首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Computer-aided synthesis of biochemical pathways   总被引:5,自引:0,他引:5  
The synthesis of biochemical pathways satisfying stoichiometric constraints is discussed. Stoichiometric constraints arise primarily from designating compounds as required or allowed reactants, and required or allowed products of the pathways; they also arise from similar restrictions on intermediate metabolites and bioreactions participating in the pathways. An algorithm for the complete and correct solution of the problem is presented; the algorithm satisfies each constraint by recursively transforming a base-set of pathways. The algorithm is applied to the problem of lysine synthesis from glucose and ammonia. In addition to the established synthesis routes, the algorithm constructs several alternative pathways that bypass key enzymes, such as malate dehydrogenase and pyruvate dehydrogenase. Apart from the construction of pathways with desired characteristics, the systematic synthesis of pathways can also uncover fundamental constraints in a particular problem, by demonstrating that no pathways exist to meet certain sets of specifications. In the case of lysine, the algorithm shows that oxaloacetate is a necessary intermediate in all pathways leading to lysine from glucose, and that the yield of lysine over glucose cannot exceed 67% in the absence of enzymatic recovery of carbon dioxide.  相似文献   

2.
Lee SY  Song KH  Koo I  Lee KH  Suh KS  Kim BY 《Genomics》2012,99(6):347-354
Molecular signatures causing hepatocellular carcinoma (HCC) from chronic infection of hepatitis B virus (HBV) or hepatitis C virus (HCV) are not clearly known. Using microarray datasets composed of HCV-positive HCC or HBV-positive HCC, pathways that could discriminate tumor tissue from adjacent non-tumor liver tissue were selected by implementing nearest shrunken centroid algorithm. Cancer-related signaling pathways and lipid metabolism-related pathways were predominantly enriched in HCV-positive HCC, whereas functionally diverse pathways including immune-related pathways, cell cycle pathways, and RNA metabolism pathways were mainly enriched in HBV-positive HCC. In addition to differentially involved pathways, signaling pathways such as TGF-β, MAPK, and p53 pathways were commonly significant in both HCCs, suggesting the presence of common hepatocarcinogenesis process. The pathway clustering also verified segregation of pathways into the functional subgroups in both HCCs. This study indicates the functional distinction and similarity on the pathways implicated in the development of HCV- and/or HBV-positive HCC.  相似文献   

3.
A systems genetics approach combining pathway analysis of quantitative trait loci (QTL) and gene expression information has provided strong evidence for common pathways associated with genetic resistance to internal parasites. Gene data, collected from published QTL regions in sheep, cattle, mice, rats and humans, and microarray data from sheep, were converted to human Entrez Gene IDs and compared to the KEGG pathway database. Selection of pathways from QTL data was based on a selection index that ensured that the selected pathways were in all species and the majority of the projects overall and within species. Pathways with either up- and down-regulated genes, primarily up-regulated genes or primarily down-regulated genes, were selected from gene expression data. After comparing the data sets independently, the pathways from each data set were compared and the common set of pathways and genes was identified. Comparisons within data sets identified 21 pathways from QTL data and 66 pathways from gene expression data. Both selected sets were enriched with pathways involved in immune functions, disease and cell responses to signals. The analysis identified 14 pathways that were common between QTL and gene expression data, and four directly associated with IFNγ or MHCII, with 31 common genes, including three MHCII genes. In conclusion, a systems genetics approach combining data from multiple QTL and gene expression projects led to the discovery of common pathways associated with genetic resistance to internal parasites. This systems genetics approach may prove significant for the discovery of candidate genes for many other multifactorial, economically important traits.  相似文献   

4.
5.
Geometric targeting (GT) is a recently introduced method for rapidly generating all-atom pathways from one protein state to another, based on geometric rather than energetic considerations. To generate pathways, a bias is applied that gradually moves atoms toward a target structure, while a set of geometric constraints between atoms is enforced to keep the structure stereochemically acceptable. In this work, we compare conformational pathways generated from GT to pathways from the much more computationally intensive and commonly used targeted molecular dynamics (TMD) technique, for a complicated conformational change in the signaling protein nitrogen regulatory protein C. We show that the all-atom pathways from GT are similar to previously reported TMD pathways for this protein, by comparing motion along six progress variables that describe the various structural changes. The results suggest that for nitrogen regulatory protein C, finding an all-atom pathway is primarily a problem of geometry, and that a detailed force field in this case constitutes an unnecessary extra layer of detail. We also show that the pathway snapshots from GT have good structure quality, by measuring various structure quality metrics. Transient hydrogen bonds detected by the two methods show some similarities but also some differences. The results justify the usage of GT as a rapid, approximate alternative to TMD for generating stereochemically acceptable all-atom pathways in highly constrained protein systems.  相似文献   

