首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most of the photoreceptors of the fly compound eye have high sensitivity in the ultraviolet (UV) as well as in the visible spectral range. This UV sensitivity arises from a photostable pigment that acts as a sensitizer for rhodopsin. Because the sensitizing pigment cannot be bleached, the classical determination of the photosensitivity spectrum from measurements of the difference spectrum of the pigment cannot be applied. We therefore used a new method to determine the photosensitivity spectra of rhodopsin and metarhodopsin in the UV spectral range. The method is based on the fact that the invertebrate visual pigment is a bistable one, in which rhodopsin and metarhodopsin are photointerconvertible. The pigment changes were measured by a fast electrical potential, called the M potential, which arises from activation of metarhodopsin. We first established the use of the M potential as a reliable measure of the visual pigment changes in the fly. We then calculated the photosensitivity spectrum of rhodopsin and metarhodopsin by using two kinds of experimentally measured spectra: the relaxation and the photoequilibrium spectra. The relaxation spectrum represents the wavelength dependence of the rate of approach of the pigment molecules to photoequilibrium. This spectrum is the weighted sum of the photosensitivity spectra of rhodopsin and metarhodopsin. The photoequilibrium spectrum measures the fraction of metarhodopsin (or rhodopsin) in photoequilibrium which is reached in the steady state for application of various wavelengths of light. By using this method we found that, although the photosensitivity spectra of rhodopsin and metarhodopsin are very different in the visible, they show strict coincidence in the UV region. This observation indicates that the photostable pigment acts as a sensitizer for both rhodopsin as well as metarhodopsin.  相似文献   

2.
The visual pigments in the compound eye of the comma butterfly, Polygonia c-album, were investigated in a specially designed epi-illumination microspectrophotometer. Absorption changes due to photochemical conversions of the visual pigments, or due to light-independent visual pigment decay and regeneration, were studied by measuring the eye shine, i.e., the light reflected from the tapetum located in each ommatidium proximal to the visual pigment-bearing rhabdom. The obtained absorbance difference spectra demonstrated the dominant presence of a green visual pigment. The rhodopsin and its metarhodopsin have absorption peak wavelengths at 532 nm and 492 nm, respectively. The metarhodopsin is removed from the rhabdom with a time constant of 15 min and the rhodopsin is regenerated with a time constant of 59 min (room temperature). A UV rhodopsin with metarhodopsin absorbing maximally at 467 nm was revealed, and evidence for a blue rhodopsin was obtained indirectly.  相似文献   

3.
The trp is a conditional phototransduction mutant of Drosophila. Direct electrical measurements and shot noise analysis suggest that a prolonged intense light causes in the mutant a reduction in the quantum efficiency for quantum bump production that does not arise from bleaching of the visual pigment. This effect depends on the duration of the light and only weakly on its intensity. In the normal fly, an intense blue light that shifts the visual pigment from rhodopsin to metarhodopsin, induces an excitatory process manifested by a prolonged depolarizing after potential (PDA). In the mutant, the PDA has a small amplitude and bump noise is superimposed on the response. It can thus be shown that the excitatory process underlying the PDA is also present in those trp mutants where the PDA voltage response is small or absent. It is suggested that the absence of the PDA voltage response in the mutant is probably due to a defect in an intermediate process, which links the excitatory process to the membrane conductance change.Presented at the EMBO-Workshop on Transduction Mechanism of Photoreceptors, Jülich, Germany, October 4–8, 1976  相似文献   

4.
The visual pigment in the peripheral retinular cells of the hoverfly Syrphus balteatus was investigated by absorbance difference measurements. Different visual pigments were found in the dorsal versus the ventral part of the eye in the male, but not in the female. In the male in the dorsal part of the eye the visual pigment has an isosbestic point at 513 nm; in the ventral part this value is 490 nm. The latter value is found in the female in both parts of the eye.Prolonged pupillary responses were studied in the male Syrphus and appeared to be most marked in the ventral part of the eye. In both hoverfly and blowfly prolonged pupillary responses are induced by short wavelength light only; i.e., by light which excessively can convert rhodopsin into metarhodopsin. By contrast, in butterflies red light (and a long dark adaptation time) is necessary to evoke a prolonged pupillary response. It was demonstrated in both hoverfly and blowfly that long wavelength light, which reconverts metarhodopsin into rhodopsin, inhibits a prolonged pupillary response; or, accelerates pupil opening.Based on material presented at the European Neurosciences Meeting, Florence, September 1978  相似文献   

