首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ongoing declines in biodiversity caused by global environmental changes call for adaptive conservation management, including the assessment of habitat suitability spatiotemporal dynamics potentially affecting species persistence. Remote sensing (RS) provides a wide-range of satellite-based environmental variables that can be fed into species distribution models (SDMs) to investigate species-environment relations and forecast responses to change. We address the spatiotemporal dynamics of species’ habitat suitability at the landscape level by combining multi-temporal RS data with SDMs for analysing inter-annual habitat suitability dynamics. We implemented this framework with a vulnerable plant species (Veronica micrantha), by combining SDMs with a time-series of RS-based metrics of vegetation functioning related to primary productivity, seasonality, phenology and actual evapotranspiration. Besides RS variables, predictors related to landscape structure, soils and wildfires were ranked and combined through multi-model inference (MMI). To assess recent dynamics, a habitat suitability time-series was generated through model hindcasting. MMI highlighted the strong predictive ability of RS variables related to primary productivity and water availability for explaining the test-species distribution, along with soil, wildfire regime and landscape composition. The habitat suitability time-series revealed the effects of short-term land cover changes and inter-annual variability in climatic conditions. Multi-temporal SDMs further improved predictions, benefiting from RS time-series. Overall, results emphasize the integration of landscape attributes related to function, composition and spatial configuration for improving the explanation of ecological patterns. Moreover, coupling SDMs with RS functional metrics may provide early-warnings of future environmental changes potentially impacting habitat suitability. Applications discussed include the improvement of biodiversity monitoring and conservation strategies.  相似文献   

2.
物种分布模型在海洋潜在生境预测的应用研究进展   总被引:1,自引:0,他引:1  
海洋生物的栖息分布与环境要素的关联性一直是海洋生态学研究的热点之一.近年来,物种分布模型被广泛应用于预测海洋物种分布、潜在适宜性生境评价等研究,为保护海洋生物多样性、防治外来物种入侵及制定渔业管理措施等提供了一条有效途径.物种分布模型主要包括生境适宜性指数模型、机理模型和统计模型.本文对物种分布模型的理论基础进行了归纳和总结,回顾了物种分布模型在预测海洋物种潜在地理分布研究中的开发与应用,重点介绍了不同类型统计模型在海洋物种潜在分布预测中的研究实例.比较各种选取变量和模型验证方法,认为赤池信息准则对于选取模型变量具有优势,Kappa系数和受试者操作特征曲线下面积在验证模型精度中应用最广泛.阐述了物种分布模型存在的问题及未来发展趋势,随着海洋生物生理机制研究的进一步深入,机理模型将是今后物种分布模型发展的重点.  相似文献   

3.
MJ Michel  JH Knouft 《PloS one》2012,7(9):e44932
When species distribution models (SDMs) are used to predict how a species will respond to environmental change, an important assumption is that the environmental niche of the species is conserved over evolutionary time-scales. Empirical studies conducted at ecological time-scales, however, demonstrate that the niche of some species can vary in response to environmental change. We use habitat and locality data of five species of stream fishes collected across seasons to examine the effects of niche variability on the accuracy of projections from Maxent, a popular SDM. We then compare these predictions to those from an alternate method of creating SDM projections in which a transformation of the environmental data to similar scales is applied. The niche of each species varied to some degree in response to seasonal variation in environmental variables, with most species shifting habitat use in response to changes in canopy cover or flow rate. SDMs constructed from the original environmental data accurately predicted the occurrences of one species across all seasons and a subset of seasons for two other species. A similar result was found for SDMs constructed from the transformed environmental data. However, the transformed SDMs produced better models in ten of the 14 total SDMs, as judged by ratios of mean probability values at known presences to mean probability values at all other locations. Niche variability should be an important consideration when using SDMs to predict future distributions of species because of its prevalence among natural populations. The framework we present here may potentially improve these predictions by accounting for such variability.  相似文献   

