquitin chains, suggesting that BRCA1-(1-300)*BARD1 was ubiquitinated in vivo as well. These results raise the possibility that BRCA1*BARD1 acts to assemble non-lysine 48-linked polyubiquitin chains that may serve as part of a signaling platform required for coordinating DNA repair-related events.  相似文献   

5.
Loss of the tumour suppressor BRCA1 results in profound chromosomal instability. The fundamental defect underlying this catastrophic phenotype is not yet known. In vivo, BRCA1 forms a heterodimeric complex with BARD1. Both proteins contain an N-terminal zinc RING-finger domain which confers E3 ubiquitin ligase activity. We have isolated full-length human BRCA1/BARD1 complex and have shown that it has a dual E3 ubiquitin ligase activity. First, it mediates the monoubiquitylation of nucleosome core histones in vitro, including the variant histone H2AX that co-localizes with BRCA1 at sites of DNA damage. Secondly, BRCA1/BARD1 catalyses the formation of multiple polyubiquitin chains on itself. Remarkably, this auto-polyubiquitylation potentiates the E3 ubiquitin ligase activity of the BRCA1/BARD1 complex >20-fold. Even though BRCA1 has been reported to associate with a C-terminal ubiquitin hydrolase, BAP1, this enzyme does not appear to function in the deubiquitylation of the BRCA1/BARD1 complex.  相似文献   

6.
The BRCA1/BARD1 heterodimer modulates ran-dependent mitotic spindle assembly   总被引:10,自引:0,他引:10  
The heterodimeric tumor-suppressor complex BRCA1/BARD1 exhibits E3 ubiquitin ligase activity and participates in cell proliferation and chromosome stability control by incompletely defined mechanisms. Here we show that, in both mammalian cells and Xenopus egg extracts, BRCA1/BARD1 is required for mitotic spindle-pole assembly and for accumulation of TPX2, a major spindle organizer and Ran target, on spindle poles. This function is centrosome independent, operates downstream of Ran GTPase, and depends upon BRCA1/BARD1 E3 ubiquitin ligase activity. Xenopus BRCA1/BARD1 forms endogenous complexes with three spindle-pole proteins, TPX2, NuMA, and XRHAMM--a known TPX2 partner--and specifically attenuates XRHAMM function. These observations reveal a previously unrecognized function of BRCA1/BARD1 in mitotic spindle assembly that likely contributes to its role in chromosome stability control and tumor suppression.  相似文献   

7.
BRCA1-BARD1 constitutes a heterodimeric RING finger complex associated through its N-terminal regions. Here we demonstrate that the BRCA1-BARD1 heterodimeric RING finger complex contains significant ubiquitin ligase activity that can be disrupted by a breast cancer-derived RING finger mutation in BRCA1. Whereas individually BRCA1 and BARD1 have very low ubiquitin ligase activities in vitro, BRCA1 combined with BARD1 exhibits dramatically higher activity. Bacterially purified RING finger domains comprising residues 1-304 of BRCA1 and residues 25-189 of BARD1 are capable of polymerizing ubiquitin. The steady-state level of transfected BRCA1 in vivo was increased by co-transfection of BARD1, and reciprocally that of transfected BARD1 was increased by BRCA1 in a dose-dependent manner. The breast cancer-derived BARD1-interaction-deficient mutant, BRCA1(C61G), does not exhibit ubiquitin ligase activity in vitro. These results suggest that the BRCA1-BARD1 complex contains a ubiquitin ligase activity that is important in prevention of breast and ovarian cancer development.  相似文献   

8.
Estrogen is involved in breast cancer risk, which is increased for BRCA1 mutation carriers, suggesting a role for BRCA1 in estrogen signaling. BRCA1 exerts its function through forming an E3 ubiquitin ligase with BARD1. We report that the estrogen receptor alpha is a target of the BRCA1–BARD1 ubiquitin ligase in vivo. BRCA1 and BARD1 are required for estrogen receptor alpha ubiquitination and degradation, and repression of either one leads to ERα accumulation, suggesting a feedback loop between BRCA1–BARD1 and estrogen receptor alpha, since BRCA1 and BARD1 are induced by estrogen receptor alpha. While the ubiquitin ligase activity maps to the N-terminal RING finger domains of BRCA1 and BARD1, we demonstrate that the BARD1 C-terminus is important for target recognition. Furthermore, a BARD1 isoform lacking the RING domain binds and stabilizes estrogen receptor alpha. Thus deficiencies of BRCA1 or BARD1 and/or upregulation of BARD1 isoforms lead to estrogen receptor alpha upregulation, providing a functional link between BRCA1 deficiency, estrogen signaling, and tumorigenesis.  相似文献   

