首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fragmentation that alters mutualistic relationships between plants and frugivorous animals may reduce the seed dispersal of trees. We examined the effects of forest fragmentation on the distributions of seeds and seedlings of a Central Amazon endemic tree, Duckeodendron cestroides . In the dry seasons of 2002–2004, seeds and first-year seedlings were counted within wedge-shaped transects centered around Duckeodendron adults in fragments and nearby continuous forests at the Biological Dynamics of Forest Fragmentation Project. Analyses showed that fragmentation reduced seed dispersal quantity and quality. The percent and distance of dispersed seeds were both twice as great in continuous forest as in fragments. The distances of each tree's five furthest dispersed seeds were three times greater in continuous forest than fragments. Over the 3-yr study, 20 times more seeds were dispersed more than 10 m from parent crowns in continuous forest than fragments. A regression analysis showed more dispersed seeds at all distances in continuous forest than fragments. Dispersal differences were strong in 2002 and 2004, years of large fruit crops, but weak or absent in 2003, when fruit production was low. As distance from parent crowns increased, the number of seedlings declined more rapidly in fragments than continuous forest. Distance-dependent mortality between the seed and seedling stages appeared to be more important in continuous forest than fragments. This research provides ample, indirect evidence demonstrating that forest fragmentation can result in the breakdown of a seed dispersal mutualism, potentially jeopardizing the reproduction of a rare, tropical tree.  相似文献   

2.
I compared dung beetle communities and assessed some of their functional effects (dung removal, seed burial, seedling establishment) in continuous forest with those in 1-ha and 10-ha forest fragments in Central Amazonia. I followed the fate of seeds until seedling establishment for three native tree species, using clean seeds and seeds surrounded by dung. The 1-ha fragments had half the number of dung beetle species captured in continuous forest and in 10-ha fragments. The continuous forest sites and the 1-ha fragments had similar number of individuals, but in the 10-ha fragments dung beetles were twice as abundant. Mean beetle size increased with increasing forest area. Dung removal and seed burial rates were higher in continuous forest than in forest fragments. Seed predation rates were higher in the forest fragments. In all sites, the proportion of seedlings established from seeds surrounded by dung vs clean seeds was the same, and it was the same in continuous forest vs fragments. When comparing seeds that remained on the forest floor with seeds buried by dung beetles, a higher percentage of seedlings established from the latter. Conservation programs that aim to maintain the regeneration ability of forest fragments must incorporate all the important components involved in seedling establishment; in Central Amazonia these include dung beetles as secondary dispersers. It is important that studies start measuring directly not only the first-order effects of forest fragmentation on species, but also the higher-order functional effects.  相似文献   

3.
Emilio M. Bruna 《Oecologia》2002,132(2):235-243
I present the results of a 2-year experiment comparing seed predation, seed germination, and seedling survivorship patterns of the Amazonian understory herb Heliconia acuminata in forest fragments and continuous forest. These empirical results were compared with natural patterns of recruitment in permanent 5,000 m2 demographic plots adjacent to experimental areas. The number of naturally occurring seedlings established in demographic plots was 1.5-6 times greater in continuous forest than it was in 1-ha or 10-ha fragments. This result mirrors the pattern of seedling establishment in experimental transects, in which seeds in fragments were 3-7 times less likely to become established than those in continuous forest. Predation of experimentally sown seeds was extremely low at all sites, and is therefore not responsible for the observed pattern. Instead, reductions in seedling abundance in forest fragments are probably due to lower levels of seed germination. Forest fragments have higher air and soil temperatures, lower relative humidity, and increased leaf-litter accumulation, all of which can alter the cues used to initiate germination. While the growth of seedlings was similar in forest fragments and continuous forest, seedling survivorship in fragments was highly variable. These results suggest that altered environmental conditions may exacerbate reductions in plant recruitment resulting from modified plant-animal interactions. Strategies aimed at reducing the intensity of abiotic edge effects should therefore be incorporated into plant conservation efforts.  相似文献   