4.
Habitat suitability estimates derived from species distribution models (SDMs) are increasingly used to guide management of threatened species. Poorly estimating species’ ranges can lead to underestimation of threatened status, undervaluing of remaining habitat and misdirection of conservation funding. We aimed to evaluate the utility of a SDM, similar to the models used to inform government regulation of habitat in our study region, in estimating the contemporary distribution of a threatened and declining species. We developed a presence‐only SDM for the endangered New Holland Mouse (Pseudomys novaehollandiae) across Victoria, Australia. We conducted extensive camera trap surveys across model‐predicted and expert‐selected areas to generate an independent data set for use in evaluating the model, determining confidence in absence data from non‐detection sites with occupancy and detectability modelling. We assessed the predictive capacity of the model at thresholds based on (1) sum of sensitivity and specificity (SSS), and (2) the lowest presence threshold (LPT; i.e. the lowest non‐zero model‐predicted habitat suitability value at which we detected the species). We detected P. novaehollandiae at 40 of 472 surveyed sites, with strong support for the species’ probable absence from non‐detection sites. Based on our post hoc optimised SSS threshold of the SDM, 25% of our detection sites were falsely predicted as non‐suitable habitat and 75% of sites predicted as suitable habitat did not contain the species at the time of our survey. One occupied site had a model‐predicted suitability value of zero, and at the LPT, 88% of sites predicted as suitable habitat did not contain the species at the time of our survey. Our findings demonstrate that application of generic SDMs in both regulatory and investment contexts should be tempered by considering their limitations and currency. Further, we recommend engaging species experts in the extrapolation and application of SDM outputs.  相似文献   

5.
Conservation biology has much more attention for biodiversity hot spots than before. In order to recognize the hotspots for Iranian terrestrial mammal species that are listed in any red list, nationally or globally, ten Species Distribution Models (SDMs) have been applied. The SDMs evaluation results based on the TSS and AUC values showed that all ten models of habitat suitability perform significantly better than the random selection for all studied species. According to the results, biodiversity hotspots for threatened mammal species are located in north, west and central of Iran, along the Zagros and Alborz mountain range. Therefore, habitats for threatened mammal species have been limited to small parts of Iran (approximately 27% of the country). These areas are severely fragmented and only 57% of them have been announced protected by the current conservation system. The suggestion is that, as the sustainability of these habitats would strongly depend on maintaining dispersal corridors to facilitate the movement of animals among the habitat fragments, conservation efforts should focus on those hotspots which are not formally protected under conservation laws.  相似文献   

6.
Exogenous selection via interactions between organisms and environments may influence the dynamics of hybrid zones between species in multiple ways. Two major models of a hybrid zone allowed us to hypothesize that environmental conditions influence hybrid zone dynamics in two ways. In the first model, an environmental gradient determines the mosaic distribution at the boundary between ecologically differentiated species (mosaic hybrid zone model). In the second model, a patch of unsuitable habitat traps a hybrid zone between species whose hybrids are unfit (tension zone model). To test these, we examined the environmental factors influencing the spatial structure of a hybrid zone between the ground beetles Carabus maiyasanus and C. iwawakianus using GIS‐based quantification of environmental factors and a statistical comparison of species distribution models (SDMs). We determined that both of the hypothetical processes can be important in the hybrid zone. We detected interspecific differences in the environmental factors in presence localities and their relative contribution in SDMs. SDMs were not identical between species even within contact areas, but tended to be similar within the range of each species. These results suggest an association between environments and species, and provide evidence that ecological differentiation between species plays a role in the maintenance of the hybrid zone. Contact areas were characterized by a relatively high temperature, low precipitation, and high topological wetness. Thus, the contact areas were regarded as being located in an unsuitable habitat with a drier climate, where those populations are likely to occur in patches with limited precipitation concentrated. A comparison of spatial scales suggests that exogenous selection via environmental factors may be weaker than endogenous selection via genitalic incompatibility.  相似文献   

