首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The involvement of nitric oxide (NO) in the branchial circulation and cardiac performance of the Antarctic hemoglobinless icefish Chionodraco hamatus was investigated using isolated and perfused head and working heart preparations. In the branchial vasculature under basal (i.e. unstimulated conditions), the nitric oxide synthase (NOS) inhibitor L-NIO (L-N(5)-(1-iminoethyl) ornithine, 10(-5) and 10(-4) M), caused a marked vasoconstriction (20%), indicating a basal nitrergic vasodilator tone, while the dose-response curve of the NO donor SIN-1 (3-morpholinosydnonimine) showed a dose-dependent vasodilator effect. Acetylcholine induced a dose-dependent branchial vasoconstriction mediated by muscarinic receptors, since the effects were abolished by pre-treatment with atropine (10(-4) M). Serotonin (5-HT) induced a dose-dependent branchial methysergide-sensitive vasoconstriction which was abolished by pre-treatment with L-NIO, indicating a NO-dependent mechanism. On the isolated heart, the NOS inhibitor L-NMMA (N(G)-monomethyl-L-arginine) 10(-4) M produced a small, but significant decrease of heart rate and, as a consequence, a decrease of power output, while the NO donor sodium nitroprusside (SNP) 10(-4) M elicited increases of stroke volume, stroke work and power output, suggesting an exogenous NO-dependent positive inotropism. Exposure of the bulbus arteriosus to L-NMMA was without any appreciable effect. In contrast, SNP produced a notable relaxation of the bulbus wall with a marked increase of its stiffness, as indicated by the increase of systolic and diastolic dP/dt max (23 and 104%, respectively).  相似文献   

2.
The potent vasomodulator adenosine (AD), thanks to the interaction with by A(1) and A(2) receptors, dilates systemic, coronary and cerebral vasculatures but exert a constrictor action in several vessels of respiratory organs. Recent investigations suggest that nitric oxide (NO) contributes to AD effects. In fish, both NO and AD induce atypical effects compared to mammals. Since there is very little information on the role of NO and its involvement in mediating the actions of AD in fish, we have analysed this question in the branchial vasculature of the elasmobranch Squalus acanthias and the teleost Anguilla anguilla using an isolated perfused head and a branchial basket preparation, respectively. In both dogfish and eel, AD dose-response curves showed a biphasic effect: vasoconstriction (pico to nanomolar range) and vasodilation (micromolar range). Both effects were abolished by the classic xanthine inhibitor theophylline (Theo) and also by specific antagonists of A(1) and A(2) receptor subtypes. To analyse the involvement of the NO/cGMP system in the AD responses, we tested a NOS inhibitor, l-NIO, and a specific soluble guanylate cyclase (sGC) blocker, ODQ. In both dogfish and eel preparations l-NIO abrogated all vasomotor effects of AD, whereas ODQ blocked the AD-mediated vasoconstriction without affecting the vasorelaxant response. This indicates that only AD-induced vasoconstriction is mediated by a NO-cGMP-dependent mechanism. By using the NO donor SIN-1, we showed a dose-dependent vasoconstrictory effect which was completely blocked by ODQ. These results provide compelling evidence that the vasoactive role of AD in the branchial circulation of S. acanthias and A. anguilla involves a NO signalling.  相似文献   

3.
The presence of nitric oxide synthase (NOS) and role of nitric oxide (NO) in vascular regulation was investigated in the Australian lungfish, Neoceratodus forsteri. No evidence was found for NOS in the endothelium of large and small blood vessels following processing for NADPH-diaphorase histochemistry. However, both NADPH-diaphorase histochemistry and neural NOS immunohistochemistry demonstrated a sparse network of nitrergic nerves in the dorsal aorta, hepatic artery, and branchial arteries, but there were no nitrergic nerves in small blood vessels in tissues. In contrast, nitrergic nerves were found in non-vascular tissues of the lung, gut and kidney. Dual-wire myography was used to determine if NO signalling occurred in the branchial artery of N. forsteri. Both SNP and SIN-1 had no effect on the pre-constricted branchial artery, but the particulate guanylyl cyclase (GC) activator, C-type natriuretic peptide, always caused vasodilation. Nicotine mediated a dilation that was not inhibited by the soluble GC inhibitor, ODQ, or the NOS inhibitor, L-NNA, but was blocked by the cyclooxygenase inhibitor, indomethacin. These data suggest that NO control of the branchial artery is lacking, but that prostaglandins could be endothelial relaxing factors in the vasculature of lungfish.  相似文献   

