首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Subcellular distribution of aminoacyl-tRNA synthetase activities has been studied in normal rabbit liver and under experimental myocardial ischemia (EMI). An increase in the activity of a number of aminoacyl-tRNA synthetases in postmitochondrial and postribosomal supernatants from rabbit liver has been determined 12 hr after EMI. Gel chromatography of the postribosomal supernatant on Sepharose 6B shows that aminoacyl-tRNA synthetase activities are distributed among the fractions with Mr 1.82×106, 0.84×106 (high-Mr aminoacyl-tRNA synthetase complexes) and 0.12–0.35×106. In the case of EMI aminoacyl-tRNA synthetase activities are partly redistributed from the 1.82×106 complex into the 0.84×106 complex. The catalytic properties of both free and complex leucyl-tRNA synthetases have been compared. KM for all the substrates are the values of the same order in norm and under EMI. A decrease in some aminoacyl-tRNA synthetase activities associated with polyribosomes has been observed 12 hr after EMI. The interaction of aminoacyl-tRNA synthetases with polyribosomes stimulates the catalytic activity of some enzymes and protects them from heat inactivationin vitro. It is assumed that the changes in association of aminoacyl-tRNA synthetases with high-Mr complexes and compartmentalization of these enzymes on polyribosomes may be related to the alteration of protein biosynthesis under myocardial ischemia.  相似文献   

2.
1. Only two aminoacyl-tRNA synthetases from Chinese hamster ovary cells are found associated with ribosomes and polyribosomes. 2. Phenylalanyl-tRNA synthetase activity is found with the 60S subunit, 80S monoribosome and individual polyribosomes. An additional 15S form of the enzyme is also seen. 3. Lysyl-tRNA synthetase activity is found in a form of about 20S and associated with ribosomal subunits and polyribosomes. The ribosomal subunits having lysyl-tRNA synthetase activity are about 6S larger than the bulk of the ribosomal subunits. 4. The lysyl- and phenylalanyl-tRNA synthetases found in different complexes have differential sensitivity to EDTA and centrifugation properties.  相似文献   

3.
Distribution of the aminoacyl-tRNA synthetase activity has been studied in the normal rabbit liver cells and in the model of protein synthesis damage, i.e. under experimental myocardial infarction (EMI). The activity of a number of aminoacyl-tRNA synthetases in postmitochondrial and postribosomal extracts from rabbit liver homogenate has been determined to increase 12 h after EMI. Gel filtration of the postribosomal extract on Sepharose 6B shows that the activity of aminoacyl-tRNA synthetases is distributed among the fractions with Mr 1.82 x 10(6), 0.84 x 10(6) and 0.12 = 0.35 x 10(6). The first two fractions (high-molecular-weight aminoacyl-tRNA synthetase complexes) contain arginyl-, glutamyl-, isoleucyl-, leucyl-, lysyl- and valyl-tRNA synthetases, whereas the low-molecular-weight fraction contains alanyl-, arginyl-, glycyl-, phenylalanyl-, seryl-, threonyl-, tryptophanyl- and tyrosyl-tRNA synthetases. In a case of EMI all the aminoacyl-tRNA synthetases translocate from the complexes with Mr 1.82 x 10(6) into the complexes with Mr 0.84 x 10(6), what provided evidence for the possibility to regulate protein synthesis by changes in compartmentalization of aminoacyl-tRNA synthetases.  相似文献   

4.
A simple three-step procedure was used to isolate threonyl-tRNA synthetase of rabbit reticulocytes which is in a ribosome-free extract in the RNA-non-binding form. According to SDS electrophoresis, the enzyme has a molecular weight of 86 000 Da and is heterogeneous by isoelectric point; pI of the major component is near 6.2. Threonyl-tRNA synthetase is capable of interacting with a high molecular weight RNA (E. coli rRNA). Thus, in the course of purification threonyl-tRNA synthetase passes from the RNA-non-binding to the RNA-binding form. This transition was shown to be reversible.  相似文献   