7.
The most common approach to predicting how species ranges and ecological functions will shift with climate change is to construct correlative species distribution models (SDMs). These models use a species’ climatic distribution to determine currently suitable areas for the species and project its potential distribution under future climate scenarios. A core, rarely tested, assumption of SDMs is that all populations will respond equivalently to climate. Few studies have examined this assumption, and those that have rarely dissect the reasons for intraspecific differences. Focusing on the arctic-alpine cushion plant Silene acaulis, we compared predictive accuracy from SDMs constructed using the species’ full global distribution with composite predictions from separate SDMs constructed using subpopulations defined either by genetic or habitat differences. This is one of the first studies to compare multiple ways of constructing intraspecific-level SDMs with a species-level SDM. We also examine the contested relationship between relative probability of occurrence and species performance or ecological function, testing if SDM output can predict individual performance (plant size) and biotic interactions (facilitation). We found that both genetic- and habitat-informed SDMs are considerably more accurate than a species-level SDM, and that the genetic model substantially differs from and outperforms the habitat model. While SDMs have been used to infer population performance and possibly even biotic interactions, in our system these relationships were extremely weak. Our results indicate that individual subpopulations may respond differently to climate, although we discuss and explore several alternative explanations for the superior performance of intraspecific-level SDMs. We emphasize the need to carefully examine how to best define intraspecific-level SDMs as well as how potential genetic, environmental, or sampling variation within species ranges can critically affect SDM predictions. We urge caution in inferring population performance or biotic interactions from SDM predictions, as these often-assumed relationships are not supported in our study.  相似文献   

8.
Land use changes have profound effects on populations of Neotropical primates, and ongoing climate change is expected to aggravate this scenario. The titi monkeys from eastern Brazil (Callicebus personatus group) have been particularly affected by this process, with four of the five species now allocated to threatened conservation status categories. Here, we estimate the changes in the distribution of these titi monkeys caused by changes in both climate and land use. We also use demographic‐based, functional landscape metrics to assess the magnitude of the change in landscape conditions for the distribution predicted for each species. We built species distribution models (SDMs) based on maximum entropy for current and future conditions (2070), allowing for different global circulation models and contrasting scenarios of glasshouse gas concentrations. We refined the SDMs using a high‐resolution map of habitat remnants. We then calculated habitat availability and connectivity based on home‐range size and the dispersal limitations of the individual, in the context of a predicted loss of 10% of forest cover in the future. The landscape configuration is predicted to be degraded for all species, regardless of the climatic settings. This include reductions in the total cover of forest remnants, patch size and functional connectivity. As the landscape configuration should deteriorate severely in the future for all species, the prevention of further loss of populations will only be achieved through habitat restoration and reconnection to counteract the negative effects for these and several other co‐occurring species.  相似文献   

9.
Species distribution models (SDMs) are popular in conservation and management of a wide array of taxa. Often parameterized with coarse GIS-based environmental maps, they perform well in macro-ecological settings but it is debated if the models can predict distribution within broadly suitable “known” habitats of interest to local managers. We parameterized SDMs with GIS-derived environmental variables and location data from 82 GPS-collared female red deer (Cervus elaphus) from two study areas in Norway. Candidate GLM models were fitted to address the effect of spatial scale (landscape vs. home range), sample size, and transferability between study areas, with respect to predictability (AUC) and explained variance (Generalized R 2 and deviance). The landscape level SDM captured variation in deer distribution well and performed best on all diagnostic measures of model quality, caused mainly by a trivial effect of avoidance of non-habitat (barren mountains). The home range level SDMs were far less predictable and explained comparatively little variation in space use. Landscape scale models stabilized at the low sample size of 5–10 individuals and were highly transferrable between study areas implying a low degree of individual variation in habitat selection at this scale. It is important to have realistic expectations of SDMs derived from digital elevation models and coarse habitat maps. They do perform well in highlighting potential habitat on a landscape scale, but often miss nuances necessary to predict more fine-scaled distribution of wildlife populations. Currently, there seems to be a trade-off between model quality and usefulness in local management.  相似文献   