4.
We compared the seed fate of two animal‐dispersed, large‐seeded timber species (Dipteryx panamensis [Fabaceae] and Carapa guianensis [Meliaceae]) in logged and fragmented forests with that for continuous forest in northeastern Costa Rica. For both species, we quantified rates of seed removal (an index of vertebrate predation) and the fate of dispersed seeds (those carried away from their original location that either germinated or were not subsequently removed within three months). We predicted that (1) fewer seeds would be dispersed by vertebrates in fragmented forest than in continuous forest due to low population abundances after hunting and/or loss of suitable habitat, and (2) seed predation rates would be higher in forest fragments than in continuous forest due to high abundance of small‐bodied seed consumers. We compared three forest fragments currently managed for timber (140–350 ha) and a large reserve of continuous forest (La Selva, 1500 ha and connected to a national park). An exclusion experiment was performed (seeds placed in the open vs. seeds within semipermeable wire cages; 5 cm mesh size) to evaluate the relative roles of large and small animals on seed removal. Seed germination capacity did not differ among all four sites for both species. Removal of Dipteryx seeds was higher in forest fragments (50% removal within 10 days and related to the activity of small rodents) compared to La Selva (50% removal after 50 days). Also, more Dipteryx seeds were dispersed at La Selva than in fragmented forests. Contrary to our predictions, removal of Carapa seeds was equally high among all four sites, and there was a trend for more seeds of Carapa to be dispersed in fragments than in La Selva. Our results suggest that fragmentation effects on tree seed fate may be specific to species in question and contingent on the animal biota involved, and that management strategies for timber production based on regeneration from seed may differ between forest patches and extensive forests.  相似文献   

5.
Seed dispersal plays a crucial role in natural forest regeneration. Changes in the seed rain due to anthropogenic habitat alteration can influence seedling recruitment patterns and affect the evolutionary dynamics of populations. Using a combined endocarp-embryo microsatellite assay of naturally dispersed seeds, we concomitantly quantify the contribution of contemporary pollen and seed dispersal to the genetic structure of the seed rain of the shrub species Pistacia lentiscus L. The study was conducted in two consecutive seasons at four forest fragments embedded in contrasting (connected vs. isolated) landscapes. Interseasonal variation in the parental genetic structure of the seed rain was assessed through analysis of molecular variance, and paternal and maternal correlations and effective parental numbers were computed for different fragments and microhabitats (within fragments) using genetic kinship analysis. Temporal variation in the genetic structure of the dispersed seeds was higher for maternal gametes, reflecting a more temporally variable contribution of individual mother plants to the seed rain, as a potential consequence of masting and/or natural heterogeneity. Higher effective numbers of fathers than mothers were consistently observed in all studied forest fragments and microhabitats, the difference being more pronounced for connected than for isolated fragments. The effective number of mothers, directly influenced by disperser birds’ behavior, was apparently insensitive to fragmentation. Despite potentially high mobility of pollen by wind and seeds by birds, habitat fragmentation could influence the parental structure of dispersed seeds, with potential consequences for the genetic structure of the adult generation.  相似文献   

6.
Habitat loss and fragmentation affect the structure and functioning of forested ecosystems worldwide, yet we lack an understanding of how species respond to environmental changes. Here, we examined reproductive success and seedling performance of Poulsenia armata (Moraceae) in continuous and fragmented forests of Los Tuxtlas, southern Mexico. We further investigated how maternal habitat and soil conditions manifested in the seedling stage. We determined seed quality and seedling performance by combining isotopic analyses in seed quality with field observations of P. armata fruit production and a common‐‐garden experiment. Soil conditions in forest fragments negatively impacted P. armata reproductive success. Trees of P. armata in forest fragments were smaller in size and produced fewer fruits and smaller seeds with lower quality compared with trees from the continuous forest. The combined effects of maternal habitat and soil conditions determined seedling survival and growth of this tropical tree. Notably, seedlings had restricted plasticity for biomass allocation to roots, limiting the capacity of fragmented populations to compensate for the initial low N content in seeds. Trees in forest fragments at Los Tuxtlas produced offspring competitively inferior and potentially less resilient than counterparts in continuous forest, jeopardizing future persistence of this late‐successional tree species.  相似文献   

7.
To cope with the limiting light conditions in the rain forest understory, many tropical tree species have evolved large seeds that provide the emerging seedlings with nutritional reserves. Habitat fragmentation might change the adaptive value of seed size by modifying the biotic and physical conditions of the forest understory. We experimentally assessed the potential of fragmentation to alter how seed mass affects seedling survival, vigor, and attack by natural enemies of the tropical tree Nectandra ambigens. Seeds from different mother trees (families) were individually weighed and sown in experimental sites established in continuous forest and in forest fragments. Seedling survival, vigor, and damage by herbivores and pathogens were recorded periodically. While seedlings derived from larger seeds had higher survival rates in both habitats, seedling survival and vigor were significantly greater in forest fragments, and the seedlings also suffered fewer attacks by natural enemies. We found genetic variance for seed mass among families with a heritability value (h2) of 0.66, and we found evidence for selection on seed size. Average seed size differed between dead and living seedlings in three sites. In one fragment, seed size was selectively neutral in relation to survival. Overall, selection for seed size promoted survival and thus appears to affect the distribution of this trait. The maintenance of genetic variance could be related to the stochastic nature of the formation of light gaps. Our results highlight the importance of evaluating the adaptive value of traits susceptible to environmental changes for conservation purposes.  相似文献   

