首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dental unit water system (DUWS) tubing harbors complex multispecies biofilms that are responsible for high microbial levels at the distal outlet. The aim of this study was to use an established biofilm laboratory model to simulate biofouling of DUWS to evaluate practical, cost-effective, and evidence-based methods of microbial decontamination. Reproducible biofilms were developed in the model over 14 days; decontamination was assessed using total viable counts (TVC) and microscopic-image analysis techniques to view the inner surface of tubing. Flushing did not reduce the biofilm coverage or TVC. Combizyme and ozone did not completely eliminate the viable bacteria (70 and 65% reduction in biofilm TVC, respectively), nor did they remove the biofilm (45 and 57% reduction in biofilm coverage, respectively). Chlorhexidine and Bio2000 (active agent: ethanol and chlorhexidine), Tegodor and Gigasept Rapid (aldehyde based), and Grotanol (hydroxide based) completely eliminated the TVC but did not completely remove biofilm (31, 53 33, 34, and 64.9% reduction of biofilm coverage, respectively). Other products including Grotanol Flussig (phenol based), Betadine (povidone-iodine based), Alpron (chlorite based), and the hydroxide-containing products Sporklenz, Sterilex Ultra, Dialox, Sterilox, Sanosil, Oxigenal, and Grotanat Bohrerbad resulted in a 100% reduction in the biofilm TVC and a >95% reduction in biofilm coverage. The study demonstrated that while many disinfectants achieve a sufficient reduction in TVC they may not necessarily remove unwanted biofilm from the tubing surfaces as tested in this laboratory-controlled biofilm model.  相似文献   

2.
Dental-unit water systems (DUWS) harbor bacterial biofilms, which may serve as a haven for pathogens. The aim of this study was to investigate the microbial load of water from DUWS in general dental practices and the biofouling of DUWS tubing. Water and tube samples were taken from 55 dental surgeries in southwestern England. Contamination was determined by viable counts on environmentally selective, clinically selective, and pathogen-selective media, and biofouling was determined by using microscopic and image analysis techniques. Microbial loading ranged from 500 to 10(5) CFU. ml(-1); in 95% of DUWS water samples, it exceeded European Union drinking water guidelines and in 83% it exceeded American Dental Association DUWS standards. Among visible bacteria, 68% were viable by BacLight staining, but only 5% of this "viable by BacLight" fraction produced colonies on agar plates. Legionella pneumophila, Mycobacterium spp., Candida spp., and Pseudomonas spp. were detected in one, five, two, and nine different surgeries, respectively. Presumptive oral streptococci and Fusobacterium spp. were detected in four and one surgeries, respectively, suggesting back siphonage and failure of antiretraction devices. Hepatitis B virus was never detected. Decontamination strategies (5 of 55 surgeries) significantly reduced biofilm coverage but significantly increased microbial numbers in the water phase (in both cases, P < 0.05). Microbial loads were not significantly different in DUWS fed with soft, hard, deionized, or distilled water or in different DUWS (main, tank, or bottle fed). Microbiologically, no DUWS can be considered "cleaner" than others. DUWS deliver water to patients with microbial levels exceeding those considered safe for drinking water.  相似文献   

3.
Microbial biofilm formation in dental unit water lines (DUWL) is a phenomenon that has been recognized for nearly four decades. Water delivered by DUWL can harbor high numbers of bacteria, including opportunistic pathogens. Biofilms on tubing within DUWL may serve as a reservoir for these microorganisms and should therefore be controlled. In this study, the effects of eight biocides were monitored on DUWL biofilms individually and in combination by epifluorescence microscopy and total viable counts (TVC). The effects of sodium dodecyl sulphate (SDS), hydrogen peroxide (H2O2), sodium hypochlorite (NaOCl), phenol (Phe), Tween 20 (Tw 20), ethylenediaminetetraacetic acid (EDTA), chlorohexidine gluconate (CHX), and povidine iodine (PI) were tested on DUWL biofilms alone and in combination. PI was found to have negligible effects on biofilm removal either applied alone or in combined form with CHX. Applying all biocides simultaneously did not completely eliminate viable bacteria nor did they remove biofilm. Overall, when combined, the biocides performed better than singly applied products. The most effective biocides were NaOCl and Phe (both alone and in combination).  相似文献   

