共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of the F(1)-ATPase from spinach chloroplasts was determined to 3.2 A resolution by molecular replacement based on the homologous structure of the bovine mitochondrial enzyme. The crystallized complex contains four different subunits in a stoichiometry of alpha(3)beta(3)gammaepsilon. Subunit delta was removed before crystallization to improve the diffraction of the crystals. The overall structure of the noncatalytic alpha-subunits and the catalytic beta-subunits is highly similar to those of the mitochondrial and thermophilic subunits. However, in the crystal structure of the chloroplast enzyme, all alpha- and beta-subunits adopt a closed conformation and appear to contain no bound adenine nucleotides. The superimposed crystallographic symmetry in the space group R32 impaired an exact tracing of the gamma- and epsilon-subunits in the complex. However, clear electron density was present at the core of the alpha(3)beta(3)-subcomplex, which probably represents the C-terminal domain of the gamma-subunit. The structure of the spinach chloroplast F(1) has a potential binding site for the phytotoxin, tentoxin, at the alphabeta-interface near betaAsp(83) and an insertion from betaGly(56)-Asn(60) in the N-terminal beta-barrel domain probably increases the thermal stability of the complex. The structure probably represents an inactive latent state of the ATPase, which is unique to chloroplast and cyanobacterial enzymes. 相似文献
2.
Bowler MW Montgomery MG Leslie AG Walker JE 《The Journal of biological chemistry》2007,282(19):14238-14242
The structure of bovine F(1)-ATPase, crystallized in the presence of AMP-PNP and ADP, but in the absence of azide, has been determined at 1.9A resolution. This structure has been compared with the previously described structure of bovine F(1)-ATPase determined at 1.95A resolution with crystals grown under the same conditions but in the presence of azide. The two structures are extremely similar, but they differ in the nucleotides that are bound to the catalytic site in the beta(DP)-subunit. In the present structure, the nucleotide binding sites in the beta(DP)- and beta(TP)-subunits are both occupied by AMP-PNP, whereas in the earlier structure, the beta(TP) site was occupied by AMP-PNP and the beta(DP) site by ADP, where its binding is enhanced by a bound azide ion. Also, the conformation of the side chain of the catalytically important residue, alphaArg-373 differs in the beta(DP)- and beta(TP)-subunits. Thus, the structure with bound azide represents the ADP inhibited state of the enzyme, and the new structure represents a ground state intermediate in the active catalytic cycle of ATP hydrolysis. 相似文献
3.
Inherent asymmetry of the structure of F1-ATPase from bovine heart mitochondria at 6.5 A resolution. 总被引:2,自引:0,他引:2 下载免费PDF全文
J P Abrahams R Lutter R J Todd M J van Raaij A G Leslie J E Walker 《The EMBO journal》1993,12(5):1775-1780
ATP synthase, the assembly which makes ATP in mitochondria, chloroplasts and bacteria, uses transmembrane proton gradients generated by respiration or photosynthesis to drive the phosphorylation of ADP. Its membrane domain is joined by a slender stalk to a peripheral catalytic domain, F1-ATPase. This domain is made of five subunits with stoichiometries of 3 alpha: 3 beta: 1 gamma: 1 delta: 1 epsilon, and in bovine mitochondria has a molecular mass of 371,000. We have determined the 3-dimensional structure of bovine mitochondrial F1-ATPase to 6.5 A resolution by X-ray crystallography. It is an approximately spherical globule 110 A in diameter, on a 40 A stem which contains two alpha-helices in a coiled-coil. This stem is presumed to be part of the stalk that connects F1 with the membrane domain in the intact ATP synthase. A pit next to the stem penetrates approximately 35 A into the F1 particle. The stem and the pit are two examples of the many asymmetric features of the structure. The central element in the asymmetry is the longer of the two alpha-helices in the stem, which extends for 90 A through the centre of the assembly and emerges on top into a dimple 15 A deep. Features with threefold and sixfold symmetry, presumed to be parts of homologous alpha and beta subunits, are arranged around the central rod and pit, but the overall structure is asymmetric. The central helix provides a possible mechanism for transmission of conformational changes induced by the proton gradient from the stalk to the catalytic sites of the enzyme. 相似文献
4.