5.
Summary The wavelength dependence of the afterpotentials following a bright illumination was studied in single photoreceptor cells of the droneflyEristalis. Cells with only a spectral sensitivity peak in the blue were selected. As previously demonstrated, these cells contain a rhodopsin absorbing maximally at about 450–460 nm, which upon photoconversion transforms into a metarhodopsin absorbing maximally at about 550 nm (Tsukahara and Horridge, 1977).With the visual pigment initially all in the rhodopsin form, a high rate of visual pigment conversion results in an afterhyperpolarization (AHP) when the fraction of metarhodopsin remains negligible after illumination as occurs at longer wavelengths if the intensity is high. Intensive illumination at short wavelengths is followed by a prolonged depolarizing afterpotential (PDA). The magnitude of the PDA peaks at low intensities at about 450–460 nm, corresponding to the peak of the cell's spectral sensitivity (i.e. the rhodopsin peak). With increasing intensity of illumination, however, the peak shifts progressively towards 430 nm, which corresponds to the photoequilibrium with maximum metarhodopsin that can be established by monochromatic light. From this result, it is inferred that the PDA is related to the induced fall in the rhodopsin fraction. The PDA can be abolished, or knocked down, by a long-wavelength flash which reconverts remaining metarhodopsin into rhodopsin. Therefore the decline of the PDA is restrained by the existing amount of metarhodopsin. Possible theories of afterpotentials are discussed.  相似文献   

6.
Summary Light-induced phosphorylation and dephosphorylation of the visual pigment protein, opsin, was investigated in isolated retinae of the blowfly making use of the fact that photon capture by rhodopsin leads to the formation of a thermostable metarhodopsin. Retinae were exposed, in the presence of exogenous32P-orthophosphate, to an intense blue light which initiated the phosphorylation of opsin (half-time about 5 min at 25 °C). Subsequent exposure of the retina to red light converted all the metarhodopsin present into rhodopsin and triggered a relatively rapid dephosphorylation of rhodopsin (half-time less than 20 s). It is proposed that the phosphorylated forms of rhodopsin and metarhodopsin represent inactive states of the pigment, i.e. phosphorylated metarhodopsin does not initiate reactions leading to the excitation of the photoreceptor cell and phosphorylated rhodopsin cannot be converted into physiologically active metarhodopsin without first being dephosphorylated.Abbreviations R1–6 peripheral retinula cells of the blowfly ommatidium - PDA prolonged depolarizing afterpotential - R rhodopsin - M metarhodopsin - R-P n phosphorylated rhodopsin - M-P n phosphorylated metarhodopsin - SDS-PAGE sodium dodecylsulphate polyacrylamide gel electrophoresis  相似文献   

7.
The visual pigments of most invertebrate photoreceptors have two thermostable photo-interconvertible states, the ground state rhodopsin and photo-activated metarhodopsin, which triggers the phototransduction cascade until it binds arrestin. The ratio of the two states in photoequilibrium is determined by their absorbance spectra and the effective spectral distribution of illumination. Calculations indicate that metarhodopsin levels in fly photoreceptors are maintained below ~35% in normal diurnal environments, due to the combination of a blue-green rhodopsin, an orange-absorbing metarhodopsin and red transparent screening pigments. Slow metarhodopsin degradation and rhodopsin regeneration processes further subserve visual pigment maintenance. In most insect eyes, where the majority of photoreceptors have green-absorbing rhodopsins and blue-absorbing metarhodopsins, natural illuminants are predicted to create metarhodopsin levels greater than 60% at high intensities. However, fast metarhodopsin decay and rhodopsin regeneration also play an important role in controlling metarhodopsin in green receptors, resulting in a high rhodopsin content at low light intensities and a reduced overall visual pigment content in bright light. A simple model for the visual pigment–arrestin cycle is used to illustrate the dependence of the visual pigment population states on light intensity, arrestin levels and pigment turnover.  相似文献   