9.
Ras association (RalGDS/AF-6) domain family member RASSF5 is a non-enzymatic RAS effector super family protein, known to be involved in cell growth regulation. Expression of RASSF5 is found to be extinguished by promoter hypermethylation in different human cancers, and its ectopic expression suppresses cell proliferation and tumorigenicity. Interestingly, this role in tumorigenesis has been confounded by the fact that regulation at molecular level remains unclear and many transformed cells actually display elevated RASSF5 expression. Here, we demonstrate that E3 ubiquitin ligase Itch is a unique binding partner of RASSF5. Itch can interact with PPxY motif in RASSF5 both in vivo and in vitro through its WW domains. Importantly, the overexpression of Itch induces RASSF5 degradation by poly-ubiquitination via 26S proteasome pathway. In addition, our results indicate that the elevated levels of RASSF5 found in tumor cells due to acetylation, which restricts its binding to Itch and results in a more stable inert protein. Inhibition of RASSF5 acetylation permits its interaction with Itch and provokes proteasomal degradation. These data suggest that apart from promoter methylation, hyperacetylation could also be downregulating RASSF5 function in different human cancer. Finally, results from functional assays suggest that the overexpression of wild type, not the ligase activity defective Itch negatively regulate RASSF5-mediated G1 phase transition of cell cycle as well as apoptosis, suggesting that Itch alone is sufficient to alter RASSF5 function. Collectively, the present investigation identifies a HECT class E3 ubiquitin ligase Itch as a unique negative regulator of RASSF5, and suggests the possibility that acetylation as a potential therapeutic target for human cancer.  相似文献   

10.
The BRCA1 tumor suppressor forms a heterodimer with the BARD1 protein, and the resulting complex functions as an E3 ubiquitin ligase that catalyzes the synthesis of polyubiquitin chains. In theory, polyubiquitination can occur by isopeptide bond formation at any of the seven lysine residues of ubiquitin. The isopeptide linkage of a polyubiquitin chain is a particularly important determinant of its cellular function, such that K48-linked chains commonly target proteins for proteasomal degradation, while K63 chains serve non-proteolytic roles in various signaling pathways. To determine the isopeptide linkage formed by BRCA1/BARD1-dependent polyubiquitination, we purified a full-length heterodimeric complex and compared its linkage specificity with that of E6-AP, an E3 ligase known to induce proteolysis of its cellular substrates. Using a comprehensive mutation analysis, we found that E6-AP catalyzes the synthesis of K48-linked polyubiquitin chains. In contrast, however, the BRCA1/BARD1 heterodimer directs polymerization of ubiquitin primarily through an unconventional linkage involving lysine residue K6. Although heterologous substrates of BRCA1/BARD1 are not known, BRCA1 autoubiquitination occurs principally by conjugation with K6-linked polymers. The ability of BRCA1/BARD1 to form K6-linked polyubiquitin chains suggests that it may impart unique cellular properties to its natural enzymatic substrates.  相似文献   

11.
PINK1 kinase activates the E3 ubiquitin ligase Parkin to induce selective autophagy of damaged mitochondria. However, it has been unclear how PINK1 activates and recruits Parkin to mitochondria. Although PINK1 phosphorylates Parkin, other PINK1 substrates appear to activate Parkin, as the mutation of all serine and threonine residues conserved between Drosophila and human, including Parkin S65, did not wholly impair Parkin translocation to mitochondria. Using mass spectrometry, we discovered that endogenous PINK1 phosphorylated ubiquitin at serine 65, homologous to the site phosphorylated by PINK1 in Parkin’s ubiquitin-like domain. Recombinant TcPINK1 directly phosphorylated ubiquitin and phospho-ubiquitin activated Parkin E3 ubiquitin ligase activity in cell-free assays. In cells, the phosphomimetic ubiquitin mutant S65D bound and activated Parkin. Furthermore, expression of ubiquitin S65A, a mutant that cannot be phosphorylated by PINK1, inhibited Parkin translocation to damaged mitochondria. These results explain a feed-forward mechanism of PINK1-mediated initiation of Parkin E3 ligase activity.  相似文献   

