首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Tumor Necrosis Factor (TNF) inhibits lipoprotein lipase activity in cultured myocytes and in the Langendorff rat heart after 3 h perfusion with TNF of glucocorticoid-pretreated rats. TNF acutely stimulates glyc(ogen)olysis and concomitantly endogenous lipolysis. The latter was significantly increased only when rats had been pretreated with glucocorticoid or fed a trierucate-rich diet. Under these conditions, contractile activity of the Langendorff hearts was acutely increased by TNF The mechanism of the actue increase of contractile function and the accompanying increased glycolytic and lipolytic activities, by TNF, may be explained by increased cytosolic Ca2+ and cAMP levels.  相似文献   

2.
Maja Matic  Sanford R. Simon   《Cytokine》1991,3(6):576-583
Human peripheral blood monocytes secrete tumor necrosis factor (TNF) in response to stimulation with bacterial lipopolysaccharide (LPS). We have shown that isolated human monocytes pretreated with LPS for 24 h secrete lower levels of TNF on a second stimulation with LPS than monocytes that have been stimulated with a single dose of LPS either immediately after isolation or 24 h after isolation. The levels of TNF released by monocytes after the second stimulation with LPS are proportional to the LPS concentration over a range from 1 ng/mL to 10 micrograms/mL. Increasing concentrations of LPS used during the first 24-h stimulation induce greater suppression of TNF release after a second stimulation with LPS. After an initial stimulus of 10 micrograms/mL LPS, a second stimulation of monocytes even with 10 micrograms/mL LPS will result in TNF secretion similar to that of unstimulated cells. This in vitro tolerance apparently can be overcome by stimulating previously activated cells with phorbol myristate acetate. We have also shown that neither prostaglandin E2 nor dexamethasone added during the initial stimulation with LPS had an effect on the subsequent reduction in TNF release on a second stimulation of monocytes with LPS.  相似文献   

3.
4.
Effect of pyridoxine on tumor necrosis factor activitiesin vitro   总被引:1,自引:0,他引:1  
Clinical trials with tumor necrosis factor (TNF) as an antitumor agent have so far given rather disappointing results. In this study we show that the naturally occuring vitamin B6 compound, pyridoxine, enhances TNF-induced cytolysis of three subclones of a mouse fibrosarcoma cell line (WEHI 164). The degree of pyridoxine-induced enhancement of TNF cytotoxicity seems to be dependent on the cells sensitivity to TNF, as the enhancement was much more pronounced in the relatively TNF resistant subclone act-R(cl.12)-WEHI 164, than in the very TNF sensitive subclone WEHI 164 clone 13. Furthermore, our study shows that pyridoxine, in contrast to its enhancing effect on TNF-induced cytotoxicity, rather inhibits TNF-induced growth of human FS-4 fibroblasts. Pyridoxine also enhances lymphotoxin (LT)-induced tumor cell killing and inhibits LT-induced fibroblast growth. Pyridoxine is a relatively non-toxic agentin vivo. Our results suggest that a combination of TNF and pyridoxine may be more efficient than TNF alone, in the treatment of cancer patients.  相似文献   

5.
Multiple effects of tumor necrosis factor on lipoprotein lipase in vivo   总被引:13,自引:0,他引:13  
A single dose of recombinant murine tumor necrosis factor (TNF) suppressed lipoprotein lipase activity in adipose tissue of fed rats, mice, and guinea pigs for 48 h, even though TNF itself is rapidly metabolized in vivo. Immunoprecipitation of [35S]lipoprotein lipase from fat pads pulse-labeled with [35S]methionine showed a decrease in relative synthesis of the enzyme, which correlated to the decrease in activity. There was no decrease in general protein synthesis and no change in distribution of the enzyme between adipocytes and extracellular locations in the tissue. This is in contrast to fasting in which case there is redistribution of the enzyme within the tissue, decrease in general protein synthesis, but no change in relative synthesis of lipoprotein lipase. TNF did not decrease lipoprotein lipase activity in any tissue other than the adipose but increased the activity in several cases, most markedly in the liver. No [35S]methionine was incorporated into lipoprotein lipase by liver slices from normal or TNF-treated animals. Thus, the increased activity can not be ascribed to enhanced hepatic synthesis of the enzyme. There was an increase in lipoprotein lipase activity in plasma, which correlated to the increase in liver. Thus, TNF suppresses lipoprotein lipase synthesis in adipocytes, but not in other tissues, and has some as yet undefined effect on lipoprotein lipase turnover in extrahepatic tissues, which results in increased transport of active lipase through plasma to the liver.  相似文献   

