首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The insulin-degrading enzyme (IDE) is an evolutionarily conserved enzyme that has been implicated in cellular insulin degradation, but its site of action and importance in regulating insulin degradation have not been clearly established. We addressed this question by examining the effects of overexpressing IDE on insulin degradation in COS cells, using both human IDE (hIDE) and its Drosophila homolog (dIDE). The dIDE, which was recently cloned in our laboratory, has 46% amino acid identity with hIDE, degrades insulin with comparable efficiency, and is readily expressed in mammalian cells. Transient expression of dIDE or hIDE in COS monkey kidney cells led to a 5- to 7-fold increase in the rate of degradation of extracellular insulin, indicating that IDE can regulate cellular insulin degradation. Insulin-degrading activity in the medium was very low and could not account for the difference between transfected and control cells. To further localize the site of IDE action, the fate of insulin after receptor binding was examined. The dIDE-transfected cells displayed increased degradation of prebound insulin compared to control cells. This increase in degradation was observed even when excess unlabeled insulin was added to block reuptake or extracellular degradation. These results indicate that IDE acts at least in part within the cell. The lysosomotropic agents chloroquine and NH4Cl did not affect the increase in insulin degradation produced by transfection with dIDE, indicating that the lysosomal and IDE-mediated pathways of insulin degradation are independent. The results demonstrate that IDE can regulate the degradation of insulin by intact cells via an intracellular pathway.  相似文献   

2.
J V Garcia  B W Fenton  M R Rosner 《Biochemistry》1988,27(12):4237-4244
An insulin-degrading enzyme (IDE) from the cytoplasm of Drosophila Kc cells has been purified and characterized. The purified enzyme is a monomer with an s value of 7.2 S, an apparent Km for porcine insulin of 3 microM, and a specific activity of 3.3 nmol of porcine insulin degraded/(min.mg). N-Terminal sequence analysis of the gel-purified enzyme gave a single, serine-rich sequence. The Drosophila IDE shares a number of properties in common with its mammalian counterpart. The enzyme could be specifically affinity-labeled with [125I]insulin, has a molecular weight of 110K, and has a pI of 5.3. Although Drosophila Kc cells grow at room temperature, the optimal enzyme activity assay conditions parallel those of the mammalian IDE: 37 degrees C and a pH range of 7-8. The Drosophila IDE activity, like the mammalian enzymes, is inhibited by bacitracin and sulfhydryl-specific reagents. Similarly, the Drosophila IDE activity is insensitive to glutathione as well as protease inhibitors such as aprotinin and leupeptin. Insulin-like growth factor II, equine insulin, and porcine insulin compete for degradation of [125I]insulin at comparable concentrations (approximately 10(-6) M), whereas insulin-like growth factor I and the individual A and B chains of insulin are less effective. The high degree of evolutionary conservation between the Drosophila and mammalian IDE suggests an important role for this enzyme in the metabolism of insulin and also provides further evidence for the existence of a complete insulin-like system in invertebrate organisms such as Drosophila.  相似文献   

3.
We have recently described the purification and characterization of an insulin-degrading enzyme (IDE) from Drosophila melanogaster that can cleave porcine insulin, is highly conserved through evolution and is developmentally regulated. We now report that the IDE is, in fact, an insulin EGF-binding protein (dp100) that we had isolated previously from Drosophila using an antihuman EGF receptor antiserum. This conclusion is based upon the following evidence. (a) dp100, identified by its ability to cross-link to labeled insulin, EGF, and transforming growth factor-alpha (TGF-alpha), and to be immunoprecipitated by anti-EGF receptor antisera, copurifies with the IDE activity. Thus, the purified IDE can be affinity labeled with either 125I-insulin, 125I-EGF, or 125I-TGF-alpha, and this labeling is specifically inhibited with unlabeled insulin, EGF, and the insulin B chain. (b) The antiserum to the human EGF receptor, which recognizes dp100, is able to specifically immunoprecipitate the insulin-degrading activity. (c) The purified IDE preparation contains a single protein of 110 kD which is recognized by both the anti-EGF receptor antiserum and anti-Drosophila IDE antiserum. (d) Polyclonal antiserum to the purified IDE, which specifically recognized only the 110-kD band in Drosophila Kc cells, immunoprecipitates dp100 cross-linked to 125I-TGF-alpha and dp100 cross-linked to 125I-insulin from the purified IDE preparation. (e) EGF, which competes with insulin for binding to dp100, also inhibits the degradation of insulin by the purified IDE. These results raise the possibility that a functional interaction between the insulin and EGF growth factor families can occur which is mediated by the insulin-degrading enzyme.  相似文献   

