首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
徐冬怡  蒋佳利  方仁东 《微生物学报》2020,60(10):2111-2121
肺炎链球菌(Streptococcus pneumoniae)是一种定植于上呼吸道的革兰阳性胞外菌,是导致侵袭性肺炎的主要原因,所致疾病具有较高的发病率和死亡率。炎症小体(inflammasome)是胞浆内重要的蛋白复合体,在先天免疫应答过程中起着重要作用。大量研究表明,肺炎链球菌感染可诱导宿主炎症小体的激活、半胱天冬酶1的活化和促炎性细胞因子的分泌。在长期选择压力的作用下,肺炎链球菌的部分突变菌株可以逃避炎症小体的识别。本文就肺炎链球菌感染过程中炎症小体的激活、炎症小体在抗肺炎链球菌过程中的作用以及肺炎链球菌逃避宿主炎症小体识别的机制三方面对肺炎链球菌与炎症小体之间相互作用的研究进展进行综述。  相似文献   

2.
王巍  谢正德 《病毒学报》2019,35(3):557-564
促炎细胞因子白细胞介素1β(IL-1β)和白细胞介素18(IL-18)主要由巨噬细胞和树突细胞产生,是宿主针对各种侵入病原体产生先天免疫应答的重要介质。这些促炎细胞因子从病毒感染的细胞中分泌,被称为炎症小体的多蛋白复合物严格调控。根据炎症小体识别蛋白的种类,炎症小体主要分为两类,即核苷酸结合寡聚结构域样受体(NOD-like receptors,NLRs)和黑色素瘤缺乏因子2样受体(Absent in melanoma 2,AIM2)炎症小体。与其他宿主防御机制不同,炎症小体活化后,会诱导促炎细胞因子IL-1β、IL-18的成熟及分泌。适量的促炎细胞因子有利于控制病理性感染,但如果过量,则会对机体造成一定免疫损伤。本文主要对近几年有关病毒感染对炎症小体的激活和抑制机制进行了综述,总结分析了炎症小体在参与天然免疫反应及病毒感染致病过程中具有的重要作用。  相似文献   

3.
炎症小体是存在于胞浆的大分子多蛋白复合物,在感染或应激状态下被激活,并触发IL-1β和IL-18等促炎细胞因子的释放,诱导细胞焦亡,从而参与先天免疫防御。NLRP3识别病毒复制过程中产生的各种病原体相关分子模式(PAMP)和危险相关分子模式(DAMP),启动NLRP3炎症小体依赖的抗病毒免疫反应。但是,有些病毒也进化出复杂的策略而靶向炎症小体,以逃避天然免疫监视。本综述讨论了病毒感染过程对NLRP3炎症小体的活化、组装和效应的影响。  相似文献   

4.
炎症小体(inflammasomes)是由胞浆内模式识别受体(PRRs)参与组装的多蛋白复合物,是天然免疫系统的重要组成部分。炎症小体能够识别病原相关分子模式(PAMPs)或者宿主来源的危险信号分子(DAMPs),招募和激活促炎症蛋白酶Caspase-1。活化的Caspase-1切割IL-1β和IL-18的前体,产生相应的成熟细胞因子。炎症小体的活化还能够诱导细胞的炎症坏死(pyroptosis)。目前已经确定多种炎症小体参与了针对多种病原体的宿主防御反应,病原体也已经进化出多种相应的机制来抑制炎症小体的活化。该文总结了炎症小体在抗感染免疫研究领域的最新进展,重点讨论了炎症小体对细菌、病毒、真菌和寄生虫的识别,以及炎症小体的活化在宿主抗感染过程中所发挥的作用。  相似文献   

5.
食源性致病菌感染是引起食源性疾病的首要因素,严重影响人类健康。炎症小体通过识别受体感知入侵宿主的危险信号进而组装形成多聚蛋白复合物,从而诱导炎症反应,是先天免疫系统中识别食源性病原菌感染和清除病原体的重要防线。NLRP3炎症小体是位于胞内的炎症反应平台,可以感知多种病原微生物的侵袭,在先天性免疫反应中起着至关重要的作用。食源性致病菌感染常引起NLRP3炎症小体的异常激活,介导多种炎症性疾病的发生和发展,因此,许多抗炎研究中常常以NLRP3炎症小体作为靶点。本文总结了食源性致病菌及其代谢产物激活NLRP3炎症小体的分子机制,以及天然产物和膳食功能物质抑制NLRP3炎症小体激活的机理,为治疗炎症性疾病、开发缓解致病菌诱导的炎症反应的功能化合物提供新的思路。  相似文献   

