首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A biotrophic parasite often depends on an intrinsic ability to suppress host defenses in a manner that will enable it to infect and successfully colonize a susceptible host. If the suppressed defenses otherwise would have been effective against alternative pathogens, it follows that primary infection by the "suppressive" biotroph potentially could enhance susceptibility of the host to secondary infection by avirulent pathogens. This phenomenon previously has been attributed to true fungi such as rust (basidiomycete) and powdery mildew (ascomycete) pathogens. In our study, we observed broad-spectrum suppression of host defense by the oomycete Albugo candida (white blister rust) in the wild crucifer Arabidopsis thaliana and a domesticated relative, Brassica juncea. A. candida subsp. arabidopsis suppressed the "runaway cell death" phenotype of the lesion mimic mutant lsd1 in Arabidopsis thaliana in a sustained manner even after subsequent inoculation with avirulent Hyaloperonospora arabidopsis (Arabidopsis thaliana downy mildew). In sequential inoculation experiments, we show that preinfection by virulent Albugo candida can suppress disease resistance in cotyledons to several downy mildew pathogens, including contrasting examples of genotype resistance to H. arabidopsis in Arabidopsis thaliana that differ in the R protein and modes of defense signaling used to confer the resistance; genotype specific resistance in B. juncea to H. parasitica (Brassica downy mildew; isolates derived from B. juncea); species level (nonhost) resistance in both crucifers to Bremia lactucae (lettuce downy mildew) and an isolate of the H. parasitica race derived from Brassica oleracea; and nonhost resistance in B. juncea to H. arabidopsis. Broad-spectrum powdery mildew resistance conferred by RPW8 also was suppressed in Arabidopsis thaliana to two morphotypes of Erysiphe spp. following pre-infection with A. candida subsp. arabidopsis.  相似文献   

3.
Arabidopsis downy mildew resistant 6 (dmr6) mutants have lost their susceptibility to the downy mildew Hyaloperonospora arabidopsidis. Here we show that dmr6 is also resistant to the bacterium Pseudomonas syringae and the oomycete Phytophthora capsici. Resistance is accompanied by enhanced defense gene expression and elevated salicylic acid levels. The suppressive effect of the DMR6 oxygenase was confirmed in transgenic Arabidopsis lines overexpressing DMR6 that show enhanced susceptibility to Harabidopsidis, Pcapsici, and Psyringae. Phylogenetic analysis of the superfamily of 2‐oxoglutarate Fe(II)‐dependent oxygenases revealed a subgroup of DMR6‐LIKE OXYGENASEs (DLOs). Within Arabidopsis, DMR6 is most closely related to DLO1 and DLO2. Overexpression of DLO1 and DLO2 in the dmr6 mutant restored the susceptibility to downy mildew indicating that DLOs negatively affect defense, similar to DMR6. DLO1, but not DLO2, is co‐expressed with DMR6, showing strong activation during pathogen attack and following salicylic acid treatment. DMR6 and DLO1 differ in their spatial expression pattern in downy mildew‐infected Arabidopsis leaves; DMR6 is mostly expressed in cells that are in contact with hyphae and haustoria of Harabidopsidis, while DLO1 is expressed mainly in the vascular tissues near infection sites. Strikingly, the dmr6‐3_dlo1 double mutant, that is completely resistant to Harabidopsidis, showed a strong growth reduction that was associated with high levels of salicylic acid. We conclude that DMR6 and DLO1 redundantly suppress plant immunity, but also have distinct activities based on their differential localization of expression.  相似文献   