10.
Species distribution models (SDM) are increasingly used to understand the factors that regulate variation in biodiversity patterns and to help plan conservation strategies. However, these models are rarely validated with independently collected data and it is unclear whether SDM performance is maintained across distinct habitats and for species with different functional traits. Highly mobile species, such as bees, can be particularly challenging to model. Here, we use independent sets of occurrence data collected systematically in several agricultural habitats to test how the predictive performance of SDMs for wild bee species depends on species traits, habitat type, and sampling technique. We used a species distribution modeling approach parametrized for the Netherlands, with presence records from 1990 to 2010 for 193 Dutch wild bees. For each species, we built a Maxent model based on 13 climate and landscape variables. We tested the predictive performance of the SDMs with independent datasets collected from orchards and arable fields across the Netherlands from 2010 to 2013, using transect surveys or pan traps. Model predictive performance depended on species traits and habitat type. Occurrence of bee species specialized in habitat and diet was better predicted than generalist bees. Predictions of habitat suitability were also more precise for habitats that are temporally more stable (orchards) than for habitats that suffer regular alterations (arable), particularly for small, solitary bees. As a conservation tool, SDMs are best suited to modeling rarer, specialist species than more generalist and will work best in long‐term stable habitats. The variability of complex, short‐term habitats is difficult to capture in such models and historical land use generally has low thematic resolution. To improve SDMs’ usefulness, models require explanatory variables and collection data that include detailed landscape characteristics, for example, variability of crops and flower availability. Additionally, testing SDMs with field surveys should involve multiple collection techniques.  相似文献   

11.
Organisms are projected to shift their distribution ranges under climate change. The typical way to assess range shifts is by species distribution models (SDMs), which predict species’ responses to climate based solely on projected climatic suitability. However, life history traits can impact species’ responses to shifting habitat suitability. Additionally, it remains unclear if differences in vital rates across populations within a species can offset or exacerbate the effects of predicted changes in climatic suitability on population viability. In order to obtain a fuller understanding of the response of one species to projected climatic changes, we coupled demographic processes with predicted changes in suitable habitat for the monocarpic thistle Carlina vulgaris across northern Europe. We first developed a life history model with species‐specific average fecundity and survival rates and linked it to a SDM that predicted changes in habitat suitability through time with changes in climatic variables. We then varied the demographic parameters based upon observed vital rates of local populations from a translocation experiment. Despite the fact that the SDM alone predicted C. vulgaris to be a climate ‘winner’ overall, coupling the model with changes in demography and small‐scale habitat suitability resulted in a matrix of stable, declining, and increasing patches. For populations predicted to experience declines or increases in abundance due to changes in habitat suitability, altered fecundity and survival rates can reverse projected population trends.  相似文献   

12.
Species distribution models (SDMs) are commonly used to project future changes in the geographic ranges of species, to estimate extinction rates and to plan biodiversity conservation. However, these models can produce a range of results depending on how they are parameterized, and over‐reliance on a single model may lead to overconfidence in maps of future distributions. The choice of predictor variable can have a greater influence on projected future habitat than the range of climate models used. We demonstrate this in the case of the Ptunarra Brown Butterfly, a species listed as vulnerable in Tasmania, Australia. We use the Maxent model to develop future projections for this species based on three variable sets; all 35 commonly used so‐called ‘bioclimatic’ variables, a subset of these based on expert knowledge, and a set of monthly climate variables relevant to the species’ primary activity period. We used a dynamically downscaled regional climate model based on three global climate models. Depending on the choice of variable set, the species is projected either to experience very little contraction of habitat or to come close to extinction by the end of the century due to lack of suitable climate. The different conclusions could have important consequences for conservation planning and management, including the perceived viability of habitat restoration. The output of SDMs should therefore be used to define the range of possible trajectories a species may be on, and ongoing monitoring used to inform management as changes occur.  相似文献   