6.
田娇  谢正德 《病毒学报》2023,(1):270-278
自噬是一种普遍存在的细胞内稳态机制,通过将细胞质成分运送到溶酶体进行降解,以抵抗病原体感染并促进氨基酸循环。NLRP3炎症小体是一种多蛋白复合物,在多种内源和外源性刺激下被激活,介导促炎细胞因子的分泌,参与炎症的发生。自噬功能失调可导致NLRP3炎症小体的过度激活,引起各种炎症性疾病以及癌症的发生。自噬作为NLRP3炎症小体的一种重要调节方式,可以通过去除NLRP3炎症小体的激活信号、包裹和降解其成分来调控炎症小体。此外,自噬在调控IL-1β的分泌中也起着重要作用。同样,NLRP3炎症小体也调控自噬过程,以平衡宿主防御所需的适当炎症反应以及预防过度、有害炎症的发生。因此,阐明这两个生物学过程之间的相互作用,能够加深对相关疾病发病机制的认识,为疾病治疗及药物研发提供新的思路和理论基础。  相似文献   

7.
炎症小体(Inflammasome)是细胞内识别危险信号的多蛋白复合体,是固有免疫的重要组成部分,NOD样受体家族含热蛋白结构域蛋白3炎症小体(NLRP3)是目前研究最多的一种炎症小体。真菌感染中,NLRP3炎症小体通路募集半胱天冬蛋白酶的前体半胱氨酸天冬氨酸蛋白酶1(pro-caspase-1)自身剪切活化,活化后的半胱天冬蛋白酶(Caspase-1),通过对促炎因子IL-1β(interleukin-1β, IL-1β)和IL-18(interleukin-18, IL-18)的激活,引起宿主的炎症反应,在宿主免疫应答中发挥了重要作用。  相似文献   

8.
沙门菌主要通过食物传播,严重威胁了人类健康。肠道上皮细胞作为抵抗沙门菌入侵的重要屏障,可通过多种方式抵抗沙门菌的定植与入侵。同时,肠道固有层巨噬细胞可特异性识别正常菌群与沙门菌,激活炎性小体并分泌白细胞介素(interleukin,IL)-1β等炎症因子诱导炎症反应清除沙门菌。Caspase家族属于半胱氨酸蛋白酶,它们被激活后可执行各种细胞功能。Caspase-1是炎性小体的重要组成部分,可切割消皮素D(gasdermin D)诱导细胞焦亡,引发炎症反应。研究发现,Caspase-8同样参与炎性小体复合物的形成,但其功能尚不明确。新近研究发现,在沙门菌感染所诱导的细胞焦亡被抑制时,Caspase-8在炎性小体中被强烈激活,并在肠道上皮细胞和巨噬细胞中调控细胞死亡与炎症反应,以限制沙门菌感染。因此,Caspase-8在沙门菌感染期间也是调节宿主抗感染免疫的关键分子,研究其调控宿主细胞死亡以及炎症因子释放的机制对深入了解沙门菌感染与宿主抗感染免疫应答之间的关系具有重要意义。  相似文献   

9.
脊髓损伤的治疗与康复一直是医学领域的重大难题,尤其是在改善损伤的神经功能方面进展甚微。继发性损伤是造成脊髓损伤后神经功能障碍的主要原因,炎症反应是继发性损伤阶段最重要的病理过程。急性期通过抑制神经炎症来减轻继发性损伤被认为可减轻神经功能损害而达到神经保护作用。炎性小体是一类蛋白质复合体,由模式识别受体中的NLRs家族和PHYIN家族的受体蛋白质作为主要框架组装并命名,常见的炎性小体包括NLRP1、NLRP3、NLRC4(IPAF)、AIM2等。在感染或受到损伤刺激时,炎性小体在细胞质内组装,并激活促炎症蛋白酶胱天蛋白酶1(caspase-1),活化的胱天蛋白酶1一方面促进促炎症细胞因子IL-1β和IL-18的前体成熟和分泌,另一方面介导细胞焦亡。细胞焦亡以细胞肿胀破裂并释放细胞内容物为特征,是在炎症和应激的病理条件下诱导的程序性细胞死亡方式。促炎症细胞因子和焦亡释放的胞内物质都可作为促炎信号引发炎症反应。近期发现,炎性小体通过诱导促炎因子释放以及介导细胞焦亡等途径, 参与激活脊髓损伤后的炎症级联反应,加重继发性神经炎症。靶向抑制炎性小体的激活可减轻炎症反应,促进神经细胞存活,达到神经保护作用。因此,炎性小体有望成为脊髓损伤治疗的新靶点。本文拟从炎性小体的结构及其在脊髓损伤中的作用、激活机制和治疗前景进行综述,以期为后续研究提供思路。  相似文献   