4.
Possible modulation of Brewer's yeast-induced nociception by centrally (icv) administered nitric oxide (NO) modulators, viz., NO synthase (NOS) inhibitors, NO precursor, donors, scavengers and co-administration of NO donor (SIN-1) with NOS inhibitor (L-NAME) and NO scavenger (Hb) was investigated in rats. Administration of NOS inhibitors and NO scavenger Hb increased the pain threshold capacity significantly, whereas NO donors SIN-1, SNP and NO precursor L-arginine were found to be hyperalgesic. D-arginine, the inactive isomer of L-arginine and methylene blue, inhibitor of soluble guanylate cyclase failed to alter the nociceptive behaviour in rats. Co-administration of SIN-1 with L-NAME and Hb found to increase the nociceptive threshold. The results indicate, that centrally administered NO modulators alter the nociceptive transmission induced by Brewer's yeast in rats.  相似文献   

5.
Abstract: It has been shown that nitric oxide (NO) regulates NO synthase (NOS) activity through negative feedback in cytosolic enzyme preparations in various cell types. We compared the effects of the NO-generating compounds S-nitroso-N-acetylpenicillamine (SNAP), 3-morpholinosydnonimine (SIN-1), and sodium nitroprusside (SNP) on NOS activity in intact neuroblastoma N1E-115 cells and in the cytosol obtained from the same cells. Enzyme activity was measured by the conversion of l -[3H]arginine into l -[3H]citrulline. At concentrations that elicit almost complete inhibition of NOS activity in cytosolic enzyme preparations of these cells, SIN-1 and SNP did not cause significant attenuation of enzyme activity measured at 45 min in intact cells. It is surprising that SIN-1 and SNP markedly stimulated l -[3H]citrulline formation in a time- and concentration-dependent manner when cells were incubated with the compounds for >1.5 h. Neither inhibitory nor stimulatory effects of SNAP on NOS were observed in intact N1E-115 cells. This is in contrast to the inhibitory effects of SNAP in cytosolic preparations of the enzyme. The increased NOS activity by SIN-1 or SNP in intact cells was dependent on the presence of extracellular Ca2+, suggesting that it might be due to increased Ca2+ influx. On the other hand, measurements of the activity of lactate dehydrogenase showed that there was no generalized increase in cell permeability in response to SIN-1 or SNP. There was no agreement in the rank order of potencies of these compounds in activating guanylate cyclase and in affecting NOS activity, both in broken-cell preparations and in intact cells. Thus, modulation of NOS activity by NO-releasing compounds is not dependent on cyclic GMP formation and might not be related in a simple fashion to NO generation. Alternatively, activation of guanylate cyclase and stimulation of NOS activity might require different redox species of NO. Our present findings might be of clinical relevance in relation to long-term use of NO-generating compounds as therapeutic agents.  相似文献   

6.
The aim of this study was to determine whether an excess of nitric oxide (NO) (mimicked by addition of NO donors) might produce by itself changes in the contractile responses to acetylcholine (ACh), substance P (SP) and KCl in the longitudinal muscle of the rat ileum. We also studied the calcium handling properties of this tissue in presence of NO donors. The NO donors assayed sodium nitroprusside (SNP) and 3-morpholinosydnonimine hydrochloride (SIN-1), induced different responses. SNP caused an immediate contraction followed by a sustained relaxation, whereas SIN-1 induced an immediate relaxation followed by a contraction. Even after prolonged incubations (up to 90 min), the NO donors SNP and SIN-1 were unable to modify the ACh- and SP-concentration-response curves, as well as the response to 30 mM KCl. The nifedipine-resistant component of the ACh-induced contraction was not modified in presence of SNP. Cyclopiazonic acid (CPA) induced a contraction that was not modified when the tissue was pre-incubated with SNP. Nifedipine caused a sharp relaxation when added during the CPA-induced contraction and, when added previously, it reduced the CPA-induced contractile response. It is concluded that NO excess is not, by itself, responsible for the altered responses to KCl. ACh and SP. The contractility changes observed in the longitudinal muscle of the rat ileum during inflammation could rather be related to the presence of other inflammatory mediators.  相似文献   