8.
The regeneration of many tropical trees is threatened by forest fragmentation because it produces major physical, biological and ecological changes that limit seed germination and seedling establishment. We analyzed the regenerative potential of an old growth forest tree species—Ampelocera hottlei (Ulmaceae)—in three contrasting habitats located in the Lacandona rain forest, southeastern Mexico: continuous forest, fragments occupied by black howler monkeys (Alouatta pigra) and fragments unoccupied by howlers. We tested if germination of A. hottlei seeds among habitats was affected by understory temperature, light incidence and ingestion by A. pigra. We compared seedling survival and relative growth rate in height (RGRH) for 20 d among habitats and between ingested and control seeds (from mature fruits). Germination was higher in continuous forest than in fragments (occupied or not), with higher germination rates for ingested seeds in fragments. Temperature and light incidence were lower in continuous forest than in fragments. Germination decreased with increasing temperature and light incidence with this relationship being significantly higher for ingested seeds. Seedling survival was higher in continuous forest than in fragments, whereas RGRH did not differ among habitats. In addition, survival and RGRH were higher in seedlings originating from ingested seeds. Overall, our results suggest that the populations of A. hottlei can be limited in fragments where changes in the understory physical environment and the extirpation of A. pigra will likely have deleterious consequences for the regeneration of A. hottlei and possibly for other tree species, ultimately affecting forest composition and structure. Abstract in Spanish is available at http://www.blackwell‐synergy.com/loi/btp .  相似文献   

9.
Given current accelerated trends of tropical land conversion, forest fragments are being incorporated into many conservation programs. For investing in fragments to be a viable conservation strategy, forest fragments must maintain their ecological integrity over the long term. Based on fieldwork in 22 forest fragments in the crater lakes region of western Uganda and in the continuous forest of Kibale National Park, we examined (1) seed predation on experimentally dispersed seeds, (2) abundance and composition of the dung beetle community that may play a major role in removing seeds from sites of high seed predation, and (3) compared the fragments’ seedling community composition to adult tree community composition and the seedling community in continuous forest. First, the rate of seed removal at experimental stations was lower in forest fragments (85% remaining after 1 day) than at stations in the continuous forest (79% remaining) and the probability of stations being discovered by seed predators was lower in fragments (23%) than in the intact forest (41%). Second, there was a 62 percent decline in fragment dung beetle abundance. The magnitude of this decline varied among dung beetle guilds that process dung and seeds in different fashions. The abundance of large rollers that move large seeds away from sites of defecation did not differ, but medium and smaller rollers and burying beetles that process small and medium‐sized seeds were less common in the fragments than in the intact forest. Finally, we compared the seedling community composition relative to adult tree community composition by identifying all adult trees in each fragment and by sampling the composition of the seedling community. We found some evidence to suggest that there was movement of seeds among forest fragments by large‐bodied dispersers, particularly chimpanzees (Pan troglodytes) and hornbills (Ceratogymna subcylindricus).  相似文献   

10.
Ants can influence soil fertility and the spatial distribution of seeds, with possible effects on seedling recruitment. The ant species Pachycondyla striata Fr. Smith, 1858 and Odontomachus chelifer (Latreille, 1802) co-occur in many forest areas in the Neotropics. We assessed soil fertility and seed bank structure in soil samples close and distant (control) from ant nests in forest fragments. We also assessed the richness and abundance of seedlings on nests and control sites. In soil samples from ant nests, the concentration of phosphorus and potassium were respectively 55.6% and 36% higher than in control sites. Aluminium was 11–15% lower in soil samples from ant nests. In the greenhouse, soils from ant nests had higher plant abundance and species richness, but the same species composition in comparison with control sites. Although more plants emerged from soil samples of O. chelifer nests, in the field, the density and richness of seedlings were similar for the two ant species studied. Seedlings in the nest sites were, on average, 1.8 times more abundant and 1.6 times richer in species than in control sites. Our results showed that ant species can play a key role in seedling recruitment in forest fragments, where other animals with equivalent and positive effects, such as mammals, are missing.  相似文献   