4.
Dental-unit water systems (DUWS) harbor bacterial biofilms, which may serve as a haven for pathogens. The aim of this study was to investigate the microbial load of water from DUWS in general dental practices and the biofouling of DUWS tubing. Water and tube samples were taken from 55 dental surgeries in southwestern England. Contamination was determined by viable counts on environmentally selective, clinically selective, and pathogen-selective media, and biofouling was determined by using microscopic and image analysis techniques. Microbial loading ranged from 500 to 105 CFU · ml−1; in 95% of DUWS water samples, it exceeded European Union drinking water guidelines and in 83% it exceeded American Dental Association DUWS standards. Among visible bacteria, 68% were viable by BacLight staining, but only 5% of this “viable by BacLight” fraction produced colonies on agar plates. Legionella pneumophila, Mycobacterium spp., Candida spp., and Pseudomonas spp. were detected in one, five, two, and nine different surgeries, respectively. Presumptive oral streptococci and Fusobacterium spp. were detected in four and one surgeries, respectively, suggesting back siphonage and failure of antiretraction devices. Hepatitis B virus was never detected. Decontamination strategies (5 of 55 surgeries) significantly reduced biofilm coverage but significantly increased microbial numbers in the water phase (in both cases, P < 0.05). Microbial loads were not significantly different in DUWS fed with soft, hard, deionized, or distilled water or in different DUWS (main, tank, or bottle fed). Microbiologically, no DUWS can be considered “cleaner” than others. DUWS deliver water to patients with microbial levels exceeding those considered safe for drinking water.  相似文献   

5.
Microbial diversity of biofilms in dental unit water systems   总被引:8,自引:0,他引:8  
We investigated the microbial diversity of biofilms found in dental unit water systems (DUWS) by three methods. The first was microscopic examination by scanning electron microscopy (SEM), acridine orange staining, and fluorescent in situ hybridization (FISH). Most bacteria present in the biofilm were viable. FISH detected the beta and gamma, but not the alpha, subclasses of Proteobacteria: In the second method, 55 cultivated biofilm isolates were identified with the Biolog system, fatty acid analysis, and 16S ribosomal DNA (rDNA) sequencing. Only 16S identified all 55 isolates, which represented 13 genera. The most common organisms, as shown by analyses of 16S rDNA, belonged to the genera Afipia (28%) and Sphingomonas (16%). The third method was a culture-independent direct amplification and sequencing of 165 subclones from community biofilm 16S rDNA. This method revealed 40 genera: the most common ones included Leptospira (20%), Sphingomonas (14%), Bacillus (7%), Escherichia (6%), Geobacter (5%), and Pseudomonas (5%). Some of these organisms may be opportunistic pathogens. Our results have demonstrated that a biofilm in a health care setting may harbor a vast diversity of organisms. The results also reflect the limitations of culture-based techniques to detect and identify bacteria. Although this is the greatest diversity reported in DUWS biofilms, other genera may have been missed. Using a technique based on jackknife subsampling, we projected that a 25-fold increase in the number of subclones sequenced would approximately double the number of genera observed, reflecting the richness and high diversity of microbial communities in these biofilms.  相似文献   

6.
Water delivered by dental unit water systems (DUWS) in general dental practices can harbor high numbers of bacteria, including opportunistic pathogens. Biofilms on tubing within DUWS provide a reservoir for microorganisms and should be controlled. This study compared disinfection products for their ability to meet the American Dental Association's guideline of <200 CFU x ml(-1) for DUWS water. Alpron, BioBlue, Dentosept, Oxygenal, Sanosil, Sterilex Ultra, and Ster4Spray were tested in DUWS (n = 134) in Denmark, Germany, Greece, Ireland, The Netherlands, Spain, and the United Kingdom. Weekly water samples were tested for total viable counts (TVCs) on yeast extract agar, and, where possible, the effects of products on established biofilm (TVCs) were measured. A 4- to 5-week baseline measurement period was followed by 6 to 8 weeks of disinfection (intermittent or continuous product application). DUWS water TVCs before disinfection ranged from 0 to 5.41 log CFU x ml(-1). Disinfectants achieved reductions in the median water TVC ranging from 0.69 (Ster4Spray) to 3.11 (Dentosept) log CFU x ml(-1), although occasional high values (up to 4.88 log CFU x ml(-1)) occurred with all products. Before treatment, 64% of all baseline samples exceeded American Dental Association guidelines, compared to only 17% following commencement of treatment; where tested, biofilm TVCs were reduced to below detectable levels. The antimicrobial efficacies of products varied (e.g., 91% of water samples from DUWS treated with Dentosept or Oxygenal met American Dental Association guidelines, compared to 60% of those treated with Ster4Spray). Overall, the continuously applied products performed better than those applied intermittently. The most effective products were Dentosept and Oxygenal, although Dentosept gave the most consistent and sustained antimicrobial effect over time.  相似文献   