7.
We examined the importance of nitric oxide (NO), endothelium-derived hyperpolarizing factor (EDHF), and neurogenic activity in agonist-induced vasodilation and baseline blood flow [i.e., nerve microvascular conductance (NMVC)] in rat sciatic nerve using laser Doppler flowmetry. Agonists were acetylcholine (ACh) and 3-morpholinosydnonimine (SIN-1). Vasodilation occurring despite NO synthase (NOS) and cyclooxygenase inhibition and showing dependence on K(+) channel activity was taken as being mediated by EDHF. NOS and cyclooxygenase inhibition with N(omega)-nitro-L-arginine (L-NNA) + indomethacin (Indo) revealed two phases of ACh-induced vasodilation: an initial, transient L-NNA + Indo-resistant vasodilation, peaking at 23 +/- 6 s and lasting 145 +/- 69 s, followed by sustained L-NNA + Indo-sensitive vasodilation. L-NNA alone did not affect sustained ACh-induced vasodilation but decreased baseline NMVC by 55%. In the presence of L-NNA + Indo, the K(+) channel blocker tetraethylammonium (TEA) inhibited transient ACh-induced vasodilation by 58% and reduced baseline NMVC by 25%. SIN-1-induced vasodilation increased fourfold in the presence of L-NNA, whereas the specific guanylyl cyclase inhibitor 1H-(1, 2, 4)oxadiazolo(4,3-alpha)quinoxalin-1-one abolished it. However, in homogenates of rat sciatic nerve, SIN-1-stimulated soluble guanylyl cyclase (sGC) activity was unaffected by L-NNA. TTX affected neither SIN-1- nor ACh-induced vasodilation. In conclusion, ACh-induced vasodilation consisted of two components, the first partially mediated by EDHF and the second by a vasodilatory prostanoid + NO. Baseline NMVC was dependent on NO and EDHF. Although L-NNA enhanced SIN-1-induced vasodilation, it had no effect on sGC-activity.  相似文献   

8.
Nitric oxide (NO) has been proposed to play an important role during neuronal development. Since many of its effects occur during the time of growth cone pathfinding and target interaction, we here test the hypothesis that part of NO's effects might be exerted at the growth cone. We found that low concentrations of the NO-donors DEA/NO, SIN-1, and SNP caused a rapid and transient elongation of filopodia as well as a reduction in filopodial number. These effects resulted from distinct changes in filopodial extension and retraction rates. Our novel findings suggest that NO could play a physiological role by temporarily changing a growth cone's morphology and switching its behavior from a close-range to a long-range exploratory mode. We subsequently dissected the pathway by which NO acted on growth cones. The effect of NO donors on filopodial length could be blocked by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, an inhibitor of soluble guanylyl cyclase (sGC), indicating that NO acted via sGC. Supporting this idea, injection of cyclic GMP (cGMP) mimicked the effect of NO donors on growth cone filopodia. Moreover, application of NO-donors as well as injection of cGMP elicited a rapid and transient rise in intracellular calcium in growth cones, indicating that NO acted via cGMP to elevate calcium. This calcium rise, as well as the morphological effects of SIN-1 on filopodia, were blocked by preventing calcium entry. Given the role of filopodia in axonal guidance, our new data suggest that NO could function at the neuronal growth cone as an intracellular and/or intercellular signaling molecule by affecting steering decisions during neuronal pathfinding.  相似文献   

9.
We investigated the mechanism of guanosine 3′,5′-monophosphate (cGMP) production in rabbit parotid acinar cells. Methacholine, a muscarinic cholinergic agonist, stimulated cGMP production in a dose-dependent manner but not isoproterenol, a β-adrenergic receptor stimulant. Methacholine-stimulated cGMP production has been suggested to be coupled to Ca2+ mobilization, because intracellular Ca 2+ elevating reagents, such as thapsigargin and the Ca2+ ionophore A23187, mimicked the effect of methacholine. The cGMP production induced by Ca2+ mobilization has also been suggested to be coupled to nitric oxide (NO) generation because the effects of methacholine, thapsigargin and A23187 on cGMP production were blocked by NG-nitro-L-arginine methyl ester (L-NAME), a specific inhibitor of nitric oxide synthase (NOS), and hemoglobin, a scavenger of nitric oxide (NO). Sodium nitroprusside (SNP), a NO donor, stimulated cGMP production. Furthermore, methacholine stimulated NO generation, and NOS activity in the cytosolic fraction in rabbit parotid acinar cells was exclusively dependent on Ca2+. These findings suggest that cGMP production induced by the activation of muscarinic cholinergic receptors is coupled to NO generation via Ca2+ mobilization.  相似文献   