8.
The molecular mechanisms that regulate invertebrate visual pigment absorption are poorly understood. Studies of amphioxus Go-opsin have demonstrated that Glu-181 functions as the counterion in this pigment. This finding has led to the proposal that Glu-181 may function as the counterion in other invertebrate visual pigments as well. Here we describe a series of mutagenesis experiments to test this hypothesis and to also test whether other conserved acidic amino acids in Drosophila Rhodopsin 1 (Rh1) may serve as the counterion of this visual pigment. Of the 5 Glu and Asp residues replaced by Gln or Asn in our experiments, none of the mutant pigments shift the absorption of Rh1 by more than 6 nm. In combination with prior studies, these results suggest that the counterion in Drosophila Rh1 may not be located at Glu-181 as in amphioxus, or at Glu-113 as in bovine rhodopsin. Conversely, the extremely low steady state levels of the E194Q mutant pigment (bovine opsin site Glu-181), and the rhabdomere degeneration observed in flies expressing this mutant demonstrate that a negatively charged residueat this position is essential for normal rhodopsin function in vivo. This work also raises the possibility that another residue or physiologic anion may compensate for the missing counterion in the E194Q mutant.  相似文献   

9.
The hydrogen ion changes resulting from the photolysis of the rod visual pigment, rhodopsin, have been investigated. Low temperature was used to isolate the metarhodopsin I478 to II380 reaction of rhodopsin and indicator dye was used to simultaneously measure the hydrogen ion changes of the rhodopsin solution.The results indicate that illuminated rhodopsin takes up a proton during the metarhodopsin I478 to II380 reaction and releases protons at later intermediate stages. The results are consistent with data indicating pK changes of rhodopsin as the basis for the R2 phase of the early receptor potential and hydrogen ion changes of the medium or pK changes of rhodopsin as having effects on the late receptor potential.  相似文献   

10.
Rhodopsin of the Larval Mosquito   总被引:6,自引:6,他引:0       下载免费PDF全文
Larvae of the mosquito Aedes aegypti have a cluster of four ocelli on each side of the head. The visual pigment of each ocellus of mosquitoes reared in darkness was characterized by microspectrophotometry, and found to be the same. Larval mosquito rhodopsin (λmax = 515 nm) upon short irradiation bleaches to a stable photoequilibrium with metarhodopsin (λmax = 480 nm). On long irradiation of glutaraldehyde-fixed tissues or in the presence of potassium borohydride, bleaching goes further, and potassium borohydride reduces the product, retinal, to retinol (vitamin A1). In the presence of hydroxylamine, the rhodopsin bleaches rapidly, with conversion of the chromophore to retinaldehyde oxime (λmax about 365 nm).  相似文献   

11.
Summary The prolonged depolarizing afterpotential (PDA) is a phenomenon which is tightly linked to visual pigment conversion. In order to determine whether processes underlying PDA induction and depression can spread in space, the PDA was recorded intracellularly in white-eyedCalliphora R1-6 photoreceptors and used to examine interactions between processes induced by activating statistically different photopigment molecules (Figs. 3–6). It was found that a PDA induced by converting some fraction of rhodopsin (R) molecules forward into the metarhodopsin (M) state can be completely depressed by equal or smaller amounts of pigment conversion, backward from metarhodopsin to rhodopsin even when largely different sets of pigment molecules were shifted in the respective directions, in agreement with previous experiments conducted on the barnacle. The characteristics of the afterpotentials obtained following the cessation of strong blue and green light stimuli which did not cause a net pigment conversion was examined (Figs. 7, 8). It was found that these afterpotentials, obtained when nonet R to M conversion took place, could not be depressed by an opposite net large M to R pigment conversion. Accordingly we propose to restrict the term PDA to an afterpotential which can be depressed by a net M to R pigment conversion. It is concluded: (a) that some processes underlying PDA induction and depression inCalliphora must interact at a distance which extends at least to the nearest neighboring pigment molecule, and (b) that inCalliphora photoreceptors net pigment conversion is required in order to induce and depress a PDA.Abbreviations R rhodopsin - M metarhodopsin - R to M rhodopsin to metarhodopsin pigment conversion - M to R metarhodopsin to rhodopsin pigment conversion - PDA prolonged depolarizing afterpotential - ERG electroretinogram - M potential metarhodopsin potential - ERP early receptor potential  相似文献   