7.
The effectiveness of cleaning was investigated through food factory trials and laboratory experiments using a naturally occurring biofilm from a food factory environment and generated biofilms. The efficacy of factory cleaning and disinfection programmes was assessed by swabbing and total viable count (TVC) analysis of surfaces before cleaning, after cleaning and after disinfection. Cleaning produced a 0.91 log reduction in the attached population. Investigation of the effectiveness of a variety of cleaning methods in the removal of a naturally occurring food factory biofilm showed that the high pressure spray and the mechanical floor scrubber, which use a high degree of mechanical action, were most effective. Cleaning trials with biofilms of Pseudomonas aeruginosa or Staphylococcus aureus showed that spraying with water at pressures of 34.5, 51.7 and 68.9 bar did not significantly increase the removal, as assessed by direct epifluorescent microscopy (DEM) and swabbing and TVC analysis, beyond the three log reduction observed at 17.2 bar. The effect of spray time at 17.2 bar showed that increasing spray time from 1 to 10 s did not significantly increase removal of Ps. aeruginosa biofilm. Investigation of the optimum distance of the spray lance from the surface at 17.2 bar was found to be between 125 and 250 mm. The use of an alkaline, acidic or neutral detergent prior to spraying with water at 17.2 bar did not significantly increase the removal of Ps. aeruginosa or Staph. aureus. However, the acidic and alkaline products significantly (P = 0.05) affected the viability of Staph. aureus and Ps. aeruginosa, respectively, thereby minimizing the potential for the spread of contamination.  相似文献   

8.
Water delivered by dental unit water systems (DUWS) in general dental practices can harbor high numbers of bacteria, including opportunistic pathogens. Biofilms on tubing within DUWS provide a reservoir for microorganisms and should be controlled. This study compared disinfection products for their ability to meet the American Dental Association's guideline of <200 CFU · ml−1 for DUWS water. Alpron, BioBlue, Dentosept, Oxygenal, Sanosil, Sterilex Ultra, and Ster4Spray were tested in DUWS (n = 134) in Denmark, Germany, Greece, Ireland, The Netherlands, Spain, and the United Kingdom. Weekly water samples were tested for total viable counts (TVCs) on yeast extract agar, and, where possible, the effects of products on established biofilm (TVCs) were measured. A 4- to 5-week baseline measurement period was followed by 6 to 8 weeks of disinfection (intermittent or continuous product application). DUWS water TVCs before disinfection ranged from 0 to 5.41 log CFU · ml−1. Disinfectants achieved reductions in the median water TVC ranging from 0.69 (Ster4Spray) to 3.11 (Dentosept) log CFU · ml−1, although occasional high values (up to 4.88 log CFU · ml−1) occurred with all products. Before treatment, 64% of all baseline samples exceeded American Dental Association guidelines, compared to only 17% following commencement of treatment; where tested, biofilm TVCs were reduced to below detectable levels. The antimicrobial efficacies of products varied (e.g., 91% of water samples from DUWS treated with Dentosept or Oxygenal met American Dental Association guidelines, compared to 60% of those treated with Ster4Spray). Overall, the continuously applied products performed better than those applied intermittently. The most effective products were Dentosept and Oxygenal, although Dentosept gave the most consistent and sustained antimicrobial effect over time.  相似文献   

9.
Aim:  To examine the efficacy of tetra-sodium EDTA in controlling microbial contamination of dental unit water systems (DUWS).
Methods and Results:  Ten dental units were treated once a week with either 4% or 8% tetra-sodium EDTA for four or two consecutive weeks, respectively. Before treatment, 43% and 60% of the water samples from the air/water triple syringe and high-speed hand-pieces, respectively, exceeded the American Dental Association (ADA) guidelines of 200 CFU ml−1 water during a 6-week baseline period. After each weekend treatment, the levels of microbial contamination in all DUWS fell significantly ( P  < 0·001) to below the ADA guideline. By the end of the week, microbial counts in the outflowing water had returned to baseline levels indicating a transient effect of single doses of tetra-sodium EDTA, and the need for multiple applications. The biofilms were virtually eliminated after a single weekend treatment.
Conclusions:  Tetra-sodium EDTA is effective in controlling microbial contamination in DUWS.
Significance and Impact of the Study:  Inexpensive, effective and safe products for reducing the microbial load of water from DUWS are needed to meet ADA and other national guidelines. Tetra-sodium EDTA can significantly reduce microbial biofilms and bacterial counts in outflowing water, and is compatible for use in DUWS.  相似文献   