10.
Nitric oxide (NO) has concentration-dependent biphasic myocardial contractile effects. We tested the hypothesis, in isolated rat hearts, that NO cardiostimulation is primarily non-cGMP dependent. Infusion of 3-morpholinosydnonimine (SIN-1, 10(-5) M), which may participate in S-nitrosylation (S-NO) via peroxynitrite formation, increased the rate of left ventricular pressure rise (+dP/dt; 19 +/- 4%, P < 0.001, n = 11) without increasing effluent cGMP or cAMP. Superoxide dismutase (SOD; 150 U/ml) blocked SIN-1 cardiostimulation and led to cGMP elaboration. Sodium nitroprusside (10(-10)-10(-7) M), an iron nitrosyl compound, did not augment +dP/dt but increased cGMP approximately eightfold (P < 0.001), whereas diethylamine/NO (DEA/NO; 10(-7) M), a spontaneous NO. donor, increased +dP/dt (5 +/- 2%, P < 0.05, n = 6) without augmenting cGMP. SIN-1 and DEA/NO +dP/dt increase persisted despite guanylyl cyclase inhibition with 1H-(1,2,4)oxadiazolo-(4,3,-a)quinoxalin-1-one (10(-5) M, P < 0.05 for both donors), suggesting a cGMP-independent mechanism. Glutathione (5 x 10(-4) M, n = 15) prevented SIN-1 cardiostimulation, suggesting S-NO formation. SIN-1 also produced SOD-inhibitable cardiostimulation in vivo in mice. Thus peroxynitrite and NO donors can stimulate myocardial contractility independently of guanylyl cyclase activation, suggesting a role for S-NO reactions in NO/peroxynitrite-positive inotropic effects in intact hearts.  相似文献   

11.
Human cervicalepithelial cells express mRNA for the nitric oxide (NO) synthase (NOS)isoforms ecNOS, bNOS, and iNOS and release NO into the extracellularmedium. NG-nitro-L-arginine methylester (L-NAME), an NOS inhibitor, and Hb, an NO scavenger,decreased paracellular permeability; in contrast, the NO donors sodiumnitroprusside (SNP) andN-(ethoxycarbonyl)-3-(4-morpholinyl)sydnonimine increasedparacellular permeability across cultured human cervical epithelia onfilters, suggesting that NO increases cervical paracellular permeability. The objective of the study was to understand the mechanisms of NO action on cervical paracellular permeability. 8-Bromo-cGMP (8-BrcGMP) also increased permeability, and the effect wasblocked by KT-5823 (a blocker of cGMP-dependent protein kinase), butnot by LY-83583 (a blocker of guanylate cyclase). In contrast, LY-83583and KT-5823 blocked the SNP-induced increase in permeability. Treatmentwith SNP increased cellular cGMP, and the effect was blocked by Hb andLY-83583, but not by KT-5823. Neither SNP nor 8-BrcGMP had modulatedcervical cation selectivity. In contrast, both agents increasedfluorescence from fura 2-loaded cells in theCa2+-insensitive wavelengths, indicating that SNP and8-BrcGMP stimulate a decrease in cell size and in the resistance of thelateral intercellular space. Neither SNP nor 8-BrcGMP had an effect ontotal cellular actin, but both agents increased the fraction ofG-actin. Hb blocked the SNP-induced increase in G-actin, and KT-5823blocked the 8-BrcGMP-induced increase in G-actin. On the basis of theseresults, it is suggested that NO acts on guanylate cyclase andstimulates an increase in cGMP; cGMP, acting via cGMP-dependent proteinkinase, shifts actin steady-state toward G-actin; this fragments thecytoskeleton and renders cells more sensitive to decreases in cell sizeand resistance of the lateral intercellular space and, hence, toincreases in permeability. These results may be important forunderstanding NO regulation of transcervical paracellular permeabilityand secretion of cervical mucus in the woman.