4.
5.
Proteins are vital to the overall structure of cells and to the function of cells in the form of enzymes. Thus the control of protein metabolism is among the most important aspects of cellular metabolism. Insulin’s major effect on protein metabolism in the adult animal is inhibition of protein degradation. This is via inhibition of proteasome activity via an interaction with insulin-degrading enzyme (IDE). IDE is responsible for the majority of cellular insulin degradation. We hypothesized that a reduction in IDE would reduce insulin degradation and insulin’s ability to inhibit protein degradation. HepG2 cells were transfected with siRNA against human IDE and insulin degradation and protein degradation measured. Both IDE mRNA and protein were reduced by >50% in the IDE siRNA transfected cells. Insulin degradation was reduced by approximately 50%. Cells were labeled with [3H]-leucine to investigate protein degradation. Short-lived protein degradation was unchanged in the cells with reduced IDE expression. Long-lived and very-long-lived protein degradation was reduced in the cells with reduced IDE expression (14.0 ± 0.16 vs. 12.5 ± 0.07%/4 h (long-lived), 9.6 ± 2.2% vs. 7.3 ± 0.2%/3 h (very-long-lived), control vs. IDE transfected, respectively, P < 0.005). The inhibition of protein degradation by insulin was reduced 37-76% by a decreased expression of IDE in HepG2 cells. This shows that IDE is involved in cellular insulin metabolism and provides further evidence that insulin inhibits protein degradation via an interaction with IDE.  相似文献   

6.
7.
A cDNA encoding insulin-degrading enzyme (IDE) was cloned from tomato (Solanum lycopersicum) and expressed in Escherichia coli in N-terminal fusion with glutathione S-transferase. GST-SlIDE was characterized as a neutral thiol-dependent metallopeptidase with insulinase activity: the recombinant enzyme cleaved the oxidized insulin B chain at eight peptide bonds, six of which are also targets of human IDE. Despite a certain preference for proline in the vicinity of the cleavage site, synthetic peptides were cleaved at apparently stochastic positions indicating that SlIDE, similar to IDEs from other organisms, does not recognize any particular amino acid motif in the primary structure of its substrates. Under steady-state conditions, an apparent K(m) of 62+/-7 microm and a catalytic efficiency (k(cat)/K(m)) of 62+/-15 mm(-1) s(-1) were determined for Abz-SKRDPPKMQTDLY(NO(3))-NH(2) as the substrate. GST-SlIDE was effectively inhibited by ATP at physiological concentrations, suggesting regulation of its activity in response to the energy status of the cell. While mammalian and plant IDEs share many of their biochemical properties, this similarity does not extend to their function in vivo, because insulin and the beta-amyloid peptide, well-established substrates of mammalian IDEs, as well as insulin-related signaling appear to be absent from plant systems.  相似文献   