4.
Plant disease resistance is commonly triggered by early pathogen recognition and activation of immunity. An alternative form of resistance is mediated by recessive downy mildew resistant 1 (dmr1) alleles in Arabidopsis thaliana. Map-based cloning revealed that DMR1 encodes homoserine kinase (HSK). Six independent dmr1 mutants each carry a different amino acid substitution in the HSK protein. Amino acid analysis revealed that dmr1 mutants contain high levels of homoserine that is undetectable in wild-type plants. Surprisingly, the level of amino acids downstream in the aspartate (Asp) pathway was not reduced in dmr1 mutants. Exogenous homoserine does not directly affect pathogen growth but induces resistance when infiltrated in Arabidopsis. We provide evidence that homoserine accumulation in the chloroplast triggers a novel form of downy mildew resistance that is independent of known immune responses.  相似文献   

5.
Sohn KH  Lei R  Nemri A  Jones JD 《The Plant cell》2007,19(12):4077-4090
The downy mildew (Hyaloperonospora parasitica) effector proteins ATR1 and ATR13 trigger RPP1-Nd/WsB- and RPP13-Nd-dependent resistance, respectively, in Arabidopsis thaliana. To better understand the functions of these effectors during compatible and incompatible interactions of H. parasitica isolates on Arabidopsis accessions, we developed a novel delivery system using Pseudomonas syringae type III secretion via fusions of ATRs to the N terminus of the P. syringae effector protein, AvrRPS4. ATR1 and ATR13 both triggered the hypersensitive response (HR) and resistance to bacterial pathogens in Arabidopsis carrying RPP1-Nd/WsB or RPP13-Nd, respectively, when delivered from P. syringae pv tomato (Pst) DC3000. In addition, multiple alleles of ATR1 and ATR13 confer enhanced virulence to Pst DC3000 on susceptible Arabidopsis accessions. We conclude that ATR1 and ATR13 positively contribute to pathogen virulence inside host cells. Two ATR13 alleles suppressed bacterial PAMP (for Pathogen-Associated Molecular Patterns)-triggered callose deposition in susceptible Arabidopsis when delivered by DC3000 DeltaCEL mutants. Furthermore, expression of another allele of ATR13 in plant cells suppressed PAMP-triggered reactive oxygen species production in addition to callose deposition. Intriguingly, although Wassilewskija (Ws-0) is highly susceptible to H. parasitica isolate Emco5, ATR13Emco5 when delivered by Pst DC3000 triggered localized immunity, including HR, on Ws-0. We suggest that an additional H. parasitica Emco5 effector might suppress ATR13-triggered immunity.  相似文献   

6.
Inheritance of resistance to downy mildew (Hyaloperonospora parasitica) in Chinese cabbage (Brassica rapa ssp. pekinensis) was studied using inbred parental lines RS1 and SS1 that display strong resistance and severe susceptibility, respectively. F(1), F(2), and BC(1)F(1) populations were evaluated for their responses to downy mildew infection. Resistance to downy mildew was conditioned by a single dominant locus designated BrRHP1. A random amplified polymorphic DNA (RAPD) marker linked to BrRHP1 was identified using bulked segregant analysis and two molecular markers designated BrPERK15A and BrPERK15B were developed. BrPERK15B was polymorphic between the parental lines used to construct the reference linkage map of B. rapa, allowing the mapping of the BrRHP1 locus to the A1 linkage group. Using bacterial artificial chromosome clone sequences anchored to the A1 linkage group, six simple polymerase chain reaction (PCR) markers were developed for use in marker-assisted breeding of downy mildew resistance in Chinese cabbage. Four simple PCR markers flanking the BrRHP1 locus were shown to be collinear with the long-arm region of Arabidopsis chromosome 3. The two closely linked flanking markers delimit the BrRHP1 locus within a 2.2-Mb interval of this Arabidopsis syntenic region.  相似文献   