11.
Rapid deforestation has fragmented habitat across the landscape of Madagascar. To determine the effect of fragmentation on seed banks and the potential for forest regeneration, we sampled seed viability, density and diversity in 40 plots of 1 m2 in three habitat types: forest fragments, the near edge of continuous forest, and deforested savanna in a highly fragmented dry deciduous forest landscape in northwestern Madagascar. While seed species diversity was not different between forest fragments and continuous forest edge, the number of animal‐dispersed seeds was significantly higher in forest fragments than in continuous forest edge, and this pattern was driven by a single, small‐seeded species. In the savanna, seeds were absent from all but three of the 40 plots, indicating that regeneration potential is low in these areas. Several pre‐ and post‐dispersal biotic and abiotic factors, including variation in the seed predator communities and edge effects could explain these findings. Understanding the extent to which seed dispersal and seed banks influence the regeneration potential of fragmented landscapes is critical as these fragments are the potential sources of forest expansion and re‐connectivity.  相似文献   

12.
Post‐dispersal seed predation is a key process determining the variability in seed survival in forests, where most seeds are handled by rodents. Seed predation is thought to affect seedling regeneration, colonization ability and spatial distribution of plants. Basic seed traits are the essential factors affecting rodent foraging preferences and thus seed survival and seedling recruitment. Many studies have discussed several seed traits and their effects upon seed predation by rodents. However, the results of those previous studies are usually equivocal, likely because few seed traits and/or plant species tend to be incorporated into these studies. In order to elucidate the relationships between seed predation and seed traits, we surveyed the predation of 48 600 seeds in a natural pine forest, belonging to 30 species, for three consecutive years. The results demonstrated that: (i) seed size and seed coat hardness did not significantly affect seed predation; (ii) total phenolics had a negative effect upon seed predation; (iii) positive effects of nitrogen content upon seed predation were found. From our study, it seems that the better strategy to prevent heavy predation is for plants to produce seeds with higher total phenolics content rather than physical defenses (i.e. hard seed coat) or larger seeds. Additionally, rodent foraging preference may depend more on Nitrogen content than other nutrient content of seeds.  相似文献   

13.
Chinese ash (Fraxinus chinensis) is an exotic tree species that has been used in non-commercial monospecific plantations for revegetation programs in the Central Andes of Colombia. At the Otún river watershed, these plantations occur in patches intermixed with old pastures, oak forests, and successional forests. In this heterogeneous landscape, the ash has been able to invade some of its surrounding habitats. This study evaluates the invasion patterns of ash to each of these habitats and experimentally quantifies seed and seedling survivorship and seedling growth as three processes that could determine ash establishment. Of the four habitats examined, old pastures were the most vulnerable to invasion, followed by oak plantations, and successional forest. Ash plantations exhibited recruitment levels intermediate between pastures and oak plantations. Abandoned pastures showed the highest seed germination, seedling survivorship, and seedling growth. In the ash plantations, recruitment seemed negatively affected by the low number of germinated seeds, high mortality of seedlings, and low growth. Invasion in oak plantations was constrained by high seed mortality and burial of seedlings by leaf litter, although the seedlings that did survive grew fast and produced a high number of leaves. Within the successional forest, Chinese ash seeds germinated but establishment was constrained by a reduced seedling survivorship and low growth. This research offers new evidence of how different processes affecting the establishment of an invader may differ among landscape elements, and it also yields important information for the management and control of ash in these Andean landscapes.  相似文献   

14.
The effects of habitat fragmentation on remnant plant populations have rarely been studied extensively using a single species. We have attempted to quantify the effects of forest fragmentation (primarily that of population size) on populations of Trillium camschatcense, a representative spring herb in the Tokachi plain of Hokkaido, Japan. In this region, intensive agricultural development over the past 100 years has divided once-large, continuous populations of this species into small, isolated fragments. Small populations generally produced fewer seeds than large populations, although this result differed between years. The level of seed production is unlikely to explain demographic structures based on life-history stages. Instead, the stage structure was better explained by population size, seedling recruitment being limited in smaller populations. This could be associated with edge effects because the stage structure in small populations corresponded well to that observed in forest edges, where altered microclimatic conditions strongly limit seedling recruitment. Small populations also experienced stochastic loss of rare alleles at allozyme loci as well as biparental inbreeding. Although one consequence of these changes is reduced fertility, the long-term effects on population growth can be controversial in long-lived forest herbs, since the negative effect on fertility may vary across years, and population growth rate may not be sensitive to changes in fertility. Further studies of long-term demography will reveal whether and how habitat fragmentation could limit population growth of remnant populations more than a century after fragmentation.  相似文献   