10.
11.
There is a general consensus that with increasing age a biofilm shows increased resistance to antimicrobials. In this study the susceptibility of 3-, 5- and 7-day-old Salmonella enterica serovar Typhimurium biofilms to disinfectants was evaluated. It was hypothesized that 7-day-old biofilms would be more resistant to disinfectants compared to 3- and 5-day-old biofilms. Biofilms were formed using the MBEC? system and treated with six chemical disinfectants for 1 and 5 min. Four disinfectants at the highest concentration available showed 100% reduction in viable cells from all ages of biofilms after exposure for 5 min, and ethanol at 70% v/v was the least effective against biofilms, followed by chlorhexidine gluconate (CG). At the recommended user concentrations, only sodium hypochlorite showed 100% reduction in viable cells from all ages of biofilms. Benzalkonium chloride and CG were the least effective against biofilms, followed by quaternary ammonium compound which only showed 100% reduction in viable cells from 5-day-old biofilms. Overall, the results from this study do not display enhanced resistance in 7-day-old biofilms compared to 3- and 5-day-old biofilms. It is concluded that under the conditions of this study, the age of biofilm did not contribute to resistance towards disinfectants. Rather, the concentration of disinfectant and an increased contact time were both shown to play a role in successful sanitization.  相似文献   

12.
AIMS: The purpose of this study was to compare the efficacy, in terms of bacterial biofilm penetration and killing, of alkaline hypochlorite (pH 11) and chlorosulfamate (pH 5.5) formulations. METHODS AND RESULTS: Two species biofilms of Pseudomonas aeruginosa and Klebsiella pneumoniae were grown by flowing a dilute medium over inclined stainless steel slides for 6 d. Microelectrode technology was used to measure concentration profiles of active chlorine species within the biofilms in response to treatment at a concentration of 1000 mg total chlorine l(-1). Chlorosulfamate formulations penetrated biofilms faster than did hypochlorite. The mean penetration time into approximately 1 mm-thick biofilms for chlorosulfamate (6 min) was only one-eighth as long as for the same concentration of hypochlorite (48 min). Chloride ion penetrated biofilms rapidly (5 min) with an effective diffusion coefficient in the biofilm that was close to the value for chloride in water. Biofilm bacteria were highly resistant to killing by both antimicrobial agents. Biofilms challenged with 1000 mg l(-1) alkaline hypochlorite or chlorosulfamate for 1 h experienced 0.85 and 1.3 log reductions in viable cell numbers, respectively. Similar treatment reduced viable numbers of planktonic bacteria to non-detectable levels (log reduction greater than 6) within 60 s. Aged planktonic and resuspended laboratory biofilm bacteria were just as susceptible to hypochlorite as fresh planktonic cells. CONCLUSION: Chlorosulfamate transport into biofilm was not retarded whereas hypochlorite transport clearly was retarded. Superior penetration by chlorosulfamate was hypothesized to be due to its lower capacity for reaction with constituents of the biofilm. Poor biofilm killing despite direct measurement of effective physical penetration of the antimicrobial agent into the biofilm demonstrates that bacteria in the biofilm are protected by some mechanism other than simple physical shielding by the biofilm matrix. SIGNIFICANCE AND IMPACT OF THE STUDY: This study lends support to the theory that the penetration of antimicrobial agents into microbial biofilms is controlled by the reactivity of the antimicrobial agent with biofilm components. The finding that chlorine-based biocides can penetrate, but fail to kill, bacteria in biofilms should motivate the search for other mechanisms of protection from killing by antimicrobial agents in biofilms.  相似文献   

13.
There is a general consensus that with increasing age a biofilm shows increased resistance to antimicrobials. In this study the susceptibility of 3-, 5- and 7-day-old Salmonella enterica serovar Typhimurium biofilms to disinfectants was evaluated. It was hypothesized that 7-day-old biofilms would be more resistant to disinfectants compared to 3- and 5-day-old biofilms. Biofilms were formed using the MBEC? system and treated with six chemical disinfectants for 1 and 5 min. Four disinfectants at the highest concentration available showed 100% reduction in viable cells from all ages of biofilms after exposure for 5 min, and ethanol at 70% v/v was the least effective against biofilms, followed by chlorhexidine gluconate (CG). At the recommended user concentrations, only sodium hypochlorite showed 100% reduction in viable cells from all ages of biofilms. Benzalkonium chloride and CG were the least effective against biofilms, followed by quaternary ammonium compound which only showed 100% reduction in viable cells from 5-day-old biofilms. Overall, the results from this study do not display enhanced resistance in 7-day-old biofilms compared to 3- and 5-day-old biofilms. It is concluded that under the conditions of this study, the age of biofilm did not contribute to resistance towards disinfectants. Rather, the concentration of disinfectant and an increased contact time were both shown to play a role in successful sanitization.  相似文献   