5.
The subcellular distribution of five aminoacyl-tRNA synthetases from yeast, including lysyl-, arginyl- and methionyl-tRNA synthetases known to exist as high-molecular-weight complexes in lysates from higher eukaryotes, was investigated. To minimize the risks of proteolysis, spheroplasts prepared from exponentially grown yeast cells were lysed in the presence of several proteinase inhibitors, under conditions which preserved the integrity of the proteinase-rich vacuoles. The vacuole-free supernatant was subjected to sucrose density gradient centrifugation. No evidence for multimolecular associations of these enzymes was found. In particular, phenylalanyl-tRNA synthetase activity was not associated with the ribosomes, whereas purified phenylalanyl-tRNA synthetase from sheep liver, added to the yeast lysate prior to centrifugation, was entirely recovered in the ribosomal fraction. A mixture of lysates from yeast and rabbit liver was also subjected to sucrose gradient centrifugation and assayed for methionyl- and arginyl-tRNA synthetase activities, under conditions which allowed discrimination between the enzymes originating from yeast and rabbit. The two enzymes from rabbit liver were found to sediment exclusively as high-molecular-weight complexes, in contrast to the corresponding enzymes from yeast, which displayed sedimentation properties characteristic of free enzymes. The preservation of the complexed forms of mammalian aminoacyl-tRNA synthetases upon mixing of yeast and rabbit liver extracts argues against the possibility that failure to observe complexed forms of these enzymes in yeast was due to uncontrolled proteolysis. Furthermore, this result denies the presence, in the crude extract from liver, of components capable of inducing artefactual aggregation of the yeast aminoacyl-tRNA synthetases, and thus indirectly argues against an artefactual origin of the multienzyme complexes encountered in lysates from mammalian cells.  相似文献   

6.
Aminoacyl-tRNA synthetases of higher eukaryotes possess polypeptide extensions in contrast to their prokaryotic counterparts. These extra domains of poorly understood function are believed to be involved in protein-protein or protein-RNA interactions. Here we showed by gel retardation and filter binding experiments that the repeated units that build the linker region of the bifunctional glutamyl-prolyl-tRNA synthetase had a general RNA-binding capacity. The solution structure of one of these repeated motifs was also solved by NMR spectroscopy. One repeat is built around an antiparallel coiled-coil. Strikingly, the conserved lysine and arginine residues form a basic patch on one side of the structure, presenting a suitable docking surface for nucleic acids. Therefore, this repeated motif may represent a novel type of general RNA-binding domain appended to eukaryotic aminoacyl-tRNA synthetases to serve as a cis-acting tRNA-binding cofactor.  相似文献   

7.
Threonyl-tRNA synthetase has been shown to be phosphorylated in reticulocytes (Dang, C. V., Tan, E. M., and Traugh, J. A., (1988) FASEB J. 2, 2376-2379). Upon incubation of reticulocytes with 8-bromo-cAMP, phosphorylation of threonyl-tRNA synthetase is stimulated approximately 2-fold, an increase similar to that observed with ribosomal protein S6. To analyze the effects of phosphorylation on activity, threonyl-tRNA synthetase has been purified to apparent homogeneity from rabbit reticulocytes utilizing a four-step purification procedure with the simultaneous purification of seryl-tRNA synthetase. Both synthetases are phosphorylated in vitro by the cAMP-dependent protein kinase. Prior to phosphorylation, the two synthetases produce significant amounts of P1, P4-bis(5'-adenosyl)-tetraphosphate (Ap4A) in the presence of the cognate amino acid and ATP, with activities comparable to that of lysyl-tRNA synthetase. Phosphorylation has no effect on aminoacylation, but an increase in Ap4A synthesis of up to 6-fold is observed with threonyl-tRNA synthetase and 2-fold with seryl-tRNA synthetase. Thus, cAMP-mediated phosphorylation of specific aminoacyl-tRNA synthetases appears to be a potential mode of regulation of Ap4A synthesis in mammals.  相似文献   

8.
从不同年龄(20天,30天,1年)的小白鼠全脑制得细胞质混合氨酰tRNA合成酶。用异源体系(即用酵母tRNA和小白鼠全脑氨酰tRNA合成酶)测定了氨酰tRNA合成酶分别载运~3H标记的Asp、Gly、Glu、Lys和Ala的活力。结果表明除未检出tRNA~(Glu)的合成酶活力外,对其余四种氨基酸都有明显的活力,特别是年龄20天小白鼠的氨酰tRNA合成酶对~3H-Gly具有高达35%的载运活力。对~3H-Gly、~3H-Lys和~3H-Ala的载运活力有随增龄而下降的趋势,但对~3H-Asp的载运活力则随年龄增长而增高。  相似文献   