12.
The visual pigment and visual cycle of the lobster,Homarus   总被引:1,自引:0,他引:1  
Summary The visual pigment of the American lobster,Homarus americanus, has been studied in individual isolated rhabdoms by microspectrophotometry. Lobster rhodopsin has max at 515 nm and is converted by light to a stable metarhodopsin with max at 490 nm. These figures are in good agreement with corresponding values obtained by Wald and Hubbard (1957) in digitonin extracts. Photoregeneration of rhodopsin to metarhodopsin is also observed. The absorbance spectrum of lobster metarhodopsin is invariant with pH in the range 5.4–9, indicating that even after isomerization of the chromophore fromcis totrans, the binding site of the chromophore remains sequestered from the solvent environment. Total axial density of the lobster rhabdom to unpolarized light is about 0.7.As described for several other Crustacea, aldehyde fixation renders the metarhodopsin susceptible to photobleaching, a process that is faster at alkaline than at neutral or acid pH. Small amounts of a photoproduct with max at 370 nm are occasionally seen. A slower dark bleaching of lobster rhabdoms (1/2–2 h) also occurs, frequently through intermediates with absorption similar to metarhodopsin.The molar extinction coefficient of metarhodopsin is about 1.2 times greater than that of rhodopsin, each measured at their respective max. Isomerization of the chromophore fromcis totrans is accompanied by a change in the orientation of the absorption vector of about 3°. The absorption vector of metarhodopsin is either tilted more steeply into the membrane or is less tightly oriented with respect to the microvillar axes.When living lobsters are kept at room temperature, light adaptation does not result in an accumulation of metarhodopsin. At 4 °C, however, the same adapting lights cause a reduction of rhodopsin and an increase in metarhodopsin. There is thus a temperature-sensitive regeneration mechanism that supplements photoregeneration. Following 1 ms, 0.1 joule xenon flashes that convert about 70% of the rhodopsin to metarhodopsin in vivo, dark regeneration occurs in the living eye with half-times of about 25 and 55 min at 22 °C and 15 °C respectively.This work was supported by USPHS research grant EY 00222 to Yale University. S.N.B. was aided by NIH Postdoctoral Fellowship EY 52378.  相似文献   

13.
Dragonflies of the genus Sympetrum have compound eyes conspicuously divided into dorsal and ventral regions. Using anatomical, optical, electrophysiological, in-vivo photochemical and microspectrophotometrical methods, we have investigated the design and physiology of the dorsal part which is characterized by a pale yellow-orange screening pigment and extremely large facets. The upper part of the yellow dorsal region is a pronounced fovea with interommatidial angles approaching 0.3°, contrasting to the much larger values of 1.5°–2° in the rest of the eye. The dorsal eye part is exclusively sensitive to short wavelengths (below 520 nm). It contains predominantly blue-receptors with a sensitivity maximum at 420 nm, and a smaller amount of UV-receptors. The metarhodopsin of the blue-receptors absorbs maximally at 535 nm. The yellow screening pigment transmits longwavelength light (cut-on 580 nm), which increases the conversion rate from metarhodopsin to rhodopsin (see Fig. 11a). We demonstrate that because of the yellow pigment screen nearly all of the photopigment is in the rhodopsin state under natural conditions, thus maximizing sensitivity. Theoretical considerations show that the extremely long rhabdoms (1.1 mm) in the dorsal fovea are motivated for absorption reasons alone. A surprising consequence of the long rhabdoms is that the sensitivity gain, caused by pumping photopigment into the rhodopsin state, is small. To explain this puzzling fact we present arguments for a mechanism producing a gradient of rhodopsin concentration along the rhabdom, which would minimize saturation of transduction units, and hence improve the signal-to-noise ratio at high intensities. The latter is of special importance for the short integration time and high contrast sensitivity these animals need for spotting small prey at long distances.Abbreviations ERG electroretinogram - R rhodopsin - M metarhodopsin  相似文献   