  相似文献   

12.
The hypothesis was addressed that CO-induced cerebral vasodilation requires a permissive cGMP signal that can be produced by nitric oxide (NO). Anesthetized piglets were implanted with cranial windows for measurement of pial arteriolar responses to stimuli. Pial arterioles dilated in response to isoproterenol (Iso), sodium nitroprusside (SNP), and CO or the CO-releasing molecule Mn2(CO)10 [dimanganese decacarbonyl (DMDC)]. 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a soluble guanylyl cyclase inhibitor, decreased cerebrospinal fluid (CSF) cGMP and selectively inhibited dilations to SNP and DMDC without affecting the dilation to Iso. However, DMDC did not cause an increase in cortical periarachnoid CSF cGMP concentration. cGMP clamp with a threshold dilator level of 8-bromo-cGMP (10(-4) M) and ODQ restored the dilation to DMDC that had been blocked by ODQ alone. Under these conditions, cGMP was present but could not increase. Inhibition of the pial arteriolar dilation to glutamate by N-nitro-l-arginine, which blocks NO synthase, was similar to that by heme oxygenase inhibitors, which block endogenous CO production. The dilation to glutamate, similar to dilation to DMDC, was partially restored by 8-bromo-cGMP and completely restored by SNP (5 x 10(-7) M). These data suggest that the permissive role of NO in CO- and glutamate-induced vasodilation involves maintaining the minimum necessary cellular level of cGMP to allow CO to cause dilation independently of increasing cGMP.  相似文献   

13.
The soybean phytoestrogen, genistein (Gen), has anabolic effects on bone through mechanisms that remain to be elucidated. We examined the role of nitric oxide (NO) and its downstream effector guanylyl cyclase (GC) in mediating the effects of Gen on the proliferation and osteoblastic maturation of primary mouse bone marrow-derived mesenchymal stem cells (BMSCs). Gen (10(-8) approximately 10(-6) M) resulted in a dose-dependent increase in cell proliferation as measured by increased [3H]thymidine incorporation, and stimulated osteoblastic maturation as assessed by culture duration-dependent increments in alkaline phosphatase (ALP) activity, calcium deposition into extracellular matrix and Runx2/Cbfa1 gene expression in BMSCs cultures. Gen also resulted in a dose-dependent increase in NO synthase (NOS) activity, NO formation, and cGMP production in BMSCs cultures. The effects of Gen were mimicked by 17beta-estradiol (E2, 10(-8) M). Concurrent treatment with the estrogen receptor (ER) antagonist ICI182,780 (10(-7) M) or the NOS inhibitor L-NAME (3 x 10(-3) M) diminished the Gen (10(-6) M)-mediated increase in NOS activity, NO production, and cGMP content. In contrast, a soluble GC inhibitor 1H-[1,2,4]oxadiazolo [4,3,-a]quinoxalin-1-one (ODQ, 10(-6) M) selectively blocked the Gen (10(-6) M)-mediated increase in cGMP content but not in NO production and NOS activity. Moreover, inhibition of ER, NOS activity or cGMP blocked Gen-induced proliferation and osteoblastic differentiation of BMSCs and Runx2/Cbfa1 gene expression in culture. Gen has estrogen-like activity and stimulates the proliferation and osteoblastic differentiation of mouse BMSCs at least in part through NO/cGMP pathway.  相似文献   