7.
52 entries including landraces, old cultivars and wild accessions of B. oleracea and closely related Brassica species were screened for resistance against downy mildew and clubroot. Several accessions resistant to downy mildew and a few to clubroot were found. Genetic inheritance of the resistance in downy mildew was investigated by screening F1 and BC1F1 offspring from three resistant landrace accessions crossed with both a resistant and a susceptible father. The seedling resistance against downy mildew was found to be inherited recessively. This is a bit surprising as earlier papers mostly report of inheritance controlled by a single dominant gene. Previous screenings of B. oleracea resistance against downy mildew at the cotyledon stage have been done with P. parasitica isolated from B. oleracea as the original host plant. The recessive nature of the cotyledon resistance found in this screening might be due to the fact that the P. parasitica isolate was collected from B. napus fields. The clubroot seedling resistance was found to be controlled by recessive inheritance after screening the F1 offspring, this in agreement with earlier results/reports.  相似文献   

8.
Arabidopsis is susceptible to infection by a downy mildew fungus.   总被引:31,自引:7,他引:24       下载免费PDF全文
A population of Arabidopsis thaliana growing locally in a suburb of Zürich called Weiningen was observed to be infected with downy mildew. Plants were collected and the progress of infection was investigated in artificial inoculations in the laboratory. The plants proved to be highly susceptible, and pronounced intercellular mycelial growth, haustoria formation, conidiophore production, and sporulation of the causal organism Peronospora parasitica were all observed. The formation of oogonia, antheridia, and oospores also occurred. In contrast, Arabidopsis strain RLD was resistant to infection and none of the above structures was formed. The fungus was localized very soon after penetration of RLD leaf cells, which responded with a typical hypersensitive reaction. The differential interaction of an isolate of P. parasitica with two strains of Arabidopsis opens up the possibility of cloning resistance determinants from a host that is very amenable to genetic and molecular analysis.  相似文献   

9.
10.
11.
Plant innate immunity to pathogenic microorganisms is activated in response to recognition of extracellular or intracellular pathogen molecules by transmembrane receptors or resistance proteins, respectively. The defense signaling pathways share components with those involved in plant responses to UV radiation, which can induce expression of plant genes important for pathogen resistance. Such intriguing links suggest that UV treatment might activate resistance to pathogens in normally susceptible host plants. Here, we demonstrate that pre-inoculative UV (254 nm) irradiation of Arabidopsis (Arabidopsis thaliana) susceptible to infection by the biotrophic oomycete Hyaloperonospora parasitica, the causative agent of downy mildew, induces dose- and time-dependent resistance to the pathogen detectable up to 7 d after UV exposure. Limiting repair of UV photoproducts by postirradiation incubation in the dark, or mutational inactivation of cyclobutane pyrimidine dimer photolyase, (6-4) photoproduct photolyase, or nucleotide excision repair increased the magnitude of UV-induced pathogen resistance. In the absence of treatment with 254-nm UV, plant nucleotide excision repair mutants also defective for cyclobutane pyrimidine dimer or (6-4) photoproduct photolyase displayed resistance to H. parasitica, partially attributable to short wavelength UV-B (280–320 nm) radiation emitted by incubator lights. These results indicate UV irradiation can initiate the development of resistance to H. parasitica in plants normally susceptible to the pathogen and point to a key role for UV-induced DNA damage. They also suggest UV treatment can circumvent the requirement for recognition of H. parasitica molecules by Arabidopsis proteins to activate an immune response.  相似文献   