8.
Degradation of amylin by insulin-degrading enzyme   总被引:2,自引:0,他引:2  
A pathological feature of Type 2 diabetes is deposits in the pancreatic islets primarily composed of amylin (islet amyloid polypeptide). Although much attention has been paid to the expression and secretion of amylin, little is known about the enzymes involved in amylin turnover. Recent reports suggest that insulin-degrading enzyme (IDE) may have specificity for amyloidogenic proteins, and therefore we sought to determine whether amylin is an IDE substrate. Amylin-degrading activity co-purified with IDE from rat muscle through several chromatographic steps. Metalloproteinase inhibitors inactivated amylin-degrading activity with a pattern consistent with the enzymatic properties of IDE, whereas inhibitors of acid and serine proteases, calpains, and the proteasome were ineffective. Amylin degradation was inhibited by insulin in a dose-dependent manner, whereas insulin degradation was inhibited by amylin. Other substrates of IDE such as atrial natriuretic peptide and glucagon also competitively inhibited amylin degradation. Radiolabeled amylin and insulin were both covalently cross-linked to a protein of 110 kDa, and the binding was competitively inhibited by either unlabeled insulin or amylin. Finally, a monoclonal anti-IDE antibody immunoprecipitated both insulin- and amylin-degrading activities. The data strongly suggest that IDE is an amylin-degrading enzyme and plays an important role in the clearance of amylin and the prevention of islet amyloid formation.  相似文献   

9.
In the investigation of the intracellular sites of insulin degradation, it might be important whether receptor-bound insulin could be a substrate for insulin-degrading enzyme (IDE). Insulin receptor and IDE were purified from rat liver using a wheat germ agglutinin column and monoclonal anti-IDE antibody affinity column, respectively. [125I]insulin-receptor complex was incubated with various amounts of IDE at 0 degree C in the presence of disuccinimidyl suberate and analyzed by reduced 7.5% SDS-PAGE and autoradiography. With increasing amounts of IDE, the radioactivity of 135 kd band (insulin receptor alpha-subunit) decreased, whereas that of 110 kd band (IDE) appeared then gradually increased, suggesting that IDE could bind to receptor-bound insulin. During incubation of insulin-receptor complex with IDE at 37 degrees C, about half of the [125I]insulin was dissociated from the complex. However, the time course of [125I]insulin degradation in this incubation was essentially identical to that of free [125I]insulin degradation. Cross-linked, non-dissociable receptor-bound [125I]insulin was also degraded by IDE. Rebinding studies to IM-9 cells showed that the receptor binding activity of dissociated [125I]insulin from insulin-receptor complex incubated with IDE was significantly (p less than 0.001) decreased as compared with that without the enzyme. These results, therefore, show that IDE could recognize and degrade receptor-bound insulin, and suggest that IDE may be involved in insulin metabolism during receptor-mediated endocytosis through the degradation of receptor-bound insulin in early neutral vesicles before their internal pH is acidified.  相似文献   

10.
The intramembranous gamma-secretase cleavage of the beta-amyloid precursor protein (APP) is dependent on biologically active presenilins (PS). Notch also undergoes a similar PS-dependent gamma-secretase-like cleavage, resulting in the liberation of the Notch intracellular domain (NICD), which is critically required for developmental signal transduction. gamma-Secretase processing of APP results in the production of a similar fragment called AICD (APP intracellular domain), which may function in nuclear signaling as well. AICD, like NICD, is rapidly removed. By using a battery of protease inhibitors we demonstrate that AICD, in contrast to NICD, is degraded by a cytoplasmic metalloprotease. In vitro degradation of AICD can be reconstituted with cytoplasmic fractions obtained from neuronal and non-neuronal cells. Taking into account the inhibition profile and the cytoplasmic localization, we identified three candidate enzymes (neurolysin, thimet oligopeptidase, and insulin-degrading enzyme (IDE), also known as insulysin), which all are involved in the degradation of bioactive peptides in the brain. When insulin, a well characterized substrate of IDE, was added to the in vitro degradation assay, removal of AICD was efficiently blocked. Moreover, overexpression of IDE resulted in enhanced degradation of AICD, whereas overexpression of the inactive IDE E111Q mutant did not affect AICD degradation. Finally, immunodepletion of IDE significantly reduced the AICD degrading activity. Therefore our data demonstrate that IDE, which is one of the proteases implicated in the removal of extracellular Abeta, also removes the cytoplasmic product of gamma-secretase cleaved APP.  相似文献   