13.
‘Species distribution modeling’ was recently ranked as one of the top five ‘research fronts’ in ecology and the environmental sciences by ISI's Essential Science Indicators, reflecting the importance of predicting how species distributions will respond to anthropogenic change. Unfortunately, species distribution models (SDMs) often perform poorly when applied to novel environments. Compounding on this problem is the shortage of methods for evaluating SDMs (hence, we may be getting our predictions wrong and not even know it). Traditional methods for validating SDMs quantify a model's ability to classify locations as used or unused. Instead, we propose to focus on how well SDMs can predict the characteristics of used locations. This subtle shift in viewpoint leads to a more natural and informative evaluation and validation of models across the entire spectrum of SDMs. Through a series of examples, we show how simple graphical methods can help with three fundamental challenges of habitat modeling: identifying missing covariates, non‐linearity, and multicollinearity. Identifying habitat characteristics that are not well‐predicted by the model can provide insights into variables affecting the distribution of species, suggest appropriate model modifications, and ultimately improve the reliability and generality of conservation and management recommendations.  相似文献   

14.
Species distribution models (SDMs) are statistical tools to identify potentially suitable habitats for species. For SDMs in river ecosystems, species occurrences and predictor data are often aggregated across subcatchments that serve as modeling units. The level of aggregation (i.e., model resolution) influences the statistical relationships between species occurrences and environmental predictors—a phenomenon known as the modifiable area unit problem (MAUP), making model outputs directly contingent on the model resolution. Here, we test how model performance, predictor importance, and the spatial congruence of species predictions depend on the model resolution (i.e., average subcatchment size) of SDMs. We modeled the potential habitat suitability of 50 native fish species in the upper Danube catchment at 10 different model resolutions. Model resolutions were derived using a 90‐m digital‐elevation model by using the GRASS‐GIS module r.watershed. Here, we decreased the average subcatchment size gradually from 632 to 2 km2. We then ran ensemble SDMs based on five algorithms using topographical, climatic, hydrological, and land‐use predictors for each species and resolution. Model evaluation scores were consistently high, as sensitivity and True Skill Statistic values ranged from 86.1–93.2 and 0.61–0.73, respectively. The most contributing predictor changed from topography at coarse, to hydrology at fine resolutions. Climate predictors played an intermediate role for all resolutions, while land use was of little importance. Regarding the predicted habitat suitability, we identified a spatial filtering from coarse to intermediate resolutions. The predicted habitat suitability within a coarse resolution was not ported to all smaller, nested subcatchments, but only to a fraction that held the suitable environmental conditions. Across finer resolutions, the mapped predictions were spatially congruent without such filter effect. We show that freshwater SDM predictions can have consistently high evaluation scores while mapped predictions differ significantly and are highly contingent on the underlying subcatchment size. We encourage building freshwater SDMs across multiple catchment sizes, to assess model variability and uncertainties in model outcomes emerging from the MAUP.  相似文献   

15.
Species distribution models are required for the research and management of biodiversity in the hyperdiverse tropical forests, but reliable and ecologically relevant digital environmental data layers are not always available. We here assess the usefulness of multispectral canopy reflectance (Landsat) relative to climate data in modelling understory plant species distributions in tropical rainforests. We used a large dataset of quantitative fern and lycophyte species inventories across lowland Amazonia as the basis for species distribution modelling (SDM). As predictors, we used CHELSA climatic variables and canopy reflectance values from a recent basin-wide composite of Landsat TM/ETM+ images both separately and in combination. We also investigated how species accumulate over sites when environmental distances were expressed in terms of climatic or surface reflectance variables. When species accumulation curves were constructed such that differences in Landsat reflectance among the selected plots were maximised, species accumulated faster than when climatic differences were maximised or plots were selected in a random order. Sixty-nine species were sufficiently frequent for species distribution modelling. For most of them, adequate SDMs were obtained whether the models were based on CHELSA data only, Landsat data only or both combined. Model performance was not influenced by species’ prevalence or abundance. Adding Landsat-based environmental data layers overall improved the discriminatory capacity of SDMs compared to climate-only models, especially for soil specialist species. Our results show that canopy surface reflectance obtained by multispectral sensors can provide studies of tropical ecology, as exemplified by SDMs, much higher thematic (taxonomic) detail than is generally assumed. Furthermore, multispectral datasets complement the traditionally used climatic layers in analyses requiring information on environmental site conditions. We demonstrate the utility of freely available, global remote sensing data for biogeographical studies that can aid conservation planning and biodiversity management.  相似文献   