9.
An aminoacyl-tRNA synthetase complex in Escherichia coli.   总被引:3,自引:1,他引:2       下载免费PDF全文
Aminoacyl-tRNA synthetases from several strains of Escherichia coli are shown to elute as a high-molecular-weight complex on 6% agarose columns (Bio-Gel A-5M). In contrast, very little synthetase activity was observed in such complexes on Sephadex G-200 columns, suggesting that these enzymes may interact with or are dissociated during chromatography on dextran. The size of the complex observed on Bio-Gel A-5M was influenced by the method of cell breakage and the salt concentrations present in buffers. The largest complexes (greater than 1,000,000 daltons) were seen with cells broken with a freeze press, whereas with sonicated preparations the average size of the complex was about 400,000 daltons. Extraction of synthetases at 0.15 M NaCl, to mimic physiological salt concentrations, also resulted in high-molecular-weight complexes, as demonstrated by both agarose gel filtration and ultracentrifugation analysis. Evidence is presented that dissociation of some synthetases does occur in the presence of higher salt levels (0.4 M NaCl). Partial purification of the synthetase complex on DEAE-Sephacel was accomplished with only minor dissociation of individual synthetases. These data suggest that a complex(es) of aminoacyl-tRNA synthetase does exist in bacterial cells, just as in eucaryotes, and that the complex may have escaped earlier detection due to its fragility during isolation.  相似文献   

10.
D E Godar  D E Godar  V Garcia  A Jacobo  U Aebi  D C Yang 《Biochemistry》1988,27(18):6921-6928
The multienzyme complexes of mammalian aminoacyl-tRNA synthetases were purified from rat liver, rabbit liver, and rabbit reticulocytes according to the procedure slightly modified from Kellermann et al. [Kellermann, O., Brevet, A., Tonetti, H., & Waller, J.-P. (1979) Eur. J. Biochem. 99, 541-550]. Three forms of the synthetase complex with slightly different protein compositions were identified, suggesting a microheterogeneity of the synthetase complex. The hydrodynamic properties and the protein composition of the purified complexes were determined. The electron micrographs of the complex showed mostly amorphous particles and some hollow rings with an outer diameter of 164 A and an inner diameter of 42 A. The predicted hydrodynamic properties of several models of the complex were calculated. The properties of a ring model appear to best fit with those of the synthetase complex.  相似文献   

11.
Aminoacyl-tRNA synthetases, a group of enzymes catalyzing aminoacyl-tRNA formation, may possess inherent editing activity to clear mistakes arising through the selection of non-cognate amino acid. It is generally assumed that both editing substrates, non-cognate aminoacyl-adenylate and misacylated tRNA, are hydrolyzed at the same editing domain, distant from the active site. Here, we present the first example of an aminoacyl-tRNA synthetase (seryl-tRNA synthetase) that naturally lacks an editing domain, but possesses a hydrolytic activity toward non-cognate aminoacyl-adenylates. Our data reveal that tRNA-independent pre-transfer editing may proceed within the enzyme active site without shuttling the non-cognate aminoacyl-adenylate intermediate to the remote editing site.  相似文献   

12.
Five aminoacyl-tRNA synthetases found in the high molecular weight core complex were phosphorylated in rabbit reticulocytes following labeling with 32P. The synthetases were isolated by affinity chromatography on tRNA-Sepharose followed by immunoprecipitation. The five synthetases phosphorylated were the glutamyl-, glutaminyl-, lysyl-, and aspartyl-tRNA synthetases and, to a lesser extent, the methionyl-tRNA synthetase. In addition, a 37,000-dalton protein, associated with the synthetase complex and tentatively identified as casein kinase I, was also phosphorylated in intact cells. Phosphoamino acid analysis of the proteins indicated all of the phosphate was on seryl residues. Incubation of reticulocytes with 32P in the presence of 8-bromo-cAMP and 3-isobutyl-1-methylxanthine resulted in a 6-fold increase in phosphorylation of the glutaminyl-tRNA synthetase and a 2-fold increase in phosphorylation of the aspartyl-tRNA synthetase. When the high molecular weight core complex was isolated by gel filtration/affinity chromatography, the profile of phosphorylation was similar to that observed by immunoprecipitation with a 9- and 3-fold stimulation of the glutaminyl- and aspartyl tRNA-synthetase, respectively. From this data it was concluded that the increased phosphorylation of the glutaminyl- and aspartyl-tRNA synthetases obtained with 8-bromo-cAMP did not appear to be involved in dissociation of the high molecular weight core complex.  相似文献   