6.
Phospholipases generate important secondary messengers in several cellular processes, including cell death. Tumor necrosis factor (TNF) can induce two distinct modes of cell death, viz. necrosis and apoptosis. Here we demonstrate that phospholipase D (PLD) and cytosolic phospholipase A2 (cPLA2) are differentially activated during TNF-induced necrosis or apoptosis. Moreover, a comparative study using TNF and anti-Fas antibodies as cell death stimuli showed that PLD and cPLA2 are specifically activated by TNF. These results indicate that both the mode of cell death and the type of death stimulus determine the potential role of phospholipases as generators of secondary messengers. J. Cell. Biochem. 71:392–399, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
The effects of exercise on serum interleukin-6 and tumor necrosis factor alpha levels were investigated using mice. Five-week-old female BALB/c mice (Th2-biased) and C57BL/6 mice (Th1-biased) were divided into exercise and control groups. The exercise group was exercised in a rotating basket type treadmill for 1 h (5 r.p.m.). Blood was collected and the serum was separated immediately after exercise. The serum interleukin-6 and tumor necrosis factor alpha levels were measured using an Endogen ELISA kit. Exercise significantly increased the serum interleukin-6 level in the two strains of mice (P<0.05 and P<0.01). The tumor necrosis factor alpha level was decreased in the exercise group. Next, periodontopathic bacterial endotoxin (lipopolysaccharide) was administered after exercise, and the effects of exercise on the lipopolysaccharide-induced serum interleukin-6 and tumor necrosis factor alpha levels were investigated. Exercise inhibited lipopolysaccharide-induced tumor necrosis factor alpha production, suggesting it has a defensive action against endotoxin shock.  相似文献   

8.
脂蛋白酯酶(lipoprotein lipase, LPL)是调节甘油三酯代谢的关键酶,在动脉粥样硬化(atherosclerosis,As)的发生发展中起重要作用。LPL产生部位的差异决定了其具有促As作用还是抗As作用。其次,不同因素对LPL的调控也会使LPL对As产生相反的作用效果。本文综述了LPL在As发生发展中的作用机制以及不同因素对LPL的调控机制,对于As的防治具有重要意义。  相似文献   

9.
10.
The participation of tumor necrosis factor (TNF) and lipopolysaccharide (LPS) inPseudomonas aeruginosa (Pa) infection was examined. The lethal challenge of Pa or TNF and LPS injection could be prevented by pretreatment with anti-TNF antibody, polymyxin B, ONO 1078, or Shosaiko-to. The combined effects of TNF and LPS may be deeply related to the lethality of Pa infection. The activities of leukotriene(LT) C4/D4/E4 or platelet activating factor (PAF) were also related to the lethality of Pa infection, probably due to the subsequently produced TNF which acts in combination with LPS. Activating the host defence mechanism with biological response modifiers like Chinese medicines was effective against Pa infection. One mechanism could involve an activity as an LT inhibitor or PAF antagonist. Following the administration of TNF and/or LPS, the serum levels of arachidonic cascade products underwent various changes. With a combination of TNF and LPS, there was a synergistic increment of prostaglandins, thromboxane, and LT. Following pretreatment with Shosaiko-to, suppression of LTs was dominant even with the combination of TNF and LPS, which might be related to the lethality of the infection or combined TNF with LPS.  相似文献   