16.
Species distribution models (SDMs) are increasingly used to predict species ranges and their shifts under future scenarios of global environmental change (GEC). SDMs are thus incorporating key drivers of GEC (e.g. climate, land use) to improve predictions of species’ habitat suitability (i.e. as an indicator of species occurrence). Yet, most SDMs incorporating land use only consider dominant land cover types, largely ignoring other key aspects of land use such as land management intensity and livestock. We developed SDMs including main land use components (i.e. land cover, livestock and its management intensity) to assess their relative importance in shaping habitat suitability for the Egyptian vulture, an endangered raptor linked to livestock presence. We modelled current and future (2020 and 2050) habitat suitability for this vulture using an organism-centred approach. This allowed us to account for basic species’ habitat needs (i.e. nesting cliff) while gaining insight into our variables of interest (i.e. livestock and land cover). Once nest-site requirements were fulfilled, land use variables (i.e. openland and sheep and goat density) were the main factors determining species’ habitat suitability. Current suitable area could decrease by up to 6.81% by 2050 under scenarios with rapid economic growth but no focus on environmental conservation and rural development. Local solutions to environmental sustainability and rural development could double current habitat suitability by 2050. Land use is expected to play a key role in determining Egyptian vulture's distribution through land cover change but also through changes in livestock management (i.e. species and stocking density). Change in stocking densities (sheep and goats/km2) becomes thus an indicator of habitat suitability for this vulture in our study area. Abandonment of agro-pastoral practises (i.e. below ∼15–20 sheep and goats/km2) will negatively influence the species distribution. Nonetheless, livestock densities above these values will not further increase habitat suitability. Given the widespread impacts of livestock on ecosystems, the role of livestock and its management intensity in SDMs for other (non-livestock-related) species should be further explored.  相似文献   

17.
Species distribution models (SDMs) are routinely applied to assess current as well as future species distributions, for example to assess impacts of future environmental change on biodiversity or to underpin conservation planning. It has been repeatedly emphasized that SDMs should be evaluated based not only on their goodness of fit to the data, but also on the realism of the modeled ecological responses. However, possibilities for the latter are hampered by limited knowledge on the true responses as well as a lack of quantitative evaluation methods. Here we compared modeled niche optima obtained from European-scale SDMs of 1476 terrestrial vascular plant species with empirical ecological indicator values indicating the preferences of plant species for key environmental conditions. For each plant species we first fitted an ensemble SDM including three modeling techniques (GLM, GAM and BRT) and extracted niche optima for climate, soil, land use and nitrogen deposition variables with a large explanatory power for the occurrence of that species. We then compared these SDM-derived niche optima with the ecological indicator values by means of bivariate correlation analysis. We found weak to moderate correlations in the expected direction between the SDM-derived niche optima and ecological indicator values. The strongest correlation occurred between the modeled optima for growing degree days and the ecological indicator values for temperature. Correlations were weaker for SDM-derived niche optima with a more distal relationship to ecological indicator values (notably precipitation and soil moisture). Further, correlations were consistently highest for BRT, followed by GLM and GAM. Our method gives insight into the ecological realism of modeled niche optima and projected core habitats and can be used to improve SDMs by making a more informed selection of environmental variables and modeling techniques.  相似文献   