13.
The phosphorylation of a highly purified aminoacyl-tRNA synthetase complex from rabbit reticulocytes by the cyclic nucleotide-independent protein kinase, casein kinase I, has been examined, and the effects of phosphorylation on the synthetase activities were determined. The synthetase complex, purified as described (Kellermann, O., Tonetti, H., Brevet, A., Mirande, M., Pailliez, J.-P., and Waller, J.-P. (1982) J. Biol. Chem. 257, 11041-11048), contains seven aminoacyl-tRNA synthetases and four unidentified proteins and is free of endogenous protein kinase activity. Incubation of the complex with casein kinase I in the presence of ATP results in the phosphorylation of four synthetases, namely, glutamyl-, isoleucyl-, methionyl-, and lysyl-tRNA synthetases. Phosphorylation by casein kinase I alters binding of the aminoacyl-tRNA synthetase complex to tRNA-Sepharose. The phosphorylated synthetase complex elutes from tRNA-Sepharose at 190 mM NaCl, while the nonphosphorylated complex elutes at 275 mM NaCl. Phosphorylation by casein kinase I results in a significant inhibition of aminoacylation by the glutamyl-, isoleucyl-, methionyl-, and lysyl-tRNA synthetases; the activities of the nonphosphorylated synthetases remain unchanged. These data indicate that phosphorylation of aminoacyl-tRNA synthetases in the high molecular weight complex alters the activities of these enzymes. One of the unidentified proteins present in the complex (Mr 37,000) is also highly phosphorylated by casein kinase I. From a comparison of the properties and phosphopeptide pattern of this protein with that of casein kinase I, it appears that the Mr 37,000 protein in the synthetase complex is an inactive form of casein kinase I. This observation provides further evidence for a physiological role for casein kinase I in regulating synthetase activities.  相似文献   

14.
Summary Aminoacyl-tRNA synthetase activity for alanine, glutamic acid, lysine and phenylalanine was studied in the three subcellular fractions of rabbit liver: fraction X, microsomes and cytosol. From 60 to 80% of the enzyme activities were found in fraction X and microsomes. Fraction X was especially rich in the synthetase activities. By means of gel chromatography, heavy (over 106 daltons) and light (below 480 × 103 daltons) forms of lysyl- and phenylalanyl- but only light ones of alanyl- and glutamyl-tRNA synthetase activities were found in all the subcellular fractions studied. It is concluded that in higher organisms (mammals) all aminoacyl-tRNA synthetases, at least in part, are associated with cell structural constituents.Abbreviations ALA, GLU, LYS, PHE alanyl-, glutamyl-, lysyl-, phenylalanyl-tRNA synthetase - PMSF phenylmethylsulfonyl fluoride - BSA bovine serum albumin  相似文献   

15.
E A Wagar  M J Giese  B Yasin    M Pang 《Journal of bacteriology》1995,177(17):5179-5185
Aminoacyl-tRNA synthetases specifically charge tRNAs with their cognate amino acids. A prototype for the most complex aminoacyl-tRNA synthetases is the four-subunit glycyl-tRNA synthetase from Escherichia coli, encoded by two open reading frames. We examined the glycyl-tRNA synthetase gene from Chlamydia trachomatis, a genetically isolated bacterium, and identified only a single open reading frame for the chlamydial homolog (glyQS). This is the first report of a prokaryotic glycyl-tRNA synthetase encoded by a single gene.  相似文献   

16.
Aminoacyl-tRNA synthetases establish the rules of the genetic code by catalyzing attachment of amino acids to specific transfer RNAs (tRNAs) that bear the anticodon triplets of the code. Each of the 20 amino acids has its own distinct aminoacyl-tRNA synthetase. Here we use energy-transfer-dependent fluorescence from the nucleotide probe N-methylanthraniloyl dATP (mdATP) to investigate the active site of a specific aminoacyl-tRNA synthetase. Interaction of the enzyme with the cognate amino acid and formation of the aminoacyl adenylate intermediate were detected. In addition to providing a convenient tool to characterize enzymatic parameters, the probe allowed investigation of the role of conserved residues within the active site. Specifically, a residue that is critical for binding could be distinguished from one that is important for the transition state of adenylate formation. Amino acid binding and adenylate synthesis by two other aminoacyl-tRNA synthetases was also investigated with mdATP. Thus, a key step in the synthesis of aminoacyl-tRNA can in general be dissected with this probe.  相似文献   