6.
Exploring the diversity of complex metabolic networks   总被引:1,自引:0,他引:1  
MOTIVATION: Metabolism, the network of chemical reactions that make life possible, is one of the most complex processes in nature. We describe here the development of a computational approach for the identification of every possible biochemical reaction from a given set of enzyme reaction rules that allows the de novo synthesis of metabolic pathways composed of these reactions, and the evaluation of these novel pathways with respect to their thermodynamic properties. RESULTS: We applied this framework to the analysis of the aromatic amino acid pathways and discovered almost 75,000 novel biochemical routes from chorismate to phenylalanine, more than 350,000 from chorismate to tyrosine, but only 13 from chorismate to tryptophan. Thermodynamic analysis of these pathways suggests that the native pathways are thermodynamically more favorable than the alternative possible pathways. The pathways generated involve compounds that exist in biological databases, as well as compounds that exist in chemical databases and novel compounds, suggesting novel biochemical routes for these compounds and the existence of biochemical compounds that remain to be discovered or synthesized through enzyme and pathway engineering. AVAILABILITY: Framework will be available via web interface at http://systemsbiology.northwestern.edu/BNICE (site under construction). CONTACT: vassily@northwestern.edu or broadbelt@northwestern.edu SUPPLEMENTARY INFORMATION: http://systemsbiology.northwestern.edu/BNICE/publications.  相似文献   

7.
The endosomal system functions as a network of protein and lipid sorting stations that receives molecules from endocytic and secretory pathways and directs them to the lysosome for degradation, or exports them from the endosome via retrograde trafficking or plasma membrane recycling pathways. Retrograde trafficking pathways describe endosome‐to‐Golgi transport while plasma membrane recycling pathways describe trafficking routes that return endocytosed molecules to the plasma membrane. These pathways are crucial for lysosome biogenesis, nutrient acquisition and homeostasis and for the physiological functions of many types of specialized cells. Retrograde and recycling sorting machineries of eukaryotic cells were identified chiefly through genetic screens using the budding yeast Saccharomyces cerevisiae system and discovered to be highly conserved in structures and functions. In this review, we discuss advances regarding retrograde trafficking and recycling pathways, including new discoveries that challenge existing ideas about the organization of the endosomal system, as well as how these pathways intersect with cellular homeostasis pathways.  相似文献   

8.
Signaling pathways regulate contraction of striated (skeletal and cardiac) and smooth muscle. Although these are similar, there are striking differences in the pathways that can be attributed to the distinct functional roles of the different muscle types. Muscles contract in response to depolarization, activation of G-protein-coupled receptors and other stimuli. The actomyosin fibers responsible for contraction require an increase in the cytosolic levels of calcium, which signaling pathways induce by promoting influx from extracellular sources or release from intracellular stores. Rises in cytosolic calcium stimulate numerous downstream calcium-dependent signaling pathways, which can also regulate contraction. Alterations to the signaling pathways that initiate and sustain contraction and relaxation occur as a consequence of exercise and pathophysiological conditions.  相似文献   

9.
Closing gaps in our current knowledge about biological pathways is a fundamental challenge. The development of novel computational methods along with high-throughput experimental data carries the promise to help in the challenge. We present an algorithm called MORPH (for module-guided ranking of candidate pathway genes) for revealing unknown genes in biological pathways. The method receives as input a set of known genes from the target pathway, a collection of expression profiles, and interaction and metabolic networks. Using machine learning techniques, MORPH selects the best combination of data and analysis method and outputs a ranking of candidate genes predicted to belong to the target pathway. We tested MORPH on 230 known pathways in Arabidopsis thaliana and 93 known pathways in tomato (Solanum lycopersicum) and obtained high-quality cross-validation results. In the photosynthesis light reactions, homogalacturonan biosynthesis, and chlorophyll biosynthetic pathways of Arabidopsis, genes ranked highly by MORPH were recently verified to be associated with these pathways. MORPH candidates ranked for the carotenoid pathway from Arabidopsis and tomato are derived from pathways that compete for common precursors or from pathways that are coregulated with or regulate the carotenoid biosynthetic pathway.  相似文献   

10.
PathAligner     
MOTIVATION: Analysis of metabolic pathways is a central topic in understanding the relationship between genotype and phenotype. The rapid accumulation of biological data provides the possibility of studying metabolic pathways at both the genomic and the metabolic levels. Retrieving metabolic pathways from current biological data sources, reconstructing metabolic pathways from rudimentary pathway components, and aligning metabolic pathways with each other are major tasks. Our motivation was to develop a conceptual framework and computational system that allows the retrieval of metabolic pathway information and the processing of alignments to reveal the similarities between metabolic pathways. RESULTS: PathAligner extracts metabolic information from biological databases via the Internet and builds metabolic pathways with data sources of genes, sequences, enzymes, metabolites etc. It provides an easy-to-use interface to retrieve, display and manipulate metabolic information. PathAligner also provides an alignment method to compare the similarity between metabolic pathways. AVAILABILITY: PathAligner is available at http://bibiserv.techfak.uni-bielefeld.de/pathaligner.  相似文献   