11.
The mechanisms of cellular insulin degradation remain uncertain. Considerable evidence now exists that the primary cellular insulin-degrading activity is a metallothiol proteinase. Two similar degrading activities have been purified and characterized. Insulin protease has been purified from rat skeletal muscle and insulin-degrading enzyme from human red blood cells. Whereas the two degrading activities share a number of similar properties, significant differences have also been reported; and it is not at all established that they are the same enzyme. To examine this, we have compared antigenic and catalytic properties of the two enzymatic activities. Monoclonal antibodies against the red blood cell enzyme adsorb the skeletal muscle enzyme; and on Western blots, the antibodies react with an identical 110-kDa protein. Immunoaffinity-purified enzymes from both red blood cells and skeletal muscle degrade [125I]iodo(B26)insulin to the same products as seen with purified insulin protease and with intact liver and kidney. Chelator-treated muscle and red blood cell enzymes can be reactivated with either Mn2+ or Ca2+. Thus, insulin-degrading enzyme and insulin protease have similar properties. These results support the hypothesis that these activities reside in the same enzyme.  相似文献   

12.
We reported in a previous work that insulin degradation by insulin-degrading enzyme (IDE) was inhibited by ATP (Exp Biol Med 226:334-341, 2001). Then we studied ATP hydrolysis as a possible mechanism for reversion of this inhibition. ATP hydrolysis was determined by (32)P release after hydrolysis of gamma[(32)P]ATP. ATP hydrolysis was studied by Sephadex G200 chromatography, immunoprecipitation, and nondissociating gel electrophoresis. Purified recombinant rat IDE and extractive homogenous IDE showed similar ATP hydrolysis. All results showed concordance between insulin degradation and ATP hydrolysis, suggesting that IDE has both functions. In order to define the type of hydrolysis, we studied inhibitors of IDE, phosphohydrolases, and ATPases. Each substance studied had no effect on ATP hydrolysis, except 1 mM orthovanadate, a known inhibitor of ATPases, phosphatases, and insulin degradation. ATP hydrolysis followed a Michaelis-Menten kinetic with Vmax: 570.45 +/- 113.08 pmol Pi/hr and apparent Michaelis constant (Km): 63.13 +/- 3.48 microM. ATP binding studies strongly suggested an ATP binding site and enzyme kinetics established only one active hydrolytic ATP binding site per IDE molecule. ATP-induced enzyme aggregation changes as observed by electrophoresis mobility in nondissociating conditions and conformational changes on insulin binding as shown by IDE-insulin cross-linking. We conclude that IDEs have ATPase activity and that insulin-binding and degradation are dependent on ATP concentration; however, insulin does not modify the ATPase activity of IDE.  相似文献   

13.
We have applied a recently developed HPLC-MS enzymatic assay to investigate the cryptic peptides generated by the action of the insulin-degrading enzyme (IDE) on some neuropeptides (NPs) involved in the development of tolerance and dependence to opioids. Particularly, the tested NPs are generated from the NPFF precursor (pro-NPFF (A)): NPFF (FLFQPQRF) and NPAF (AGEGLSSPFWSLAAPQRF). The results show that IDE is able to cleave NPFF and NPAF, generating specific cryptic peptides. As IDE is also responsible for the processing of many other peptides in the brain (amyloid beta protein among the others), we have also performed competitive degradation assays using mixtures of insulin and the above mentioned NPs. Data show that insulin is able to slow down the degradation of both NPs tested, whereas, surprisingly, NPAF is able to accelerate insulin degradation, hinting IDE as the possible link responsible of the mutual influence between insulin and NPs metabolism.  相似文献   