Singh AK Singh N Sharma S Singh SB Kaur P Bhushan A Srinivasan A Singh TP 《Journal of molecular biology》2008,376(4):1060-1075
Lactoperoxidase (LPO) is a member of the mammalian peroxidase superfamily. It catalyzes the oxidation of thiocyanate and halides. Freshly isolated and purified samples of caprine LPO were saturated with ammonium iodide and crystallized using 20% polyethylene glycol 3350 in a hanging drop vapor diffusion setup. The structure has been determined using X-ray crystallographic method and refined to Rcryst and Rfree factors of 0.196 and 0.203, respectively. The structure determination revealed an unexpected phosphorylation of Ser198 in LPO, which is also confirmed by anti-phosphoserine antibody binding studies. The structure is also notable for observing densities for glycan chains at all the four potential glycosylation sites. Caprine LPO consists of a single polypeptide chain of 595 amino acid residues and folds into an oval-shaped structure. The structure contains 20 well-defined α-helices of varying lengths including a helix, H2a, unique to LPO, and two short antiparallel β-strands. The structure confirms that the heme group is covalently linked to the protein through two ester linkages involving carboxylic groups of Glu258 and Asp108 and modified methyl groups of pyrrole rings A and C, respectively. The heme moiety is slightly distorted from planarity, but pyrrole ring B is distorted considerably. However, an iron atom is displaced only by 0.1 Å from the plane of the heme group toward the proximal site. The substrate diffusing channel in LPO is cylindrical in shape with a diameter of approximately 6 Å. Two histidine residues and six buried water molecules are connected through a hydrogen-bonded chain from the distal heme cavity to the surface of protein molecule and seemingly form the basis of proton relay for catalytic action. Ten iodide ions have been observed in the structure. Out of these, only one iodide ion is located in the distal heme cavity and is hydrogen bonded to the water molecule W1. W1 is also hydrogen bonded to the heme iron as well as to distal His109. The structure contains a calcium ion that is coordinated to seven oxygen atoms and forms a typical pentagonal bipyramidal coordination geometry. 相似文献
5.
In the structure of bovine F1-ATPase inhibited with residues 1-60 of the bovine inhibitor protein IF1, the α-helical inhibitor interacts with five of the nine subunits of F1-ATPase. In order to understand the contributions of individual amino acid residues to this complex binding mode, N-terminal deletions and point mutations have been introduced, and the binding properties of each mutant inhibitor protein have been examined. The N-terminal region of IF1 destabilizes the interaction of the inhibitor with F1-ATPase and may assist in removing the inhibitor from its binding site when F1Fo-ATPase is making ATP. Binding energy is provided by hydrophobic interactions between residues in the long α-helix of IF1 and the C-terminal domains of the βDP-subunit and βTP-subunit and a salt bridge between residue E30 in the inhibitor and residue R408 in the C-terminal domain of the βDP-subunit. Several conserved charged amino acids in the long α-helix of IF1 are also required for establishing inhibitory activity, but in the final inhibited state, they are not in contact with F1-ATPase and occupy aqueous cavities in F1-ATPase. They probably participate in the pathway from the initial interaction of the inhibitor and the enzyme to the final inhibited complex observed in the structure, in which two molecules of ATP are hydrolysed and the rotor of the enzyme turns through two 120° steps. These findings contribute to the fundamental understanding of how the inhibitor functions and to the design of new inhibitors for the systematic analysis of the catalytic cycle of the enzyme. 相似文献
6.
In mitochondria, the hydrolytic activity of ATP synthase is prevented by an inhibitor protein, IF1. The active bovine protein (84 amino acids) is an alpha-helical dimer with monomers associated via an antiparallel alpha-helical coiled coil composed of residues 49-81. The N-terminal inhibitory sequences in the active dimer bind to two F1-ATPases in the presence of ATP. In the crystal structure of the F1-IF1 complex at 2.8 A resolution, residues 1-37 of IF1 bind in the alpha(DP)-beta(DP) interface of F1-ATPase, and also contact the central gamma subunit. The inhibitor opens the catalytic interface between the alpha(DP) and beta(DP) subunits relative to previous structures. The presence of ATP in the catalytic site of the beta(DP) subunit implies that the inhibited state represents a pre-hydrolysis step on the catalytic pathway of the enzyme. 相似文献
7.