18.
Species distribution models (SDMs) have traditionally been founded on the assumption that species distributions are in equilibrium with environmental conditions and that these species–environment relationships can be used to estimate species responses to environmental changes. Insight into the validity of this assumption can be obtained from comparing the performance of correlative species distribution models with more complex hybrid approaches, i.e. correlative and process‐based models that explicitly include ecological processes, thereby accounting for mismatches between habitat suitability and species occupancy patterns. Here we compared the ability of correlative SDMs and hybrid models, which can accommodate non‐equilibrium situations arising from dispersal constraints, to reproduce the distribution dynamics of the ortolan bunting Emberiza hortulana in highly dynamic, early successional, fire driven Mediterranean landscapes. Whereas, habitat availability was derived from a correlative statistical SDM, occupancy was modeled using a hybrid approach combining a grid‐based, spatially‐explicit population model that explicitly included bird dispersal with the correlative model. We compared species occupancy patterns under the equilibrium assumption and different scenarios of species dispersal capabilities. To evaluate the predictive capability of the different models, we used independent species data collected in areas affected to different degree by fires. In accordance with the view that disturbance leads to a disparity between the suitable habitat and the occupancy patterns of the ortolan bunting, our results indicated that hybrid modeling approaches were superior to correlative models in predicting species spatial dynamics. Furthermore, hybrid models that incorporated short dispersal distances were more likely to reproduce the observed changes in ortolan bunting distribution patterns, suggesting that dispersal plays a key role in limiting the colonization of recently burnt areas. We conclude that SDMs used in a dynamic context can be significantly improved by using combined hybrid modeling approaches that explicitly account for interactions between key ecological constraints such as dispersal and habitat suitability that drive species response to environmental changes.  相似文献   

19.
1.?Correlative species distribution models (SDMs) assess relationships between species distribution data and environmental features, to evaluate the environmental suitability (ES) of a given area for a species, by providing a measure of the probability of presence. If the output of SDMs represents the relationships between habitat features and species performance well, SDM results can be related also to other key parameters of populations, including reproductive parameters. To test this hypothesis, we evaluated whether SDM results can be used as a proxy of reproductive parameters (breeding output, territory size) in red-backed shrikes (Lanius collurio). 2.?The distribution of 726 shrike territories in Northern Italy was obtained through multiple focused surveys; for a subset of pairs, we also measured territory area and number of fledged juveniles. We used Maximum Entropy modelling to build a SDM on the basis of territory distribution. We used generalized least squares and spatial generalized mixed models to relate territory size and number of fledged juveniles to SDM suitability, while controlling for spatial autocorrelation. 3.?Species distribution models predicted shrike distribution very well. Territory size was negatively related to suitability estimated through SDM, while the number of fledglings significantly increased with the suitability of the territory. This was true also when SDM was built using only spatially and temporally independent data. 4.?Results show a clear relationship between ES estimated through presence-only SDMs and two key parameters related to species' reproduction, suggesting that suitability estimated by SDM, and habitat quality determining reproduction parameters in our model system, are correlated. Our study shows the potential use of SDMs to infer important fitness parameters; this information can have great importance in management and conservation.  相似文献   

20.
Ecological niche theory holds that species distributions are shaped by a large and complex suite of interacting factors. Species distribution models (SDMs) are increasingly used to describe species’ niches and predict the effects of future environmental change, including climate change. Currently, SDMs often fail to capture the complexity of species’ niches, resulting in predictions that are generally limited to climate‐occupancy interactions. Here, we explore the potential impact of climate change on the American pika using a replicated place‐based approach that incorporates climate, gene flow, habitat configuration, and microhabitat complexity into SDMs. Using contemporary presence–absence data from occupancy surveys, genetic data to infer connectivity between habitat patches, and 21 environmental niche variables, we built separate SDMs for pika populations inhabiting eight US National Park Service units representing the habitat and climatic breadth of the species across the western United States. We then predicted occurrence probability under current (1981–2010) and three future time periods (out to 2100). Occurrence probabilities and the relative importance of predictor variables varied widely among study areas, revealing important local‐scale differences in the realized niche of the American pika. This variation resulted in diverse and – in some cases – highly divergent future potential occupancy patterns for pikas, ranging from complete extirpation in some study areas to stable occupancy patterns in others. Habitat composition and connectivity, which are rarely incorporated in SDM projections, were influential in predicting pika occupancy in all study areas and frequently outranked climate variables. Our findings illustrate the importance of a place‐based approach to species distribution modeling that includes fine‐scale factors when assessing current and future climate impacts on species’ distributions, especially when predictions are intended to manage and conserve species of concern within individual protected areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号