14.
We have simultaneously measured the electroretinogram (ERG) and the metarhodopsin content via fluorescence in white-eyed, wild-type Drosophila and the arrestin2 hypomorphic mutant (w ;arr2 3 ) at a range of stimulus wavelengths and intensities. Photoreceptor response amplitude and termination (transition between full repolarization and prolonged depolarizing afterpotential, PDA) were related to visual pigment conversions and arrestin concentration. The data were implemented in a kinetic model of the rhodopsin–arrestin cycle, allowing us to estimate the active metarhodopsin concentration as a function of effective light intensity and arrestin concentration. Arrestin reduction in the mutant modestly increased the light sensitivity and decreased the photoreceptor dynamic range. Compared to the wild type, in the mutant the transition between full repolarization and PDA occurred at a lower metarhodopsin fraction and was more abrupt. We developed a steady-state stochastic model to interpret the dependence of the PDA on effective light intensity and arrestin content and to help deduce the arrestin to rhodopsin ratio from the sensitivity and PDA data. The feasibility of different experimental methods for the estimation of arrestin content from ERG and PDA is discussed.  相似文献   

15.
The cellular origin and properties of fast electrical potentials arising from activation of Calliphora photopigment were investigated. It was found by intracellular recordings that only the corneal-negative M1 phase of fly M potential arises in the photoreceptors' membrane. This M1 phase has all the accepted characteristics of an early receptor potential (ERP). It has no detectable latency, it survives fixation with glutaraldehyde, it is linear with light intensity below pigment saturation, and it is linear with the amount of metarhodopsin activated by light. The Calliphora ERP was found, however, to be exceptional because activation of rhodopsin, which causes the formation of metarhodopsin in 125 microsecond (25 degrees C), was not manifested in the ERP. Also, the extracellularly recorded ERP was not proportional to the rate of photopigment conversion. The corneal-positive M2 phase of the M potential was found to arise from second-order lamina neurons (L neurons). Intracellular recordings from these cells showed a fast hyperpolarizing potential, which preceded the normal hyperpolarizing transient of these cells. This fast potential appeared only when metarhodopsin was activated by a strong flash. The data indicate that the intracellularly recorded positive ERP, which arises from activation of metarhodoposin, elicits a hyperpolarizing fast potential in the second-order neuron. This potential is most likely the source of the corneal-positive M potential.  相似文献   

16.
The prolonged depolarizing after potential (PDA) in the R1–6 receptors of the fly was used to isolate intermediate processes in phototransduction which are not manifested directly in the voltage response. It is first demonstrated that a pigment shift by light from metarhodopsin to rhodopsin in four species of the flies: Drosophila, Calliphora, Chrysomya and Musca induces an independent antagonistic process to the PDA, which is manifested in a strong inhibitory effect on PDA induction and is called the anti-PDA.By using mutants of Drosophila the existence of processes underlying the PDA were examined. The norpA H52and the trp mutant were used in which the voltage response of the photoreceptors could be reversibly abolished by elavated temperature and long intense light respectively. It is shown that the excitatory process underlying the PDA could be induced and depressed in conditions that block the voltage response of the photoreceptors, thus indicating the existance of intermediate processes which link the pigment activation by light to the PDA voltage response.Based on material presented at the European Neurosciences Meeting, Florence, September 1978  相似文献   

17.
The ionization changes during the photolysis of the visual pigment, cattle rhodopsin, have been measured by simultaneous recording of spectral and pH changes. The thermal intermediates of rhodopsin and pH changes were recorded over a pH range of 4.6–8.9.In the normal sequence of intermediate changes at pH values of 5.4–7.7, the proton uptake of rhodopsin during the metarhodopsin I478 to II380 reaction is followed by a proton release in the thermal decay of metarhodopsin II380 to III465. Below pH 5.4, no proton release is observed during the thermal decay of metarhodopsin II380, and the metarhodopsin II380 appears to thermally decay directly to N-retinylidene-opsin440. Above pH 7.7, the major process appears to be a proton release and the final product is N-retinylidene-opsin365.The ionization state of certain groups in rhodopsin appears to control the metarhodopsin I478 to II380 reaction and control the products in the thermal decay of metarhodopsin II380. The pK changes of certain groups in rhodopsin may be the major factor in determining sequence of thermal intermediates and the values of the kinetic activation parameters. The reversing ionization changes may be important to the transduction process.  相似文献   