Boix E Leonidas DD Nikolovski Z Nogués MV Cuchillo CM Acharya KR 《Biochemistry》1999,38(51):16794-16801
Eosinophil cationic protein (ECP) is located in the matrix of the eosinophil's large specific granule and has marked toxicity for a variety of helminth parasites, hemoflagellates, bacteria, single-stranded RNA virus, and mammalian cells and tissues. It belongs to the bovine pancreatic ribonuclease A (RNase A) family and exhibits ribonucleolytic activity which is about 100-fold lower than that of a related eosinophil ribonuclease, the eosinophil-derived neurotoxin (EDN). The crystal structure of human ECP, determined at 2.4 A, is similar to that of RNase A and EDN. It reveals that residues Gln-14, His-15, Lys-38, Thr-42, and His-128 at the active site are conserved as in all other RNase A homologues. Nevertheless, evidence for considerable divergence of ECP is also implicit in the structure. Amino acid residues Arg-7, Trp-10, Asn-39, His-64, and His-82 appear to play a key part in the substrate specificity and low catalytic activity of ECP. The structure also shows how the cationic residues are distributed on the surface of the ECP molecule that may have implications for an understanding of the cytotoxicity of this enzyme. 相似文献
8.
Molecular structure of flavocytochrome b2 at 2.4 A resolution 总被引:16,自引:0,他引:16
The crystal structure of flavocytochrome b2 has been solved at 3.0 A resolution by the method of multiple isomorphous replacement with anomalous scattering. Area detector data from native and two heavy-atom derivative crystals were used. The phases were refined by the B.C. Wang phase-filtering procedure utilizing the 67% (v/v) solvent content of the crystals. A molecular model was built first on a minimap and then on computer graphics from a combination of maps both averaged and not averaged about the molecular symmetry axis. The structure was extended to 2.4 A resolution using film data recorded at a synchrotron and refined by the Hendrickson-Konnert procedure. The molecule, a tetramer of Mr 230,000, is located on a crystallographic 2-fold axis and possesses local 4-fold symmetry. Each subunit is composed of two domains, one binding a heme and the other an FMN prosthetic group. In subunit 1, both the cystochrome and the flavin-binding domain are visible in the electron density map. In subunit 2 the cytochrome domain is disordered. However, in the latter, a molecule of pyruvate, the product of the enzymatic reaction, is bound at the active site. The cytochrome domain consists of residues 1 to 99 and is folded in a fashion similar to the homologous soluble fragment of cytochrome b5. The flavin binding domain contains a parallel beta 8 alpha 8 barrel structure and is composed of residues 100 to 486. The remaining 25 residues form a tail that wraps around the molecular 4-fold axis and is in contact with each remaining subunit. The FMN moiety, which is located at the C-terminal end of the central beta-barrel, is mostly sequestered from solvent; it forms hydrogen bond interactions with main- and side-chain atoms from six of the eight beta-strands. The interaction of Lys349 with atoms N-1 and O-2 of the flavin ring is probably responsible for stabilization of the anionic form of the flavin semiquinone and hydroquinone and enhancing the reactivity of atom N-5 toward sulfite. The binding of pyruvate at the active site in subunit 2 is stabilized by interaction of its carboxylate group with the side-chain atoms of Arg376 and Tyr143. Residues His373 and Tyr254 interact with the keto-oxygen atom and are involved in catalysis. In contrast, four water molecules occupy the substrate-binding site in subunit 1 and Tyr143 forms a hydrogen bond to the ordered heme propionate group. Otherwise the two flavin-binding domains are identical within experimental error.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
9.
The structure of bovine F1-ATPase inhibited with ADP and beryllium fluoride at 2.0 angstroms resolution contains two ADP.BeF3- complexes mimicking ATP, bound in the catalytic sites of the beta(TP) and beta(DP) subunits. Except for a 1 angstrom shift in the guanidinium of alphaArg373, the conformations of catalytic side chains are very similar in both sites. However, the ordered water molecule that carries out nucleophilic attack on the gamma-phosphate of ATP during hydrolysis is 2.6 angstroms from the beryllium in the beta(DP) subunit and 3.8 angstroms away in the beta(TP) subunit, strongly indicating that the beta(DP) subunit is the catalytically active conformation. In the structure of F1-ATPase with five bound ADP molecules (three in alpha-subunits, one each in the beta(TP) and beta(DP) subunits), which has also been determined, the conformation of alphaArg373 suggests that it senses the presence (or absence) of the gamma-phosphate of ATP. Two catalytic schemes are discussed concerning the various structures of bovine F1-ATPase. 相似文献
10.