10.
在真菌感染时,宿主免疫细胞通过模式识别受体(PRR)识别β-葡聚糖等多种病原体相关分子模式(PAMP)引发抗真菌天然免疫。NLR家族中的NLRP3与ASC和caspase-1共同组成NLRP3炎症小体,参与或调控真菌感染。该文就近年来关于NLRP3炎症小体在真菌感染中的作用作一综述。  相似文献   

11.
Modulation of inflammasome pathways by bacterial and viral pathogens   总被引:1,自引:0,他引:1  
Inflammasomes are emerging as key regulators of the host response against microbial pathogens. These cytosolic multiprotein complexes recruit and activate the cysteine protease caspase-1 when microbes invade sterile tissues or elicit cellular damage. Inflammasome-activated caspase-1 induces inflammation by cleaving the proinflammatory cytokines IL-1β and IL-18 into their biologically active forms and by releasing the alarmin HMGB1 into the extracellular milieu. Additionally, inflammasomes counter bacterial replication and clear infected immune cells through an inflammatory cell death program termed pyroptosis. As a countermeasure, bacterial and viral pathogens evolved virulence factors to antagonize inflammasome pathways. In this review, we discuss recent progress on how inflammasomes contribute to host defense against bacterial and viral pathogens, and we review how viruses and bacteria modulate inflammasome function to their benefit.  相似文献   

12.
Inflammatory response is initiated and sustained by the action of quintessential pro-inflammatory cytokines of immune system namely IL-1β and IL-18. The maturation process of those cytokines is ensured by caspase-1 enzymatic activity, that is in turn is tightly controlled by multiprotein complexes called inflammasomes. Inflammasomes are activated in cells of innate immune system in response to recognition of conservative parts of microbes (pathogen-associated molecular patterns) or by sensing molecular signs of tissue damage (damage-associated molecular patterns). Inflammasome activation apart of cytokines secretion leads to pro-inflammatory cell death, so-called pyroptosis. That culminates in release of cytoplasmatic content of cells including cytokines and alarmins that boost immune response against pathogens, as well as pyroptosis destroys replicative niches of intracellular pathogens. During co-evolution with the host, bacterial and viral pathogens developed a range of molecular inhibitors targeting each step of inflammasome activation. In current review, we will discuss the latest knowledge of inflammasomes’ signaling pathways and tricks that pathogens use to avoid immune recognition and clearance. Our better understanding of inflammasome inhibition by pathogens can lead to better therapeutic approaches for the treatment of infectious diseases.  相似文献   

13.
Inflammasomes are innate immune mechanisms that promote inflammation by activating the protease caspase-1. Active caspase-1 induces pyroptosis, a necrotic form of regulated cell death, which facilitates the release of intracellular proinflammatory molecules, including IL-1 family cytokines. Recent studies identified mediators of inflammasome-associated cell death and suggested that inflammasomes induce not only pyroptosis, but also apoptosis. Caspase-1 has the potential to induce pyroptosis and apoptosis in a manner that is dependent on the expression of the pyroptosis mediator gasdermin D. Caspase-1-induced apoptosis is mediated by Bid and caspase-7. Caspase-8 is also activated following the formation of inflammasomes and may induce apoptosis. Because inflammasomes contribute to the pathogenesis of inflammatory disorders and host defenses against microbial pathogens, a more detailed understanding of the mechanisms underlying inflammasome-associated cell death may contribute to the development of novel therapeutic strategies for inflammasome-related diseases. Pyroptosis has been implicated in inflammasome-related diseases, and compounds that inhibit this process have been reported. The molecular mechanisms of inflammasome-associated cell death and its physiological implications are discussed herein.  相似文献   