11.
The MAP-kinase pathways are intracellular signaling modules that are likely to exist in all eukaryotes. We provide an evolutionary model for these signaling pathways by focusing on the gene duplications that have occurred since the divergence of animals from yeast. Construction of evolutionary trees with confidence assessed by bootstrap clearly shows that the mammalian JNK and p38 pathways arose from an ancestral hyperosmolarity pathway after the split from yeast and before the split from C. elegans. These coduplications of interacting proteins at the MAPK and MEK levels have since evolved toward substrate specificity, thus giving distinct pathways. Mammalian duplications since the split from C. elegans are often associated with divergent tissue distribution but do not appear to confer detectable substrate specificity. The yeast kinase cascades have undergone similar fundamental functional changes since the split from mammals, with duplications giving rise to central signaling components of the filamentous and hypoosmolarity pathways. Experimentally defined cross-talk between yeast pheromone and hyperosmolarity pathways is mirrored with corresponding cross-talk in mammalian pathways, suggesting the existence of ancient orthologous cross-talk; our analysis of gene duplications at all levels of the cascade is consistent with this model but does not always provide significant bootstrap support. Our data also provide insights at different levels of the cascade where conflicting experimental evidence exists. Received: 2 December 1998 / Accepted: 9 June 1999  相似文献   

12.
Wen L  Li W  Sobel M  Feng JA 《Proteins》2006,65(1):103-110
Molecular signaling events regulate cellular activity. Cancer stimulating signals trigger cellular responses that evade the regulatory control of cell development. To understand the mechanism of signaling regulation in cancer, it is necessary to identify the activated pathways in cancer. We have developed RepairPATH, a computational algorithm that explores the activated signaling pathways in cancer. The RepairPATH integrates RepairNET, an assembled protein interaction network associated with DNA damage response, with the gene expression profiles derived from the microarray data. Based on the observation that cofunctional proteins often exhibit correlated gene expression profiles, it identifies the activated signaling pathways in cancer by systematically searching the RepairNET for proteins with significantly correlated gene expression profiles. Analyzing the gene expression profiles of breast cancer, we found distinct similarities and differences in the activated signaling pathways between the samples from the patients who developed metastases and the samples from the patients who were disease free within 5 years. The cellular pathways associated with the various DNA repair mechanisms and the cell-cycle checkpoint controls are found to be activated in both sample groups. One of the most intriguing findings is that the pathways associated with different cellular processes are functionally coordinated through BRCA1 in the disease-free sample group, whereas such functional coordination is absent in the samples from patients who developed metastases. Our analysis revealed the potential cellular pathways that regulate the signaling events in breast cancer.  相似文献   

13.
Sustainable microbial production of high‐value organic compounds such as 3‐hydroxypropanoate (3HP) is becoming an increasingly attractive alternative to organic syntheses that utilize petrochemical feedstocks. We applied the Biochemical Network Integrated Computational Explorer (BNICE) framework to the automated design and evaluation of novel biosynthetic routes for the production of 3HP from pyruvate. Among the pathways generated by the BNICE framework were all of the known pathways for the production of 3HP as well as numerous novel pathways. The pathways generated by BNICE were ranked based on four criteria: pathway length, thermodynamic feasibility, maximum achievable yield to 3HP from glucose, and maximum achievable activity at which 3HP can be produced. Four pathways emerged from this ranking as the most promising for the biosynthesis of 3HP, and three of these pathways, including the shortest pathways discovered, were novel. We also discovered novel routes for the biosynthesis of 28 commercially available compounds that are currently produced exclusively through organic synthesis. Examination of the optimal pathways for the biosynthesis of these 28 compounds in E. coli revealed pyruvate and succinate to be ideal intermediates for achieving high product yields from glucose. Biotechnol. Bioeng. 2010; 106: 462–473. © 2010 Wiley Periodicals, Inc.  相似文献   