15.
Seed dispersal is considered a key process determining spatial structure and dynamics of plant populations, and has crucial implications for forest regeneration. We evaluated the effectiveness of spider monkeys (Ateles geoffroyi) as seed dispersers in continuous and fragmented habitats to test if this interaction is altered in forest fragments. We documented fruit and seed handling, defecation patterns, diversity and composition of seeds in feces, and seed germination of defecated and control seeds in the Lacandona rainforest, Mexico. For most species contributing to 80% of total fruit feeding time, monkeys swallowed and spat seeds, but swallowing was the most frequent seed handling category in continuous and fragmented forests. However, the proportion of feeding records of swallowed seeds was higher in continuous forest (0.59) than in fragments (0.46), whereas the opposite was true for proportion of dropped seeds (0.16 vs. 0.31). This pattern was reflected in the number of fecal samples containing seeds, which was greater in continuous (95.5%) than in fragmented forests (82.5%). Seeds in fecal samples included a total of 71 species from 23 plant families. The numbers of defecated seed species were similar between forest conditions, and in both cases most seeds (>86%) were undamaged. Defecated seeds showed greater germination percentages than control seeds in all of the five species evaluated. Although we identified some differences in seed handling and the percentage of feces with seeds between continuous forest and fragments, our results indicate that, in general terms, spider monkeys are effective seed dispersers in both forest conditions.  相似文献   

16.
Abstract: This study investigates the relationships among seed dispersal, patterns of seedling recruitment and the spatial distribution of a pioneer tree (Hortia arborea, Rutaceae) in the Brazilian Atlantic forest. The study was carried out at Dois Irmãos Reserve, a 387.4 ha reserve in northeastern Brazil. Fruit shadow concentrated beneath parental trees (74.6 % < 6 m distant) and fruit removal averaged 5.6 % (0 ‐ 25.5 %). Agoutis (Dasyprocta prymnolopha, Rodentia) ate fruits in the forest and in captivity and were the only vertebrates recorded feeding on Hortia fruits. Agoutis, however, destroyed 86.7 % of the seeds they ingested. In addition, only one seed from an expected number of 1980 germinated in a treefall gap after it passed through the digestive tract of agoutis. Both seed germination and seedling recruitment were restricted to gaps, and occurred among seeds manually released from the pulp or among those from fruits that naturally rotted in gaps. Moreover, exposed seedlings were taller than those covered by plants in a gap. H. arborea appears to self‐maintain populations in the same patches of forest, which are delimited by a pool of old and newly created gaps. More specifically, there is successful recruitment in patches occupied by parents, resulting in dense clumps of H. arborea.  相似文献   

17.
Numerous studies have documented declines in plant diversity in response to habitat loss in fragmented landscapes. However, determining the mechanisms that lead to species loss is challenging using solely a correlative approach. Here we link correlative assessments of plant community composition with seed additions for a focal species to test the hypothesis that distributions of forests plants within a fragmented landscape are limited by seed dispersal. Woody plant species richness of fragments declined as fragments (n=26) became more isolated by agricultural fields. We predicted that if these isolation effects were driven by poor dispersal rather than other effects associated with habitat loss, then plants should vary in their response to isolation in relation to their seed size (i.e., stronger effects for plants with larger seeds). As predicted under this dispersal limitation hypothesis, sensitivity of bird-dispersed shrubs to isolation was related to their seed mass, with species with heavy seeds (e.g., Lindera benzoin) exhibiting stronger declines in presence across isolation gradients than species with light seeds. Seed addition experiments were performed for Lindera benzoin in two high isolation forest fragments (nearest neighbor mean distance=803 m) where Lindera was naturally absent, and two low isolation fragments (nearest neighbor mean distance=218 m) with naturally occurring Lindera populations. Seed addition and control plots (n=50 1 m2 plots per fragment) were monitored for 13 censuses over 3 years. Across all four fragments, seed additions resulted in significant increases in Lindera seedling recruitment with no differences in final seedling establishment among fragments. However, insect herbivory was higher on Lindera seedlings in high isolation compared to low isolation fragments and was negatively correlated with seedling survival over some years. Consistent with prior work, our results confirm that seed dispersal plays a significant role in affecting plant diversity in fragmented landscapes. However, results also suggest the need for a better understanding of how additional processes, such as herbivory, may be altered as habitat is lost and what effects such changes have for forest plants.  相似文献   