Echicetin is a heterodimeric protein from the venom of the Indian saw-scaled viper, Echis carinatus. It binds to platelet glycoprotein Ib (GPIb) and thus inhibits platelet aggregation. It has two subunits, alpha and beta, consisting of 131 and 123 amino acid residues, respectively. The two chains are linked with a disulphide bond. The level of amino acid sequence homology between two subunits is 50%. The protein was purified from the venom of E.carinatus and crystallized using ammonium sulphate as a precipitant. The crystal structure has been determined at 2.4A resolution and refined to an R-factor of 0.187. Overall dimensions of the heterodimer are approximately 80Ax35Ax35A. The backbone folds of the two subunits are similar. The central portions of the polypeptide chains of alpha and beta-subunits move into each other to form a tight dimeric association. The remaining portions of the chains of both subunits fold in a manner similar to those observed in the carbohydrate-binding domains of C-type lectins. In echicetin, the Ca(2+)-binding sites are not present, despite being topologically equivalent to other similar Ca(2+)-binding proteins of the superfamily. The residues Ser41, Glu43 and Glu47 in the calcium-binding proteins of the related family are conserved but the residues Glu126/120 are replaced by lysine at the corresponding sites in the alpha and beta-subunits. 相似文献
11.
Leslie AG Abrahams JP Braig K Lutter R Menz RI Orriss GL van Raaij MJ Walker JE 《Biochemical Society transactions》1999,27(2):37-42
There is now compelling evidence in support of a rotary catalytic mechanism in F1-ATPase, and, by extension, in the intact ATP synthase. Although models have been proposed to explain how protein translocation in F0 results in rotation of the gamma-subunit relative to the alpha 3/beta 3 assembly in F1 [22], these are still speculative. It seems likely that a satisfactory explanation of this mechanism will ultimately depend on structural information on the intact ATP synthase. 相似文献
12.
J E Walker I M Fearnley N J Gay B W Gibson F D Northrop S J Powell M J Runswick M Saraste V L Tybulewicz 《Journal of molecular biology》1985,184(4):677-701
The enzyme complex F1-ATPase has been isolated from bovine heart mitochondria by gel filtration of the enzyme released by chloroform from sub-mitochondrial particles. The five individual subunits alpha, beta, gamma, delta and epsilon that comprise the complex have been purified from it, and their amino acid sequences determined almost entirely by direct protein sequence analysis. A single overlap in the gamma-subunit was obtained by DNA sequence analysis of a complementary DNA clone isolated from a bovine cDNA library using a mixture of 32 oligonucleotides as the hybridization probe. The alpha, beta, gamma, delta and epsilon subunits contain 509, 480, 272, 146 and 50 amino acids, respectively. Two half cystine residues are present in the alpha-subunit and one in each of the gamma- and epsilon-chains; they are absent from the beta- and delta-subunits. The stoichiometry of subunits in the complex is estimated to be alpha 3 beta 3 gamma 1 delta 1 epsilon 1 and the molecular weight of the complex is 371,135. Mild trypsinolysis of the F1-ATPase complex, which has little effect on the hydrolytic activity of the enzyme, releases peptides from the N-terminal regions of the alpha- and beta-chains only; the C-terminal regions are unaffected. Sequence analysis of the released peptides demonstrates that the N terminals of the alpha- and beta-chains are ragged. In 65% of alpha-chains, the terminus is pyrrolidone carboxylic acid; in the remainder this residue is absent and the chains commence at residue 2, i.e. lysine. In the beta-subunit a minority of chains (16%) have N-terminal glutamine, or its deamidation product, glutamic acid (6%), or the cyclized derivative, pyrrolidone carboxylic acid (5%). A further 28% commence at residue 2, alanine, and 45% at residue 3, serine. The delta-chains also are heterogeneous; in 50% of chains the N-terminal alanine residue is absent. The sequences of the alpha- and beta-chains show that they are weakly homologous, as they are in bacterial F1-ATPases. The sequence of the bovine delta-subunit of F1-ATPase shows that it is the counterpart of the bacterial epsilon-subunit. The bovine epsilon-subunit is not related to any known bacterial or chloroplast H+-ATPase subunit, nor to any other known sequence. The counterpart of the bacterial delta-subunit is bovine oligomycin sensitivity conferral protein, which helps to bind F1 to the inner mitochondrial membrane.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
13.