14.
The biochemical signaling pathways involved in nitric oxide (NO)- mediated cholinergic inhibition of L-type Ca2+ current (ICa[L]) were investigated in isolated primary pacemaker cells from the rabbit sinoatrial node (SAN) using the nystatin-perforated whole-cell voltage clamp technique. Carbamylcholine (CCh; 1 microM), a stable analogue of acetylcholine, significantly inhibited ICa(L) after it had been augmented by isoproterenol (ISO; 1 microM). CCh also activated an outward K+ current, IK(ACh). Both of these effects of CCh were blocked completely by atropine. Preincubation of the SAN cells with L-nitro- arginine methyl ester (L-NAME; 0.2-1 mM), which inhibits NO synthase (NOS), abolished the CCh-induced attenuation of ICa(L) but had no effect on IK(ACh). Coincubation of cells with both L-NAME and the endogenous substrate of NOS, L-arginine (1 nM), restored the CCh- induced attenuation of ICa(L), indicating that L-NAME did not directly interfere with the muscarinic action of CCh on ICa(L). In the presence of ISO the CCh-induced inhibition of ICa(L) could be mimicked by the NO donor 3-morpholino-sydnonimine (SIN-1; 0.1 mM). SIN-1 had no effect on its own or after a maximal effect of CCh had developed, indicating that it does not inhibit ICa(L) directly. SIN-1 failed to activate IK(ACh), demonstrating that it did not activate muscarinic receptors. Both CCh and NO are known to activate guanylyl cyclase and elevate intracellular cGMP. External application of methylene blue (10 microM), which interferes with the ability of NO to activate guanylyl cyclase, blocked the CCh-induced attenuation of ICa(L). However, it also blocked the activation of IK(ACh), suggesting an additional effect on muscarinic receptors or G proteins. To address this, a separate series of experiments was performed using conventional whole-cell recordings with methylene blue in the pipette. Under these conditions, the CCh-induced attenuation of ICa(L) was blocked, but the activation of IK(ACh) was still observed. Methylene blue also blocked the SIN-1-induced decrease in ICa(L). 6-anilino-5,8-quinolinedione (LY83583; 30 microM), an agent known to decrease both basal and CCh-stimulated cGMP levels, prevented the inhibitory effects of both CCh and SIN-1 on ICa(L), but had no effect on the activation of IK(ACh) by CCh. In combination, these results show that CCh- and NO-induced inhibition of ICa(L) is mediated by cGMP.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Previous studies have focused on the immunohistochemical detection of a nitric oxide (NO)-cyclic 3',5'-monophosphate (cGMP) pathway in the brain and pituitary of the aquatic toad Xenopus laevis. We here investigate the endogenous production and possible involvement of NO signaling in the regulation of melanotrope cell activity in the pituitary pars intermedia of this amphibian. Using immunohistochemical staining of cultured cells with a polyclonal antiserum against inducible NO synthase (iNOS), immunoreactivity was observed both in melanotropes and in stellate-shaped cells. Part of these stellate-shaped cells is characterized as folliculo-stellate cells by their capacity of beta-Ala-Lys-N(epsilon)-AMCA uptake. Using chemiluminescence detection we demonstrate the presence of NO and reaction products like nitrite (NO(-)(2)) or peroxynitrite (ONOO(-)) in the incubation medium of cultured melanotropes. Bacterial lipopolysaccharide (LPS) stimulates the generation of NO and reaction products, the effect of which was blocked by S-methyl-l-thiocitrulline hydrochloride, a potent general NOS inhibitor. With [(3)H]lysine incorporation and a superfusion technique, it is shown that peptide release from melanotropes is stimulated by administration of superoxide dismutase (SOD), which was added to the superfusion medium to prevent scavenging of NO by superoxide anions. Pretreating the cells with the general NOS inhibitor l-nitroarginine methyl ester for 48 h attenuated the SOD-induced stimulation, but did not affect the stimulation by sodium nitroprusside (SNP) or 3-morpholinylsydnoneimine chloride (SIN-1), whereas hemoglobin blocked the combined effect of SOD plus NO donors. The soluble guanylate cyclase inhibitor 1H-[1,2, 4]oxadiazolo[4,3a]-quinoxaline-1-one did not inhibit but even significantly potentiated the effect of NO donors on peptide release without affecting the SOD-induced stimulation of peptide release. In addition to the previously described neuronal NOS (nNOS) immunoreactivity in nerve fibers in the pars intermedia of Xenopus, the present data reveal iNOS and nNOS as potential sources of endogenous NO production in cultured cells of the pars intermedia. Our study shows that also in nonmammalian vertebrates endogenous NO production may be physiologically relevant under conditions where protection against oxidative damage is needed. The endocrine cells of the pars intermedia themselves, as well as the folliculo-stellate cells, under such conditions may dispose of a protective mechanism against oxidative stress. The sensitivity of the endogenous NO production to LPS suggests that NO may also play a role during systemic inflammation.  相似文献   