14.
The contamination of dental unit water lines (DUWL) is an emerging concern in dentistry. The aim of this study was to use an in vitro DUWL to model microbial contamination and evaluate the decontamination efficacy of tetraacetylethylenediamine (TAED) solutions. A DUWL biofilm model used to simulate clinical conditions was used to generate a range of biofilms in DUWL. Three distinct biofilms were generated: (1) biofilm from water, (2) biofilm from a mix of water + contaminating human commensal bacteria, (3) biofilm from water with contaminating oral bacteria added after biofilm formed. The contaminating oral species used were Streptococcus oralis, Enterococcus faecalis and Staphylococcus aureus. Decontamination by simple water flushing or flushing with TAED was evaluated (2, 5 and 10 min intervals). The DUWL tubes were split and samples were plated onto a range of media, incubated and bacteria enumerated. Water flushing did not reduce the number of microorganisms detected. Bacteria were not detected from any of the TAED sampling points for any of the biofilm types tested. Interestingly, if contamination was introduced to new DUWL along with the waterborne species a biofilm was formed containing only the waterborne species. If however, an existing biofilm was present before the introduction of "contaminating" bacteria then these could be detected in the biofilm. This implies that if the DUWL are new or satisfactorily cleaned on a regular basis then the associated cross-contamination aspects are reduced. In conclusion, TAED provides effective control for DUWL biofilms.  相似文献   

15.
M Dwidar  S Hong  M Cha  J Jang  RJ Mitchell 《Biofouling》2012,28(7):671-680
This study evaluated predation with Bdellovibrio bacteriovorous and CO(2) aerosol spraying to remove fluorescent Escherichia coli biofilms from silicon chips. Initial tests found that 7.5×10(5) viable E. coli cells were dispersed into the surrounding environment during aerosol treatment. The total number dispersed per test decreased to only 16 for predated biofilms. This is nearly 50,000-fold lower compared to untreated chips and 1000-fold lower compared to chips soaked in HEPES buffer only. Both scanning electron microscopy (SEM) and fluorescent microscopy analyses confirmed that predation alone did not completely eradicate the biofilm population. When used in conjunction with CO(2) aerosols, however, no fluorescent signals remained and the SEM pictures showed a pristine surface devoid of bacteria. Consequently, this study demonstrates these two methods can be used with each other to significantly remove biofilms from surfaces while also significantly reducing the likelihood of human exposure to potential pathogens during their removal.  相似文献   

16.
A standardized disinfectant test for Staphylococcus aureus cells in biofilms was developed. Two disinfectants, the membrane-active compound benzalkonium chloride (BAC) and the oxidizing agent sodium hypochlorite, were used to evaluate the biofilm test. S. aureus formed biofilms on glass, stainless steel, and polystyrene in a simple system with constant nutrient flow that mimicked as closely as possible the conditions used in the current standard European disinfectant test (EN 1040). The biofilm that was formed on glass contained cell clumps and extracellular polysaccharides. The average surface coverage was 60%, and most (92%) of the biofilm cells were viable. Biofilm formation and biofilm disinfection in different experiments were reproducible. For biofilms exposed to BAC and hypochlorite the concentrations needed to achieve 4-log killing were 50 and 600 times higher, respectively, than the concentrations needed to achieve this level of killing with the European phase 1 suspension test cells. Our results show that a standardized disinfectant test for biofilm cells is a useful addition to the current standard tests.  相似文献   