12.
13.
Cullins are members of a family of scaffold proteins that assemble multisubunit ubiquitin ligase complexes to confer substrate specificity for the ubiquitination pathway. Cullin3 (Cul3) forms a catalytically inactive BTB-Cul3-Rbx1 (BCR) ubiquitin ligase, which becomes functional upon covalent attachment of the ubiquitin homologue neural-precursor-cell-expressed and developmentally down regulated 8 (Nedd8) near the C terminus of Cul3. Current models suggest that Nedd8 activates cullin complexes by providing a recognition site for a ubiquitin-conjugating enzyme. Based on the following evidence, we propose that Nedd8 activates the BCR ubiquitin ligase by mediating the dimerization of Cul3. First, Cul3 is found as a neddylated heterodimer bound to a BTB domain-containing protein in vivo. Second, the formation of a Cul3 heterodimer is mediated by a Nedd8 molecule, which covalently attaches itself to one Cul3 molecule and binds to the winged-helix B domain at the C terminus of the second Cul3 molecule. Third, complementation experiments revealed that coexpression of two distinct nonfunctional Cul3 mutants can rescue the ubiquitin ligase function of the BCR complex. Likewise, a substrate of the BCR complex binds heterodimeric Cul3, suggesting that the Cul3 complex is active as a dimer. These findings not only provide insight into the architecture of the active BCR complex but also suggest assembly as a regulatory mechanism for activation of all cullin-based ubiquitin ligases.  相似文献   

14.
Breast cancer metastasis suppressor 1 (BRMS1) suppresses metastasis without affecting primary tumorigenesis. The regulatory mechanism of BRMS1 at the protein level has not been revealed until recently. Here, we found that cullin 3 (Cul3), a component of E3 ubiquitin ligase, is a new binding partner of BRMS1 and the interaction between BRMS1 and Cul3 is mediated by the SPOP adaptor protein. Intriguingly, BRMS1 turns out to be a potent substrate that is ubiquitinated by the Cul3–SPOP complex. Knockdown of SPOP increases the level of BRMS1 protein and represses the expression of BRMS1 repressive target genes such as OPN and uPA in breast cancer cells. These results suggest that the novel regulatory mechanism of BRMS1 by Cul3–SPOP complex is important for breast cancer progression.  相似文献   

15.
Byun B  Jung Y 《Molecules and cells》2008,25(2):289-293
The role of SPOP in the ubiquitination of ER alpha by the Cullin3-based E3 ubiquitin ligase complex was investigated. We showed that the N-terminal region of SPOP containing the MATH domain interacts with the AF-2 domain of ER alpha in cultured human embryonic 293 cells. SPOP was required for coimmunoprecipitation of ER alpha; with Cullin3. This is the first report of the essential role of SPOP in ERalpha ubiquitination by the Cullin3-based E3 ubiquitin ligase complex. We also demonstrated repression of the transactivation capability of ER alpha; in cultured mammalian cells.  相似文献   

16.
17.
Wnt signaling has emerged as a major regulator of tissue development by governing the self-renewal and maintenance of stem cells in most tissue types. As a key upstream regulator of the Wnt pathway, the transmembrane E3 ligase ZNRF3 has recently been established to play a role in negative regulation of Wnt signaling by targeting Frizzled (FZD) receptor for ubiquitination and degradation. However, the upstream regulation of ZNRF3, in particular the turnover of ZNRF3, is still unclear. Here we report that ZNRF3 is accumulated in the presence of proteasome inhibitor treatment independent of its E3-ubiquitin ligase activity. Furthermore, the Cullin 1-specific SCF complex containing β-TRCP has been identified to directly interact with and ubiquitinate ZNRF3 thereby regulating its protein stability. Similar with the degradation of β-catenin by β-TRCP, ZNRF3 is ubiquitinated by β-TRCP in both CKI-phosphorylation-and degron-dependent manners. Thus, our findings not only identify a novel substrate for β-TRCP oncogenic regulation, but also highlight the dual regulation of Wnt signaling by β-TRCP in a contextdependent manner where β-TRCP negatively regulates Wnt signaling by targeting β-catenin, and positively regulates Wnt signaling by targeting ZNRF3.  相似文献   

18.
Ohta T  Sato K  Wu W 《FEBS letters》2011,585(18):2836-2844
Impairment of homologous recombination (HR), a vital process employed during repair of DNA double strand breaks and stalled DNA replication, provides a valuable opportunity for the cell to become transformed. Once transformed, the impairment turns to be a target for therapy as exemplified by the synthetic lethal strategy such as poly (ADP-ribose) polymerase (PARP) inhibitor for BRCA1/2-defective breast and ovarian cancer. Hence, improving mechanistic understanding of HR has emerged as an urgent issue to address due to the high clinical demand. Ubiquitin modification plays a central role in HR and more than a few E3 ubiquitin ligases have been implicated in the process. However, the significance of the activity of one such key E3 ligase, BRCA1, has not yet been clarified and remains as a major obstacle in the field. Here, we review recent advances in our understanding of BRCA1 function in HR and discuss possible roles of the activity.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号