Xu Q Schwarzenbacher R Page R Sims E Abdubek P Ambing E Biorac T Brinen LS Cambell J Canaves JM Chiu HJ Dai X Deacon AM DiDonato M Elsliger MA Floyd R Godzik A Grittini C Grzechnik SK Hampton E Jaroszewski L Karlak C Klock HE Koesema E Kovarik JS Kreusch A Kuhn P Lesley SA Levin I McMullan D McPhillips TM Miller MD Morse A Moy K Ouyang J Quijano K Reyes R Rezezadeh F Robb A Spraggon G Stevens RC van den Bedem H Velasquez J Vincent J von Delft F Wang X West B Wolf G Hodgson KO Wooley J Wilson IA 《Proteins》2004,56(3):619-624
14.
Recent studies on the IF(1) inhibitor protein of the mitochondrial F(1)F(0)-ATPase from molecular biochemistry to possible pathophysiological roles are reviewed. The apparent mechanism of IF(1) inhibition of F(1)F(0)-ATPase activity and the biophysical conditions that influence IF(1) activity are summarized. The amino acid sequences of human, bovine, rat and murine IF(1) are compared and domains and residues implicated in IF(1) function examined. Defining the minimal inhibitory sequence of IF(1) and the role of conserved histidines and conformational changes using peptides or recombinant IF(1) is reviewed. Luft's disease, a mitochondrial myopathy where IF(1) is absent, is described with respect to IF(1) relevance to mitochondrial bioenergetics and clinical observations. The possible pathophysiological role of IF(1) in conserving ATP under conditions where cells experience oxygen deprivation (tumor growth, myocardial ischemia) is evaluated. Finally, studies attempting to correlate IF(1) activity to ATP conservation in myocardial ischemic preconditioning are compared. 相似文献
15.
M W Parker J P Postma F Pattus A D Tucker D Tsernoglou 《Journal of molecular biology》1992,224(3):639-657
The E1 subgroup (E1, A, B, IA, IB, K and N) of anti-bacterial toxins called colicins is known to form voltage-dependent channels in lipid bilayers. The crystal structure of the pore-forming domain of colicin A from Escherichia coli has been refined to the diffraction limit of the crystals at 2.4 A resolution by means of molecular dynamics and restrained least-squares methods to a conventional R-factor of 0.18 for all data between 6.0 and 2.4 A resolution. The polypeptide chain of 204 amino acid residues consists of ten alpha-helices organized in a three-layer structure. The helices range in length from 9 to 23 residues with an average length of 125 residues. The packing arrangement of the helices has been analysed; the packing is different from that observed in four-helix bundle proteins. The sites of 83 water molecules have been located and refined. Analysis of the structure provides insights into the mechanism of formation of a voltage-gated channel by the protein. Although it is proposed that substantial tertiary structural changes occur during membrane insertion, the secondary structural elements remain conserved. This idea has been proposed recently for a number of other protein-membrane events and thus may have more general applicability. 相似文献
16.
Zubieta C Krishna SS McMullan D Miller MD Abdubek P Agarwalla S Ambing E Astakhova T Axelrod HL Carlton D Chiu HJ Clayton T Deller M DiDonato M Duan L Elsliger MA Grzechnik SK Hale J Hampton E Han GW Haugen J Jaroszewski L Jin KK Klock HE Knuth MW Koesema E Kumar A Marciano D Morse AT Nigoghossian E Oommachen S Reyes R Rife CL van den Bedem H Weekes D White A Xu Q Hodgson KO Wooley J Deacon AM Godzik A Lesley SA Wilson IA 《Proteins》2007,68(4):999-1005
17.