14.
Enteric pathogen–host interactions occur at multiple interfaces, including the intestinal epithelium and deeper organs of the immune system. Microbial ligands and activities are detected by host sensors that elicit a range of immune responses. Membrane‐bound toll‐like receptors and cytosolic inflammasome pathways are key signal transducers that trigger the production of pro‐inflammatory molecules, such as cytokines and chemokines, and regulate cell death in response to infection. In recent years, the inflammasomes have emerged as a key frontier in the tussle between bacterial pathogens and the host. Inflammasomes are complexes that activate caspase‐1 and are regulated by related caspases, such as caspase‐11, ‐4, ‐5 and ‐8. Importantly, enteric bacterial pathogens can actively engage or evade inflammasome signalling systems. Extracellular, vacuolar and cytosolic bacteria have developed divergent strategies to subvert inflammasomes. While some pathogens take advantage of inflammasome activation (e.g. Listeria monocytogenes, Helicobacter pylori), others (e.g. E. coli, Salmonella, Shigella, Yersinia sp.) deploy a range of virulence factors, mainly type 3 secretion system effectors, that subvert or inhibit inflammasomes. In this review we focus on inflammasome pathways and their immune functions, and discuss how enteric bacterial pathogens interact with them. These studies have not only shed light on inflammasome‐mediated immunity, but also the exciting area of mammalian cytosolic immune surveillance.  相似文献   

15.
Although much research has focused on defining the actions of caspase‐1 containing canonical inflammasomes in promoting host defense, noncanonical inflammasomes have received comparatively little attention. Exciting new concepts have recently emerged detailing their atypical mechanism of activation, importance in defending against cytosolic Gram‐negative pathogens, and role in innate immune defenses of nonmyeloid cells, which has revamped interest in the study of noncanonical inflammmasomes. Here, we will discuss these latest findings about caspase‐4, ‐5, and ‐11 containing inflammasomes in the context of their role in pathogen elimination in mice and humans.  相似文献   

16.
Inflammasomes are cytosolic, multimeric protein complexes capable of activating pro‐inflammatory cytokines such as IL‐1β and IL‐18, which play a key role in host defence. Inflammasome components are highly expressed in the intestinal epithelium. In recent years, studies have begun to demonstrate that epithelial‐intrinsic inflammasomes play a critical role in regulating epithelial homeostasis, both by defending the epithelium from pathogenic insult and through the regulation of the mucosal environment. However, the majority of research regarding inflammasome activation has focused on professional immune cells, such as macrophages. Here, we present an overview of the current understanding of inflammasome function in epithelial cells and at mucosal surfaces and, in particular, in the intestine.  相似文献   

17.
Inflammasomes are a central node of the innate immune defense system against the threat of homeostatic perturbance caused by pathogenic organisms or host-derived molecules. Inflammasomes are generally composed of multimeric protein complexes that assemble in the cytosol after sensing danger signals. Activated inflammasomes promote downstream proteolytic activation, which triggers the release of pro-inflammatory cytokines therefore inducing pyroptotic cell death. The inflammasome pathway is finely tuned by various mechanisms. Recent studies found that protein post-translational modifications such as ubiquitination also modulate inflammasome activation. Targeting the ubiquitination modification of the inflammasome pathway might be a promising strategy for related diseases. In this review, we extensively discuss the advances in inflammasome activation and pyroptosis modulated by ubiquitination which help in-depth understanding and controlling the inflammasome and pyroptosis in various diseases.  相似文献   

18.
Inflammasomes are a large family of multiprotein complexes recognizing pathogen-associated molecular pattern molecules (PAMPs) and damage-associated molecular patterns (DAMPs). This leads to caspase-1 activation, promoting the secretion of mature IL-1β, IL-18 and under certain conditions even induce pyroptosis. Inflammatory Bowel Diseases (IBD) is associated with alterations in microbiota composition, inappropriate immune responses and genetic predisposition associated to bacterial sensing and autophagy. Besides their acknowledged role in mounting microbial induced host responses, a crucial role in maintenance of intestinal homeostasis was revealed in inflammasome deficient mice. Further, abnormal activation of these functions appears to contribute to the pathology of intestinal inflammation including IBD and colitis-associated cancer. Herein, the current literature implicating the inflammasomes, microbiota and IBD is comprehensively reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号