14.
Bacteria have been thought to follow only a few well‐recognized biochemical pathways when fermenting glucose or other hexoses. These pathways have been chiseled in the stone of textbooks for decades, with most sources rendering them as they appear in the classic 1986 text by Gottschalk. Still, it is unclear how broadly these pathways apply, given that they were established and delineated biochemically with only a few model organisms. Here, we show that well‐recognized pathways often cannot explain fermentation products formed by bacteria. In the most extensive analysis of its kind, we reconstructed pathways for glucose fermentation from genomes of 48 species and subspecies of bacteria from one environment (the rumen). In total, 44% of these bacteria had atypical pathways, including several that are completely unprecedented for bacteria or any organism. In detail, 8% of bacteria had an atypical pathway for acetate formation; 21% of bacteria had an atypical pathway for propionate or succinate formation; 6% of bacteria had an atypical pathway for butyrate formation and 33% of bacteria had an atypical or incomplete Embden–Meyerhof–Parnas pathway. This study shows that reconstruction of metabolic pathways – a common goal of omics studies – could be incorrect if well‐recognized pathways are used for reference. Furthermore, it calls for renewed efforts to delineate fermentation pathways biochemically.  相似文献   

15.
Animal models are crucial for advancing our knowledge about the molecular pathways involved in human diseases. However, it remains unclear to what extent tissue expression of pathways in healthy individuals is conserved between species. In addition, organism-specific information on pathways in animal models is often lacking. Within these limitations, we explore the possibilities that arise from publicly available data for the animal models mouse, rat, and pig. We approximate the animal pathways activity by integrating the human counterparts of curated pathways with tissue expression data from the models. Specifically, we compare whether the animal orthologs of the human genes are expressed in the same tissue. This is complicated by the lower coverage and worse quality of data in rat and pig as compared to mouse. Despite that, from 203 human KEGG pathways and the seven tissues with best experimental coverage, we identify 95 distinct pathways, for which the tissue expression in one animal model agrees better with human than the others. Our systematic pathway-tissue comparison between human and three animal modes points to specific similarities with human and to distinct differences among the animal models, thereby suggesting the most suitable organism for modeling a human pathway or tissue.  相似文献   

16.
Combinatorial signaling is an important mechanism that allows the embryo to utilize overlapping signaling pathways to specify different territories. In zebrafish, the Wnt and Bmp pathways interact to regulate the formation of the posterior body. In order to understand how this works mechanistically, we have identified tbx6 as a posterior mesodermal gene activated by both of these signaling pathways. We isolated a genomic fragment from the tbx6 gene that recapitulates the endogenous tbx6 expression, and used this to ask how the Bmp and Wnt signaling pathways combine to regulate gene expression. We find that the tbx6 promoter utilizes distinct domains to integrate the signaling inputs from each pathway, including multiple Tcf/LEF sites and a novel Bmp-response element. Surprisingly, we found that overexpression of either signaling pathway can activate the tbx6 promoter and the endogenous gene, whereas inputs from both pathways are required for the normal pattern of expression. These results demonstrate that both Bmp and Wnt are present at submaximal levels, which allows the pathways to function combinatorially. We present a model in which overlapping Wnt and Bmp signals in the ventrolateral region activate the expression of tbx6 and other posterior mesodermal genes, leading to the formation of posterior structures.  相似文献   

17.
All neocortical areas receive thalamic inputs. Some thalamocortical pathways relay information from ascending pathways (first order thalamic relays) and others relay information from other cortical areas (higher order thalamic relays), thus serving a role in corticocortical communication. Most, possibly all, afferents reaching thalamus, ascending and cortical, are branches of axons that innervate lower (motor) centers, so that thalamocortical pathways can be viewed generally as monitors of ongoing motor instructions. In terms of numbers, the thalamic relay is dominated by synapses that modulate the relay functions. One of the roles of these modulatory pathways is to change the transfer of information through the thalamus, in accord with current attentional demands. Other roles remain to be explored. These modulatory functions can be expected to act on corticocortical communication in addition to their action on ascending pathways.  相似文献   

18.
19.
The retrograde membrane transport pathways from endosomes to the trans-Golgi network (TGN) are now recognized as critical intracellular pathways to recycle and shuttle a selective subgroup of membrane proteins, including sorting receptors, membrane-bound enzymes, transporters, as well as providing an avenue for the intracellular transport of various bacterial toxins. Multiple pathways from endosomes to the TGN have now been defined which differ between the cargo transported and the machinery used. Here, we review advances in these pathways and the requirement for TGN organization, and also discuss the development of unbiased analytical approaches to quantitatively track cargo that use these endosome-to-TGN pathways.  相似文献   

20.
Pain arising from pancreatic diseases can become chronic and difficult to treat. There is a paucity of knowledge regarding the mechanisms that sensitize neural pathways that transmit noxious information from visceral organs. In this review, neurogenic inflammation is presented as a possible amplifier of the noxious signal from peripheral organs including the pancreas. The nerve pathways that transmit pancreatic pain are also reviewed as a conduit of the amplified signals. It is likely that components of these visceral pain pathways can also be sensitized after neurogenic inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号