The crystal structure of recombinant bovine chymosin (EC 3.4.23.4; renin), which was cloned and expressed in Escherichia coli, has been determined using X-ray data extending to 2.3 A resolution. The crystals of the enzyme used in this study belong to the space group I222 with unit cell dimensions alpha = 72.7 A, b = 80.3 A, and c = 114.8 A. The structure was solved by the molecular replacement method and was refined by a restrained least-squares procedure. The crystallographic R factor is 0.165 and the deviation of bond distances from ideality is 0.020 A. The resulting model includes all 323 amino acid residues, as well as 297 water molecules. The enzyme has an irregular shape with approximate maximum dimensions of 40 x 50 x 65 A. The secondary structure consists primarily of parallel and antiparallel beta-strands with a few short alpha-helices. The enzyme can be subdivided into N- and C-terminal domains which are separated by a deep cleft containing the active aspartate residues Asp-34 and Asp-216. The amino acid residues and waters at the active site form an extensive hydrogen-bonded network which maintains the pseudo 2-fold symmetry of the entire structure. A comparison of recombinant chymosin with other acid proteinases reveals the high degree of structural similarity with other members of this family of proteins as well as the subtle differences which make chymosin unique. In particular, Tyr-77 of the flap region of chymosin does not hydrogen bond to Trp-42 but protrudes out in the P1 pocket forming hydrophobic interactions with Phe-119 and Leu-32. This may have important implications concerning the mechanism of substrate binding and substrate specificity. 相似文献
18.
Kato-Yamada Y Bald D Koike M Motohashi K Hisabori T Yoshida M 《The Journal of biological chemistry》1999,274(48):33991-33994
Since the report by Sternweis and Smith (Sternweis, P. C., and Smith, J. B. (1980) Biochemistry 19, 526-531), the epsilon subunit, an endogenous inhibitor of bacterial F(1)-ATPase, has long been thought not to inhibit activity of the holo-enzyme, F(0)F(1)-ATPase. However, we report here that the epsilon subunit is exerting inhibition in F(0)F(1)-ATPase. We prepared a C-terminal half-truncated epsilon subunit (epsilon(DeltaC)) of the thermophilic Bacillus PS3 F(0)F(1)-ATPase and reconstituted F(1)- and F(0)F(1)-ATPase containing epsilon(DeltaC). Compared with F(1)- and F(0)F(1)-ATPase containing intact epsilon, those containing epsilon(DeltaC) showed uninhibited activity; severalfold higher rate of ATP hydrolysis at low ATP concentration and the start of ATP hydrolysis without an initial lag at high ATP concentration. The F(0)F(1)-ATPase containing epsilon(DeltaC) was capable of ATP-driven H(+) pumping. The time-course of pumping at low ATP concentration was faster than that by the F(0)F(1)-ATPase containing intact epsilon. Thus, the comparison with noninhibitory epsilon(DeltaC) mutant shed light on the inhibitory role of the intact epsilon subunit in F(0)F(1)-ATPase. 相似文献
19.
The crystal structure of an alkaline protease from Bacillus alcalophilus has been determined by X-ray diffraction at 2.4 A resolution. The enzyme crystallizes in space group P2(1)2(1)2(1) with lattice constants a = 53.7, b = 61.6, c = 75.9 A. The structure was solved by molecular replacement using the structure of subtilisin Carlsberg as search model. Refinement using molecular dynamics and restrained least squares methods results in a crystallographic R-factor of 0.185. The tertiary structure is very similar to that of subtilisin Carlsberg. The greatest structural differences occur in loops at the surface of the protein. 相似文献
20.
Xu L 《Biochimica et biophysica acta》2008,1777(11):1422-1431
The enzyme F(1)-ATPase is a rotary nanomotor in which the central gamma subunit rotates inside the cavity made of alpha(3)beta(3) subunits. The experiments showed that the rotation proceeds in steps of 120 degrees and each 120 degrees step consists of 80 degrees and 40 degrees substeps. Here the Author proposes a stochastic wave mechanics of the F(1)-ATPase motor and combines it with the structure-based kinetics of the F(1)-ATPase to form a chemomechanic coupled model. The model can reproduce quantitatively and explain the experimental observations about the F(1) motor. Using the model, several rate-limited situations about gamma subunit rotation are proposed, the effects of the friction and the load on the substeps are investigated and the chemomechanic coupled time during ATP hydrolysis cycle is determined. 相似文献