16.
We investigated the role of NO (nitric oxide) in the isolated intestine of the sea water adapted eel, by testing the effect of various donors on I(sc) (short-circuit current), due to net Cl(-) absorption in the control conditions. We found that the endogenous NO-synthase substrate l-arginine as well as two different NO donors, SNP (sodium nitroprusside) and SIN-1 (3-morpholinosydnonimine), produced a slow and gradual decrease of I(sc). The effect of SNP was reduced by the pretreatment with ODQ (1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one), a specific inhibitor of the soluble guanylyl cyclase, suggesting the involvement of cGMP (cyclic GMP) in some physiological actions of NO. The effect of the NO donors on I(sc) was similar to that observed when the tissues were perfused with solution in which the HCO(3)(-) buffer was substituted with Hepes buffer. In addition the NO donors produced a negligible effect on I(sc) when the tissues were perfused with Hepes buffer or in the presence of bilateral SITS(4-Acetoamido-4'-iso-thiocyanatostilbene-2,2'disulphonic acid), an inhibitor of the HCO(3)(-) transport mechanisms, operating on both cell membranes of the eel enterocyte and responsible for HCO(3)(-) uptake by the cell. Based on these observations we suggest that NO regulates I(sc) and hence the transepithelial ion transport indirectly by modulating the endocellular concentration of HCO(3)(-) and/or H(+). In addition it is likely that NO modulates the permeability of the paracellular pathway since SNP produced also an increase of the tissue conductance and a decrease of the magnitude of the dilution potential.  相似文献   

17.
The effects of endothelium-dependent vasodilation on pulmonary vascular hemodynamics were evaluated in a variety of in vivo and in vitro models to determine 1) the comparability of the hemodynamic effects of acetylcholine (ACh), bradykinin (BK), nitric oxide (NO), and 8-bromo-guanosine 3',5'-cyclic monophosphate (cGMP), 2) whether methylene blue is a useful inhibitor of endothelium-dependent relaxing factor (EDRF) activity in vivo, and 3) the effect of monocrotaline-induced pulmonary hypertension on the responsiveness of the pulmonary vasculature to ACh. In isolated rat lungs, which were preconstricted with hypoxia, ACh, BK, NO, and 8-bromo-cGMP caused pulmonary vasodilation, which was not inhibited by maximum tolerable doses of methylene blue. Methylene blue did not inhibit EDRF activity in any model, despite causing increased pulmonary vascular tone and responsiveness to various constrictor agents. There were significant differences in the hemodynamic characteristics of ACh, BK, and NO. In the isolated lung, BK and NO caused transient decreases of hypoxic vasoconstriction, whereas ACh caused more prolonged vasodilation. Pretreatment of these lungs with NO did not significantly inhibit ACh-induced vasodilation but caused BK to produce vasoconstriction. Tachyphylaxis, which was agonist specific, developed with repeated administration of ACh or BK but not NO. Tachyphylaxis probably resulted from inhibition of the endothelium-dependent vasodilation pathway proximal to NO synthesis, because it could be overcome by exogenous NO. Pretreatment with 8-bromo-cGMP decreased hypoxic pulmonary vasoconstriction and, even when the hypoxic pressor response had largely recovered, subsequent doses of ACh and NO failed to cause vasodilation, although BK produced vasoconstriction. These findings are compatible with the existence of feedback inhibition of the endothelium-dependent relaxation by elevation of cGMP levels. Responsiveness to ACh was retained in lungs with severe monocrotaline-induced pulmonary hypertension. Many of these findings would not have been predicted based on in vitro studies and illustrate the importance for expanding studies of EDRF to in vivo and ex vivo models.  相似文献   