18.
The disappearance of frugivorous primates in fragmented forests can potentially lower the rates of seed dispersal and recruitment of endozoochorous tree species, thus altering plant community structure. We quantified seedling density for 7 tree species that are common in the feces of mantled howlers (Alouatta palliata) in 6 rain forest fragments in northern Chiapas, Mexico. Howlers were present in 3 of the fragments and absent in the other 3. We compared seedling density in primate sleeping sites in inhabited fragments with control sites, which were structurally similar to sleeping sites but where we did not find monkey feces, in both inhabited and uninhabited fragments. For each tree species, we determined the relationship between seedling density and the local density of seeds and adult trees. In fragments where howlers were present, seedling density for 4 of the focal tree species (Brosimum alicastrum, Dialium guianense, Manilkara zapota, and Nectandra ambigens) was greater in sleeping sites than in control sites found in the same fragments. Moreover, seedling density of Dialium guianense was greater in the control sites of fragments inhabited by howlers than in fragments where this primate is absent. Seedling density of these 4 species correlates positively with seed density on the forest floor; however, we observed no correlations between seedling density and the density of adult trees. Our results suggest that the diversity of the seedling community of tree species dispersed by howlers may decline in fragments where this seed disperser is absent. These findings, together with the fact that only 5% of the study region is currently covered by forest and 81% of the forest remnants are uninhabited by mantled howlers, suggest that the potential long-term recovery of associated populations of tropical tree species dispersed by this primate species is highly uncertain. Conservation and restoration efforts should be aimed at restoring or replacing the ecological role played by this important seed disperser in the region.  相似文献   

19.
Recruitment limitation of trees in tropical forests can occur because of high rates of seed predation or low rates of seed dispersal, but the degree to which limitation is influenced by variation in seed predator abundance, and hence variation in seed predation and dispersal, is not well understood. We experimentally reduced the density of a granivorous small mammal (Heteromys desmarestianus) by 90 % to assess the degree to which its rates of seed predation and dispersal limit seed to seedling survival of nine species of trees in a Neotropical lowland forest. Overall, the proportion of seeds that germinated was influenced more by high rates of predation than by limited dispersal. Reduction in density of H. desmarestianus resulted in an order of magnitude decrease in fruit removal rates and an order of magnitude increase in both the absolute and relative numbers of seeds that germinated. However, the proportion of seeds that were cached remained relatively constant across all periods and between control grids and removal plots. In removal plots, H. desmarestianus dispersed and cached about 10 % of the fruits they handled, of which approximately 25 % germinated. This was 2 to 3 times greater than the germination rates of undispersed seeds, and for two species dispersed seeds were the only ones that germinated. The results suggest the simultaneous occurrence of both seed predation and dispersal limitation for trees with animal-dispersed seeds, but there may also be a hierarchy of importance in the relative strength of these two mechanisms that is determined by the dynamics of seed predator populations.  相似文献   

20.
The impact of seed size (seed mass) on seedling emergence beneath a leaf litter layer and post-dispersal seed predation was investigated in two field experiments including 16 forest herbs and one dwarf-shrub in southeastern Sweden. In the first experiment, I studied the relationship between seed mass of eight forest herbs (0.3–16.7 mg) and seedling emergence after removal of litter and reduction of seed predation (rodents and insects). Removal of litter and reduction of seed predation did not affect seedling emergence. However, regardless of treatment, species with large seeds (> 3 mg) had a higher seedling emergence than those with small seeds (< 1 mg). In the second experiment, I investigated the relationship between seed mass of 12 species (0.007–18.4 mg) and seedling emergence after removal of litter, reduction of seed predation (insects) and seedling herbivory (molluscs). Total emergence over three years was significantly higher in species with large seeds (> 3 mg) than in those with small seeds (< 2 mg). Removal of litter increased total seedling emergence, while application of insecticide and molluscicide had no effect. Similar results were obtained from both a deciduous and a mixed coniferous forest, but seedling emergence was in general higher in the mixed coniferous forest. Seedling emergence in temperate forest herbs and dwarf-shrubs seems to be higher in species with large than in those with small seeds, and it is often enhanced by disturbance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号