14.
A metallothiol protease called insulin-degrading enzyme (IDE) seems to be implicated in insulin metabolism to terminate the response of cells to hormone, as well as in other biological functions, including muscle differentiation, regulation of growth factor levels, and antigen processing. In order to obtain highly pure and biologically active IDE, we have developed an immunoaffinity method using a monoclonal antibody to this enzyme (9B12). When the cytosolic fraction of rat liver was first applied to a 9B12-coupled Affi-Gel 10 column, more than 97% of the insulin-degrading activity was absorbed. Among various kinds of buffers successfully eluting the enzyme, only the buffer with a high pH (pH 11) could retain the full biological activity of this enzyme. IDE was further purified via two steps of chromatography using Mono Q anion exchange and Superose 12 molecular sieve columns. The final preparation showed a single band at 110 kDa on reduced sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). In the eluate from the immunoaffinity column, the inhibitory activity associated with the enzyme was also observed. To better recover this endogenous inhibitor, heat-treated cytosolic fraction was fractionated by ammonium sulfate precipitation and applied to the immunoaffinity column on which IDE had been adsorbed. Then, IDE and its inhibitor could be co-eluted with pH 11 as a complex form. After heat treatment of this fraction, the inhibitor was further purified using the same series of chromatography as IDE to more than 20,000-fold; it showed a 14 kDa band on SDS-PAGE. It inhibited both the insulin degradation by IDE in a competitive manner and the cross-linking of 125I-insulin to IDE. Highly purified IDE and the endogenous inhibitor will be useful tools for better understanding the various biological functions of this enzyme.  相似文献   

15.
A cytosolic protein specifically binding to and degrading atrial natriuretic peptide (ANP) was purified from rat brain homogenate. Based on partial amino acid sequences and enzymatic properties, this protein with an apparent molecular mass of 112 kDa has been identified as the rat insulin-degrading enzyme (IDE). In addition to the known substrates, insulin and transforming-growth-factor alpha IDE binds also with high affinity (apparent Kd 60 nM) to ANP. Competition studies with structural variants of ANP demonstrate that both the C terminus and the disulfide loop of the molecule are essential for high-affinity binding. The data suggest that IDE might be involved in the cellular processing and/or metabolic clearance of ANP.  相似文献   

16.
Upon reduction of serum in their media, mouse BC3H1 muscle cells withdraw from the cell cycle and begin to differentiate. In differentiating cells, the induction of muscle-specific genes is accompanied by a distinct morphological chance. However, differentiated BC3H1 cells do not fuse with each other; they remain mononucleated. Metalloendoprotease inhibitors selectively block the differentiation of BC3H1 cells while inhibitors of other protease types are ineffective. In these cells, the degradation of the internalized insulin is initiated by a 110 kDa, non-lysosomal protease known as the insulin-degrading enzyme. The same metalloendoprotease inhibitors that block BC3H1 differentiation also inhibit, with a similar specificity and potency, the in vitro and the in vivo degradation of insulin by the insulin-degrading enzyme. When the serum in the medium is reduced, the activity of the insulin-degrading enzyme in the cell cytoplasm increases rapidly. This increase precedes any detectable change in the differentiation state of these cells by about 12 hours. These results, together with very similar ones obtained with primary rat skeletal muscle cells, support our earlier proposal that the insulin-degrading enzyme is the metalloendoprotease involved in the initiation of the morphological and biochemical differentiation of muscle cells in culture.  相似文献   

17.
Functional human insulin-degrading enzyme can be expressed in bacteria   总被引:4,自引:0,他引:4  
Insulin-degrading enzyme (IDE) has been shown to degrade a number of biologically important peptides, including insulin and the amyloid-beta protein implicated in Alzheimer's disease. However, lack of a facile method to generate purified enzyme and related mutants has made it difficult to study the precise role of IDE in the clearance of these peptides. Therefore, we determined whether recombinant wild-type and mutant human IDEs can be overexpressed as functional enzymes in bacteria. Three vectors carrying cDNAs encoding N-terminally polyhistidine-tagged recombinant IDEs were constructed, and the proteins expressed in Escherichia coli were purified by metal affinity chromatography (final yield approximately 8 mg per liter of culture). The recombinant IDEs, like the endogenous mammalian enzyme, migrate with 110-kDa apparent molecular masses in SDS-polyacrylamide gels and as a approximately 200-kDa species in gel filtration. Further analysis by native PAGE indicates that IDE can form multimers of different complexities. The wild-type recombinant endopeptidase degrades insulin with an efficiency similar to that of the enzyme purified from mammalian tissues. Purified IDEs are stable at 4 degrees C for at least 1 month. Purified recombinant protein was used to raise specific polyclonal antibodies that can immunoprecipitate native mammalian IDE. Thus, the procedure described allows the rapid production of large amounts of purified IDE and demonstrates that IDE can be produced in an active form in the absence of other potential interacting mammalian proteins.  相似文献   