12.
Arabidopsis dnd1 and dnd2 mutants lack cyclic nucleotide-gated ion channel proteins and carry out avirulence or resistance gene-mediated defense with a greatly reduced hypersensitive response (HR). They also exhibit elevated broad-spectrum disease resistance and constitutively elevated salicylic acid (SA) levels. We examined the contributions of NPR1, SID2 (EDS16), NDR1, and EIN2 to dnd phenotypes. Mutations that affect SA accumulation or signaling (sid2, npr1, and ndr1) abolished the enhanced resistance of dnd mutants against Pseudomonas syringae pv. tomato and Hyaloperonospora parasitica but not Botrytis cinerea. When SA-associated pathways were disrupted, the constitutive activation of NPR1-dependent and NPR1-independent and SA-dependent pathways was redirected toward PDF1.2-associated pathways. This PDF1.2 overexpression was downregulated after infection by P. syringae. Disruption of ethylene signaling abolished the enhanced resistance to B. cinerea but not P. syringae or H. parasitica. However, loss of NPR1, SID2, NDR1, or EIN2 did not detectably alter the reduced HR in dnd mutants. The susceptibility of dnd ein2 plants to B. cinerea despite their reduced-HR phenotype suggests that cell death repression is not the primary cause of dnd resistance to necrotrophic pathogens. The partial restoration of resistance to B. cinerea in dnd1 npr1 ein2 triple mutants indicated that this resistance is not entirely EIN2 dependent. The above findings indicate that the broad-spectrum resistance of dnd mutants occurs due to activation or sensitization of multiple defense pathways, yet none of the investigated pathways are required for the reduced-HR phenotype.  相似文献   

13.
Lignin is incorporated into plant cell walls to maintain plant architecture and to ensure long-distance water transport. Lignin composition affects the industrial value of plant material for forage, wood and paper production, and biofuel technologies. Industrial demands have resulted in an increase in the use of genetic engineering to modify lignified plant cell wall composition. However, the interaction of the resulting plants with the environment must be analyzed carefully to ensure that there are no undesirable side effects of lignin modification. We show here that Arabidopsis thaliana mutants with impaired 5-hydroxyguaiacyl O-methyltransferase (known as caffeate O-methyltransferase; COMT) function were more susceptible to various bacterial and fungal pathogens. Unexpectedly, asexual sporulation of the downy mildew pathogen, Hyaloperonospora arabidopsidis, was impaired on these mutants. Enhanced resistance to downy mildew was not correlated with increased plant defense responses in comt1 mutants but coincided with a higher frequency of oomycete sexual reproduction within mutant tissues. Comt1 mutants but not wild-type Arabidopsis accumulated soluble 2-O-5-hydroxyferuloyl-l-malate. The compound weakened mycelium vigor and promoted sexual oomycete reproduction when applied to a homothallic oomycete in vitro. These findings suggested that the accumulation of 2-O-5-hydroxyferuloyl-l-malate accounted for the observed comt1 mutant phenotypes during the interaction with H. arabidopsidis. Taken together, our study shows that an artificial downregulation of COMT can drastically alter the interaction of a plant with the biotic environment.  相似文献   

14.
Sulfated laminarin (PS3) has been shown previously to be an elicitor of plant defense reactions in tobacco and Arabidopsis and to induce protection against tobacco mosaic virus. Here, we have demonstrated the efficiency of PS3 in protecting a susceptible grapevine cultivar (Vitis vinifera cv. Marselan) against downy mildew (Plasmopara viticola) under glasshouse conditions. This induced resistance was associated with potentiated H2O2 production at the infection sites, upregulation of defense-related genes, callose and phenol depositions, and hypersensitive response-like cell death. Interestingly, similar responses were observed following P. viticola inoculation in a tolerant grapevine hybrid cultivar (Solaris). A pharmacological approach led us to conclude that both callose synthesis and jasmonic acid pathway contribute to PS3-induced resistance.  相似文献   

15.
Retrotransposons (RTEs) are a principal component of most eukaryotic genomes, representing 50%-80% of some grass genomes. RTE sequences have been shown to be preferentially present in disease resistance gene clusters in plants. Arabidopsis thaliana has over 1,600 annotated RTE sequences and 56 of these appear to be expressed because of the exact expressed sequence tag (EST) matches and the presence of intact open reading frames. Of the 22 represented in the Affymetrix ATH1 array, AtCOPIA4 was found to be expressed at a higher level than all other RTEs across different developmental stages. Since AtCOPIA4 is located in the RPP5 gene cluster and is adjacent to RPP4 which confers resistance to the downy mildew oomycete Hyaloperonospora parasitica isolate EMWA1, we evaluated AtCOPIA4 mutants for resistance to this pathogen. T-DNA insertional and antisense knockout of AtCOPIA4 was found to reduce the resistance of wild type plants by 2-4 folds. Our results suggest that retrotransposon can be exapted to participate in plant defense response.  相似文献   