11.
The regulatory events whereby the amount of secreted heart lipoprotein lipase decreases post-prandially and increases during fasting are unclear. We examined whether the nutritional state influenced the lipolytic activities that hydrolyze tri-, di-, and monoacylglycerol as membrane-associated enzyme in rat cardiomyocytes. Properties of triacylglycerol lipase are typical of lipoprotein lipase whereas diacylglycerol and monoacylglycerol lipase activities hydrolyze the products of lipoprotein lipase action. We observed that: (1) membrane-bound activity levels assayed at the cell boundary were high for MAGL and much lower for TAGL and DAGL, regardless of whether cells originated from fasted or fed rats; (2) the stimulatory effects of serum were likewise similar in the fasted and the fed states; (3) isolated cardiomyocytes exhibited no constitutive secretion of active enzyme; and (4) factors determining the variations in amounts of heparin-releasable enzyme in response to nutritional changes appeared to be related to the pre-existing high (in the fasted state) or low (in the fed state) intracellular content in enzymatic activities, supporting the proposal that the secretion of active lipoprotein lipase involves disruption of intracellular vesicles and exocytosis of the enzyme, without its accumulation in the plasma membrane. On a functional basis, the results emphasize the heterogenous nature of the LPL enzymatic complex.  相似文献   

12.
脂蛋白脂酶基因的研究进展   总被引:12,自引:3,他引:12  
杜纪坤  黄青阳 《遗传》2007,29(1):8-16
脂蛋白脂酶(lipoprotein lipase, LPL)是脂质代谢的关键酶, 主要催化乳糜微粒和极低密度脂蛋白中的甘油三酯水解, 产生供组织利用的脂肪酸和单酰甘油。LPL基因突变影响LPL活性, 导致脂质代谢紊乱, 与2型糖尿病、高血压、动脉硬化、肥胖、冠心病的发病风险相关联。文章综述了LPL基因的结构、功能、表达调控以及与复杂疾病的关联研究进展。  相似文献   

13.
Recent investigations have demonstrated a complex interrelationship between autophagy and cell death. A common mechanism of cell death in liver injury is tumor necrosis factor (TNF) cytotoxicity. To better delineate the in vivo function of autophagy in cell death, we examined the role of autophagy in TNF-induced hepatic injury. Atg7Δhep mice with a hepatocyte-specific knockout of the autophagy gene atg7 were generated and cotreated with D-galactosamine (GalN) and lipopolysaccharide (LPS). GalN/LPS-treated Atg7Δhep mice had increased serum alanine aminotransferase levels, histological injury, numbers of TUNEL (terminal deoxynucleotide transferase-mediated deoxyuridine triphosphate nick end-labeling)-positive cells and mortality as compared with littermate controls. Loss of hepatocyte autophagy similarly sensitized to GalN/TNF liver injury. GalN/LPS injury in knockout animals did not result from altered production of TNF or other cytokines. Atg7Δhep mice had accelerated activation of the mitochondrial death pathway and caspase-3 and -7 cleavage. Increased cell death did not occur from direct mitochondrial toxicity or a lack of mitophagy, but rather from increased activation of initiator caspase-8 causing Bid cleavage. GalN blocked LPS induction of hepatic autophagy, and increased autophagy from beclin 1 overexpression prevented GalN/LPS injury. Autophagy, therefore, mediates cellular resistance to TNF toxicity in vivo by blocking activation of caspase-8 and the mitochondrial death pathway, suggesting that autophagy is a therapeutic target in TNF-dependent tissue injury.  相似文献   

14.
15.
16.
Tuftsin induced tumor necrosis activity was investigated. The activity was found in mice serum several days after i.p. injection of tuftsin. Further experiments with adhering peritoneal and spleen cells indicated that macrophages were the source of the observed activity. The same effect was observed when promyelocytic leukemia cells (HL60) were stimulated with different concentrations of the peptide. These showed yet another possible mechanism for tuftsin antineoplastic activity.  相似文献   

17.
Summary Heparin (5 U/ml) induced the release of LPL into the incubation medium of cardiac myocytes isolated from adult rat hearts. The secretion of LPL occurred in two phases: a rapid release (5–10 min of incubation with heparin) that was independent of protein synthesis followed by a slower rate of release that was inhibited by cycloheximide. The rapid release of LPL induced by heparin likely occurs from sites that are at or near the cell surface. LPL secretion could also be stimulated by heparan sulfate and dermatan sulfate, but not by hyaluronic acid, chondroitin sulfate or keratan sulfate. Heparin-releasable LPL activity measured in short-term incubations represented a large fraction (40–50%) of the initial LPL activity associated with myocytes, but the fall in cellular LPL activity following heparin was less than the amount of LPL activity secreted into the incubation medium. This discrepancy was not due to latency of LPL in the pre-heparin cell homogenates, but in part could be due to a three-fold greater affinity of the heparin-released enzyme for substrate as compared to LPL in post-heparin myocyte homogenates.Abbreviations LPL lipoprotein lipase  相似文献   