17.
Aminoacyl-tRNA is generally formed by aminoacyl-tRNA synthetases, a family of 20 enzymes essential for accurate protein synthesis. However, most bacteria generate one of the two amide aminoacyl-tRNAs, Asn-tRNA or Gln-tRNA, by transamidation of mischarged Asp-tRNA(Asn) or Glu-tRNA(Gln) catalyzed by a heterotrimeric amidotransferase (encoded by the gatA, gatB, and gatC genes). The Chlamydia trachomatis genome sequence reveals genes for 18 synthetases, whereas those for asparaginyl-tRNA synthetase and glutaminyl-tRNA synthetase are absent. Yet the genome harbors three gat genes in an operon-like arrangement (gatCAB). We reasoned that Chlamydia uses the gatCAB-encoded amidotransferase to generate both Asn-tRNA and Gln-tRNA. C. trachomatis aspartyl-tRNA synthetase and glutamyl-tRNA synthetase were shown to be non-discriminating synthetases that form the misacylated tRNA(Asn) and tRNA(Gln) species. A preparation of pure heterotrimeric recombinant C. trachomatis amidotransferase converted Asp-tRNA(Asn) and Glu-tRNA(Gln) into Asn-tRNA and Gln-tRNA, respectively. The enzyme used glutamine, asparagine, or ammonia as amide donors in the presence of either ATP or GTP. These results suggest that C. trachomatis employs the dual specificity gatCAB-encoded amidotransferase and 18 aminoacyl-tRNA synthetases to create the complete set of 20 aminoacyl-tRNAs.  相似文献   

18.
The high molecular weight aminoacyl-tRNA synthetase complexes found in extracts of many eukaryotic cells often contain lipids and other non-protein components. Since hydrophobic interactions play an important role in maintaining synthetases in the complex, it has been suggested that the lipids present may also participate in its functional and structural integrity. In order to learn more about the role of lipids in the complex, we have compared the properties of the normal complex to one which has been delipidated by treatment with Triton X-114. Delipidation does not affect the size or activity of the aminoacyl-tRNA synthetase complex, but a variety of functional and structural properties of individual synthetases in the complex are altered dramatically. These include sensitivity to salts plus detergents, temperature inactivation, hydrophobicity, and sensitivity to protease digestion. In the latter case, removal of lipids also affects the low molecular weight products released by protease digestion. Purification of the synthetase complex by various chromatographic procedures can remove the lipids and lead to a structure that behaves like the delipidated complex prepared by detergent treatment. The significance of these findings for the intracellular location of aminoacyl-tRNA synthetases and for the study of purified complexes are discussed.  相似文献   

19.
A special fraction of RNA-binding proteins with a non-specific affinity for RNA is present in the extracts of eukaryotic cells. Earlier these proteins were considered exclusively as a pool of free informosomal proteins. It has been shown that a significant part (about 1/3) of RNA-binding proteins is found in labile association with mono- and polyribosome mass, respectively. The labile-associated proteins dissociate from the complex with mono- and polyribosomes with an increase in the ionic RNA-binding proteins bind to particles due to the non-specific affinity for the exposed part of RNA of mono- and polyribosomes. The decrease of the ionic strength leads to the stabilization of the RNA-binding proteins-polyribosomes complexes and enables purification of these complexes. A direct comparison by the O'Farrell two-dimensional analysis has shown that practically all the proteins that are labile-associated with polyribosomes are present within the preparation of free RNA-binding proteins.  相似文献   

20.
与人类疾病相关的几种线粒体氨基酰-tRNA合成酶   总被引:1,自引:0,他引:1  
氨基酰-tRNA合成酶是一类古老的蛋白质,催化蛋白质生物合成中的第一步反应.已经发现氨基酰-tRNA合成酶还参与大量的其他生命过程,如编校、tRNA的成熟与转运、RNA的剪切、细胞因子等功能.最近的研究结果表明,线粒体氨基酰-tRNA合成酶与人类的疾病密切相关.人线粒体精氨酰-tRNA合成酶基因2号内含子中的一个单点突变导致该基因的转录本被异常剪接,造成脑桥小脑发育不全.人线粒体天冬氨酰-tRNA合成酶基因上的一系列突变致使其mRNA被快速降解或者蛋白质氨基酸一级结构的改变,导致脑干脊髓白质病变及乳糖增高症.人线粒体亮氨酰-tRNA合成酶基因的一个单核苷酸多态性与2型糖尿病密切相关.这些研究结果进一步增强了我们对于氨基酰-tRNA合成酶的生物学功能的认识,并将促进对由线粒体氨基酰-tRNA合成酶所引起线粒体病的致病机理以及治疗方法的研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号