18.
The aim of this work has been to characterize and to compare the responses of the rat ileal longitudinal muscle to the nitric oxide (NO) donors, sodium nitroprusside (SNP) and morpholinosydnonimine hydrochloride (SIN-1). SNP (10(-5)-10(-3) M) caused a contraction followed by a relaxation, both components being concentration-dependent. In contrast, SIN-1 (10(-5)-10(-4) M) caused a relaxation followed by a contraction. Neither the neural blocker tetrodotoxin (TTX) nor atropine were able to change the response to SNP, whereas nifedipine abolished its contractile component. In contrast, TTX and nifedipine diminished both the relaxation and the contraction in response to SIN-1, whereas atropine decreased only the contractile component. The specific guanylate cyclase inhibitor oxadiazolo-quinoxalin-1-one (ODQ) decreased the relaxation induced by SNP but did not modify that caused by SIN-1. The K+ channel blockers charybdotoxin, apamin and tetraethylamonium were unable to modify the response to SNP. In contrast, both TEA and apamin significantly decreased the relaxation induced by SIN- 1. The relaxation resulting from electrical field stimulation (EFS) of enteric nerves in non-adrenergic non-cholinergic conditions is mainly but not exclusively nitrergic, as incubation with the NO synthase inhibitor L-NNA markedly decreases such relaxation. EFS-induced relaxation is also sensitive to ODQ. We conclude that SNP acts mainly on smooth muscle cells activating L-type Ca2+ channels, which result in contraction, and activates the soluble guanylate cyclase, which results in relaxation. In contrast SIN-1 has mixed--neuronal and muscular--effects, the contraction being caused both by acetylcholine release from neurons and by direct activation of L-type Ca2+ channels on smooth muscle cells. SIN-1-induced relaxation is cGMP-independent and it is likely to occur as a consequence of both, neuronal release of inhibitory transmitter(s) and by activation of apamin sensitive K+ channels. The effect of the nitrergic transmitter released from enteric nerves is different from those caused by SIN-1 but shows similarities with those caused by SNP.  相似文献   

19.
To determine whether nitric oxide (NO) is involved in classic preconditioning (PC), the effect of NO donors as well as inhibition of the L-arginine-NO-cGMP pathway were evaluated on 1) the functional recovery during reperfusion of ischemic rat hearts and 2) cyclic nucleotides during both the PC protocol and sustained ischemia. Tissue cyclic nucleotides were manipulated with NO donors [S-nitroso-N-penicillamine (SNAP), sodium nitroprusside (SNP), or L-arginine] and inhibitors of nitric oxide synthase (N(omega)-nitro-L-arginine methyl ester or N-nitro-L-arginine) or guanylyl cyclase (1H-[1,2,4]oxadiazolol-[4,3-a]quinoxaline-1-one). Pharmacological elevation in tissue cGMP levels by SNAP or SNP before sustained ischemia elicited functional improvement during reperfusion comparable to that by PC. Administration of inhibitors before and during the PC protocol partially attenuated functional recovery, whereas they had no effect when given after the ischemic PC protocol and before sustained ischemia only, indicating a role for NO as a trigger but not as a mediator. Ischemic PC, SNAP, or SNP caused a significant increase in cGMP and a reduction in cAMP levels after 25 min of sustained ischemia that may contribute to the protection obtained. The results obtained suggest a role for NO (and cGMP) as a trigger in classic PC.  相似文献   

20.
Nitrovasodilators-sodium nitroprusside (SNP; 10(-9)-10(-4) M) and 3-morpholino-sydnonimine (SIN-1; 10(-9)-10(-4) M) produced concentration-dependent relaxation of the fourth generation sheep pulmonary artery, preconstricted with 5-hydroxytryptamine (1 microM). Oxidizing agents [oxidized glutathione (GSSG, 1 mM) and CuSO4 (5 and 20 microM)] and reducing agents [dithiothreitol (DTT, 0.1 mM), ascorbic acid (1 mM) and reduced glutathione (GSH, 1 mM)] caused opposite effects on nitric oxide (NO)-induced vasodilation in the artery. Ascorbic acid and GSH potentiated the NO responses, while GSSG and CuSO4 inhibited relaxation caused by the nitrovasodilators. DTT, however, reduced the relaxant potency and efficacy of SNP and SIN-1. Pretreatment of the pulmonary artery strips with DTT (0.1 mM) inhibited SNP (10 microM)-induced Na(+)-K(+)-ATPase activity, while ascorbic acid (1 mM) and GSH (1 mM) had no effect either on basal or SNP (10 microM)-stimulated 86Rb uptake, an index of Na(+)-K(+)-ATPase activity, in ovine pulmonary artery. The results suggest that reducing agents like ascorbic acid may have beneficial effect in improving the vascular function under oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号