18.
An insulin-binding metal- and thiol-dependent proteinase has been purified 1491-fold from high speed cytosolic fractions of the fungus Neurospora crassa. This enzyme resembles insulin-degrading enzymes (insulinases) present in mammalian cells and in Drosophila melanogaster in the following ways: (i) it degrades radiolabeled insulin with a specificity similar to that of rat muscle insulinase, as demonstrated by HPLC analysis of the degradation products; (ii) it is inhibited by bacitracin, EDTA, 1,10-phenanthroline, and the sulfhydryl-reactive compounds N-ethylmaleimide and p-chloromercuribenzoate, but not by inhibitors of serine proteases or by lysosomal protease inhibitors. Cross-linking with 125I-insulin labels a band of ca. 120 kDa, and several smaller bands which may represent degradation products. The N. crassa insulinase is stimulated by Mn2+ and strongly inhibited by Zn2+; Mn2+ can also reactivate the enzyme after inhibition by EDTA, but Zn2+ is ineffective. The N. crassa protein differs in this regard from mammalian and insect insulinases which are generally activated by both Mn2+ and Zn2+. This finding extends the apparent evolutionary conservation of these metal- and thiol-dependent proteases into the microbial realm.  相似文献   

19.
Insulin degradation is an integral part of the cellular action of insulin. Recent evidence suggests that the enzyme insulin protease is involved in the degradation of insulin in mammalian tissues. Drosophila, which has insulin-like hormones and insulin receptor homologues, also expresses an insulin degrading enzyme with properties that are very similar to those of mammalian insulin protease. In the present study, the insulin cleavage products generated by the Drosophila insulin degrading enzyme were identified and compared with the products generated by the mammalian insulin protease. Both purified enzymes were incubated with porcine insulin specifically labeled with 125I on either the A19 or B26 position, and the degradation products were analyzed by HPLC before and after sulfitolysis. Isolation and sequencing of the cleavage products indicated that both enzymes cleave the A chain of intact insulin at identical sites between residues A13 and A14 and A14 and A15. Sequencing of the B chain fragments demonstrated that the Drosophila enzyme cleaves the B chain of insulin at four sites between residues B10 and B11, B14 and B15, B16 and B17, and B25 and B26. These cleavage sites correspond to four of the seven cleavage sites generated by the mammalian insulin protease. These results demonstrate that all the insulin cleavage sites generated by the Drosophila insulin degrading enzyme are shared in common with the mammalian insulin protease. These data support the hypothesis that there is evolutionary conservation of the insulin degrading enzyme and further suggest that this enzyme plays an important role in cellular function.  相似文献   

20.
阿尔茨海默病(Alzheimer’s disease,AD)是一种以进行性认知功能减退为特征的神经退行性疾病。发病的确切机制尚未完全清楚。目前认为胰岛素抵抗与胰岛素信号系统受损是加速AD发病的危险因素,胰岛素降解酶(insulin-degrading enzyme,IDE)在糖代谢异常促使AD发病的过程中发挥重要的作用。除调节β淀粉样蛋白降解和清除之外,还可能通过调节tau蛋白磷酸化水平,协同载脂蛋白Ee4(ApoEe4)及影响胰岛素信号传导等参与AD的发病机制。本文就IDE生物学特性及在AD发病机制中的作用作一综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号