18.
Summary After intense orange adapting exposures that convert 80% of the rhodopsin in the eye to metarhodopsin, rhabdoms become covered with accessory pigment and appear to lose some microvillar order. Only after a delay of hours or even days is the metarhodopsin replaced by rhodopsin (Cronin and Goldsmith 1984). After 24 h of dark adaptation, when there has been little recovery of visual pigment, the photoreceptor cells have normal resting potentials and input resistances, and the reversal potential of the light response is 10–15 mV (inside positive), unchanged from controls. The log V vs log I curve is shifted about 0.6 log units to the right on the energy axis, quantitatively consistent with the decrease in the probability of quantum catch expected from the lowered concentration of rhodopsin in the rhabdoms. Furthermore, at 24 h the photoreceptors exhibit a broader spectral sensitivity than controls, which is also expected from accumulations of metarhodopsin in the rhabdoms. In three other respects, however, the transduction process appears to be light adapted: (i) The voltage responses are more phasic than those of control photoreceptors. (ii) The relatively larger effect (compared to controls) of low extracellular Ca++ (1 mmol/1 EGTA) in potentiating the photoresponses suggests that the photoreceptors may have elevated levels of free cytoplasmic Ca++. (iii) The saturating depolarization is only about 30% as large as the maximal receptor potentials of contralateral, dark controls, and by that measure the log V-log I curve is shifted downward by 0.54 log units. The gain (change in conductance per absorbed photon) therefore appears to have been diminished.  相似文献   

19.
The ultraviolet absorbance of squid and octopus rhodopsin changes reversibly at 234 nm and near 280 nm in the interconversion of rhodopsin and metarhodopsin. The absorbance change near 280 nm is ascribed to both protein and chromophore parts. Rhodopsin is photoregenerated from metarhodopsin via an intermediate, P380, on irradiation with yellow light (λ > 520 nm). The ultraviolet absorbance decreases in the change from rhodopsin to metarhodopsin and recovers in two steps; mostly in the process from metarhodopsin to P380 and to a lesser extent in the process from P380 to rhodopsin. P380 has a circular dichroism (CD) band at 380 nm and its magnitude is the same order as that of rhodopsin. Thus it is considered that the molecular structure of P380 is close to that of rhodopsin and that the chromophore is fixed to opsin as in rhodopsin. In the change from metarhodopsin to P380, the chromophore is isomerized from the all-trans to the 11-cis form, and the conformation of opsin changes to fit 11-cis retinal. In the change from P380 to rhodopsin, a small change in the conformation of the protein part and the protonation of the Schiff base, the primary retinal-opsin link, occur.  相似文献   

20.
Summary The spectral absorbance by the visual pigments in the compound eye of the mothDeilephila elpenor was determined by microphotometry. Two visual pigments and their photoproducts were demonstrated. The photoproducts are thermostable and are reconverted to the visual pigments by light. The concentrations of the visual pigments and the photoproducts at each wavelength are determined by their absorbance coefficients at this wavelength. P 525: The experimental recordings (difference spectra and spectral absorbance changes after exposure to monochromatic lights) were completely reproduced by calculations using nomograms for vertebrate rhodopsin. The identity between experimental recordings and calculations show: One visual pigment absorbs maximally at 525 nm (P 525). The resonance spectrum of the visual pigment is identical to that for a vertebrate rhodopsin (max at 525 nm). The photoproduct of this pigment absorbs maximally at 480 nm (M 480). It is similar to the acid metarhodopsin in cephalopods. The relative absorbance of P 525 to that of M 480 is 11.75. The quantum efficiency for photoconversion of P 525 to M 480 is nearly equal to that for reconversion of M 480 to P 525. Wavelengths exceeding about 570 nm are absorbed only by P 525, i. e. P 525 is completely converted to M 480. Shorter wavelengths are absorbed both by P 525 and M 480. At these wavelengths a photoequilibrium between the two pigments is formed. Maximal concentration of P 525 is obtained at about 450 nm. P 350: A second visual pigment absorbs maximally at about 350 nm (P 350), and its photoproduct at 450 to 460 nm. In the region of spectral overlap a photoequilibrium between the two pigments is formed.The visual pigment and the photoproduct are similar to those in the neuropteran insectAscalaphus.The work reported in this article was supported by Deutsche Forschungsgemeinschaft, Schwerpunktsprogramm Rezeptorphysiologie Ha 258-10, and SFB 114, by the Swedish Medical Research Council (grant no B 73-04X-104-02B), by Karolinska Institutet, and by a grant (to G. Höglund) from Deutscher Akademischer Austauschdienst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号