18.
Tissue factor expression on the surface of endothelial cells can be induced by tumor necrosis factor (TNF) and vascular endothelial growth factor (VEGF) in a synergistic manner. We have investigated the role of the two different TNF receptors for this synergy. Firstly, stimulation of the 60 kDa TNF receptor (TNFR60) by a mutant of TNF specific for TNFR60 induced responses comparable to wild-type TNF. In contrast, stimulation of TNFR80 by a TNFR80-specific TNF mutein did not result in enhancement of tissue factor expression even in the presence of a suboptimal TNFR60 triggering. Secondly, we tested neutralizing TNF receptor antibodies for inhibition of tissue factor synthesis induced by VEGF and TNF. A TNFR60-specific antibody inhibited tissue factor production over a broad range of TNF concentrations, indicating an essential role of TNFR60 in the TNF/VEGF synergy. In contrast, blocking of TNF binding to TNFR80 strongly inhibited TNF-induced tissue factor expression at low, but less pronounced at high, TNF concentrations. In conclusion, these data are in agreement with a model in which TNFR80 participates in the synergy between VEGF and low concentrations of soluble TNF by passing the ligand to the signalling TNFR60.  相似文献   

19.
Several in vitro studies have demonstrated that tumor cells arrested in the G2 and M phases of the cell cycle expressed an increased sensitivity to the tumor necrosis factor (TNF). The scope of the present study was to investigate whether this cycle dependence of TNF effects also exists in vivo. The experiments were performed by using the Lewis lung carcinoma (LLC), which had been allotransplanted to nude mice. In order to induce delays of the tumor cell cycle in G2, the animals were treated with etoposide (40 mg/kg body weight i.p.) or with local radiation (15 Gy), each increasing the G2 fraction of the LLC from 10% to 35% and 50% respectively. For combination therapy with recombinant (r)TNF, the tumor was transplanted to four groups of six mice each, one of them serving as a control group the others being treated either with a G2 inductor alone, with rTNF alone, or with rTNF and a G2 inductor combined. Administration of rTNF (125 or 250 g/kg body weight i.v.) was always carried out 24 h after therapy with etoposide or radiation when the maximum of G2 accumulation had developed. The growth behavior of the treated tumors revealed that the response of the LLC to rTNF in vivo was not improved by pretreatment with a G2 inductor and, thus, obviously lacked cell-cycle specificity. It is supposed that direct interactions of TNF with the tumor cells, which are a basic requirement for cell-cycle-linked phenomena, play a minor role in the therapeutic outcome of the LLC under in vivo conditions.  相似文献   

20.
目的:研究钙调神经磷酸酶(CaN)信号通路在肿瘤坏死因子-α(TNF-α)诱导心肌细胞肥大中的作用。方法:Lowry法测心肌细胞蛋白含量;计算机图象分析系统测心肌细胞体积;[3H]-亮氨酸掺入法测心肌细胞蛋白合成;Till阳离子测定系统观察胞内[Ca2+]i瞬变;Western blot法测定CaN的表达。结果:①CaN特异性抑制剂CsA(0.2μmol/L)明显抑制TNF-α(100μg/L)诱导的心肌细胞蛋白含量、蛋白合成和细胞体积增大,但对正常心肌细胞生长无影响。②CaN特异性抑制剂CsA(0.2μmol/L)明显降低TNF-α诱导的心肌细胞内钙离子浓度([Ca2+]i)瞬变幅度增高。③TNF-α明显增强心肌细胞内CaN的表达。结论:TNF-α可能通过引起心肌细胞[Ca2+]i升高,促进CaN表达诱导心肌细胞肥大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号