16.
17.
18.
Powdery mildews and other obligate biotrophic pathogens are highly adapted to their hosts and often show limited host ranges. One facet of such host specialization is likely to be penetration of the host cell wall, a major barrier to infection. A mutation in the pmr5 gene rendered Arabidopsis resistant to the powdery mildew species Erysiphe cichoracearum and Erysiphe orontii, but not to the unrelated pathogens Pseudomonas syringae or Peronospora parasitica. PMR5 belongs to a large family of plant-specific genes of unknown function. pmr5-mediated resistance did not require signaling through either the salicylic acid or jasmonic acid/ethylene defense pathways, suggesting resistance in this mutant may be due either to the loss of a susceptibility factor or to the activation of a novel form of defense. Based on Fourier transform infrared analysis, the pmr5 cell walls were enriched in pectin and exhibited a reduced degree of pectin modification relative to wild-type cell walls. In addition, the mutant had smaller cells, suggesting a defect in cell expansion. A double mutant with pmr6 (defective in a glycosylphosphatidylinositol-anchored pectate lyase-like gene) exhibited a strong increase in total uronic acid content and a more severe reduction in size, relative to the single mutants, suggesting that the two genes affect pectin composition, either directly or indirectly, via different mechanisms. These two mutants highlight the importance of the host cell wall in plant-microbe interactions.  相似文献   

19.
The Arabidopsis thaliana-potyvirus system was developed to identify compatibility and incompatibility factors involved during infection and disease caused by positive-strand RNA viruses. Several Arabidopsis mutants with increased susceptibility to Tobacco etch potyvirus (TEV) were isolated previously, revealing a virus-specific resistance system in the phloem. In this study, Arabidopsis mutants with decreased susceptibility to Turnip mosaic potyvirus (TuMV) were isolated. Three independent mutants that conferred immunity to TuMV were isolated and assigned to the same complementation group. These mutants were also immune or near-immune to TEV but were susceptible to an unrelated virus. The locus associated with decreased susceptibility was named loss-of-susceptibility to potyviruses 1 (lsp1). The LSP1 locus was isolated by map-based cloning and was identified as the gene encoding translation factor eIF(iso)4E, one of several known Arabidopsis isoforms that has cap binding activity. eIF4E and eIF(iso)4E from different plant species were shown previously to interact with the genome-linked protein (VPg) of TEV and TuMV, respectively. Models to explain the roles of eIF(iso)4E during virus infection are presented.  相似文献   

20.
Pytohormone abscisic acid(ABA) plays important roles in defense responses.Nonetheless,how ABA regulates plant resistance to biotrophic fungi remains largely unknown.Arabidopsis ABA-deficient mutants,aba2-1 and aba3-1,displayed enhanced resistance to the biotrophic powdery mildew fungus Golovinomyces cichoracearum.Moreover,exogenously administered ABA increased the susceptibility of Arabidopsis to G.cichoracearum.Arabidopsis ABA perception components mutants,abil-1 and abi2-1,also displayed similar phenotypes to ABA-deficient mutants in resistance to G.cichoracearum.However,the resistance to G.cichoracearum is not changed in downstream ABA signaling transduction mutants,abi3-1,abi4-1,and abi5-1.Microscopic examination revealed that hyphal growth and conidiophore production of G.cichoracearum were compromised in the ABA deficient mutants,even though pre-penetration and penetration growth of the fungus were not affected.In addition,salicylic acid(SA) and MPK3 are found to be involved in ABA-regulated resistance to G.cichoracearum.Our work demonstrates that ABA negatively regulates post-penetration resistance of Arabidopsis to powdery mildew fungus G.cichoracearum,probably through antagonizing the function of SA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号