17.
The recolonization of laser-ablated bacterial monoculture biofilm was studied in the laboratory by using a flow-cytometer system. The marine biofilm-forming bacterium Pseudoalteromonas carrageenovora was used to develop biofilms on titanium coupons. Upon exposure to a low-power pulsed irradiation from an Nd:YAG laser, the coupons with biofilm were significantly reduced both in terms of total viable count (TVC) and area cover. The energy density used for a pulse of 5 ns was 0.1 J/cm(2) and the durations of irradiation exposure were 5 and 10 min. When placed in a flow of dilute ZoBell marine broth medium (10%) the laser-destructed bacterial film in a flow-cytometer showed significant recovery over a period of time. The flow of medium was regulated at 3.2 ml/min. The increase in area cover and TVC, however, was significantly less than that observed for nonirradiated control (t-test, P< 0.05). The coupons were observed for biofilm area cover and TVC at different intervals (3, 6, and 9 h) after irradiation. While the biofilm in the control coupon at the end of 9 h of exposure showed 95.6 +/- 4.1% cover, the 5- and 10-min irradiated samples after 9 h showed 60.3 +/- 6.5 and 37.4 +/- 12.1% area cover, respectively. The reduced rate of recolonization compared to control was thought be due to the lethal and sublethal impacts of laser irradiation on bacteria. This observation thus provided data on the online recolonization speed of biofilm, which is important when considering pulsed laser irradiation as an ablating technique of biofilm formation and removal in natural systems.  相似文献   

18.
Haque H  Cutright TJ  Newby BM 《Biofouling》2005,21(2):109-119
The traditional solution for preventing organisms from attaching to submerged surfaces is to apply antifouling coatings or biocides. Based on the varied defence mechanisms exhibited by biofilms, the antifoulant needs to prevent bacterial attachment during the early stages of biofilm formation. The potential of benzoic acid and sodium benzoate (NaB) as antifoulants for deterring freshwater bacterial attachment was evaluated with the antifoulants dispersed in solution or entrapped in silicone coatings. Effectiveness was based on the decrease in microbial attachment, limited toxicity, and minimum alteration of the properties of the coatings. The optimal NaB concentration when dispersed in solution, 700 mg l-1, resulted in a biofilm surface coverage of only 3.34% after four weeks. The model silicone, Sylgard 184, demonstrated a better overall performance than the commercial coating, RTV11. Sylgard 184 containing sodium benzoate had 41-52% less biofilm in comparison to the control Sylgard 184, whereas both the control and NaB-entrapped RTV11 coatings had significant biofilm coverage.  相似文献   

19.
A standardized disinfectant test for Staphylococcus aureus cells in biofilms was developed. Two disinfectants, the membrane-active compound benzalkonium chloride (BAC) and the oxidizing agent sodium hypochlorite, were used to evaluate the biofilm test. S. aureus formed biofilms on glass, stainless steel, and polystyrene in a simple system with constant nutrient flow that mimicked as closely as possible the conditions used in the current standard European disinfectant test (EN 1040). The biofilm that was formed on glass contained cell clumps and extracellular polysaccharides. The average surface coverage was 60%, and most (92%) of the biofilm cells were viable. Biofilm formation and biofilm disinfection in different experiments were reproducible. For biofilms exposed to BAC and hypochlorite the concentrations needed to achieve 4-log killing were 50 and 600 times higher, respectively, than the concentrations needed to achieve this level of killing with the European phase 1 suspension test cells. Our results show that a standardized disinfectant test for biofilm cells is a useful addition to the current standard tests.  相似文献   

20.
A methodology aiming at identifying and removing biofilms from cultural heritage was applied to stones from tuff walls in historical sites. Identification of phototrophic encrusting microorganisms was carried out by optical and electron microscopy, as well as by molecular techniques (DNA analyses and denaturing gradient gel electrophoresis (DGGE)). In all sites, the examination of microbial components of biofilms resulted in the identification of 17 species belonging to Cyanobacteria, Rhodophyta, Bacillariophyta and Chlorophyta, with Cyanobacteria being the dominant components in all biofilms. In order to remove the biofilms, an innovative technique based on the use of nonthermal effects of radiofrequencies was adopted. The source of the electromagnetic fields was a signal generator connected to a horn antenna through an amplifier to provide the power boost required to generate the target field amplitude. Seven days after exposure to radiofrequency electromagnetic field, about 50 % reduction of biofilm was observed; after 14 days, biofilm extension was reduced by about 90 %. DGGE analyses performed after 14 days confirmed these visual inspections. Also, DGGE analyses carried out before and 14 days after treatments showed that 12 out of 17 identified species disappeared. A complete visual disappearance of biofilms was observed a month after the beginning of treatments. DGGE repeated at this time confirmed the total disappearance of biofilm-forming species. Treated stones, when transferred back to their original sites, did not show any microorganism re-growing after 6 months. No alteration in the color and structural consistency of tuff substrata was observed after radiofrequency treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号