首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lateral auxin transport in stems and roots   总被引:2,自引:1,他引:2       下载免费PDF全文
Burg SP  Burg EA 《Plant physiology》1967,42(6):891-893
  相似文献   

2.
Abscission: movement and conjugation of auxin   总被引:4,自引:3,他引:1       下载免费PDF全文
A 1-hour application of indole-3-acetic acid to bean (Phaseolus vulgaris L. cv. Red Kidney) explants inhibited abscission for an 8-hour aging period. Use of indole-3-acetic acid-14C showed that the applied indole-3-acetic acid was conjugated within explant tissue and that this conjugation mechanism accounts for loss of effectiveness of indole-3-acetic acid in inhibiting abscission after 8 hours. Reapplication of indole-3-acetic acid to an explant at a later time, before the induced aging requirement was completed reinhibited abscission. 2,4-Dichlorophenoxyacetic acid, which is not destroyed or conjugated by this system, did not lose its ability to inhibit abscission. It was concluded that indole-3-acetic acid destruction is one of the processes involved in the aging stage of abscission in explants.  相似文献   

3.
Phototropism is the process by which plants grow towards light in order to maximize the capture of light for photosynthesis, which is particularly important for germinating seedlings. In Arabidopsis, hypocotyl phototropism is predominantly triggered by blue light (BL), which has a profound effect on the establishment of asymmetric auxin distribution, essential for hypocotyl phototropism. Two auxin efflux transporters ATP‐binding cassette B19 (ABCB19) and PIN‐formed 3 (PIN3) are known to mediate the effect of BL on auxin distribution in the hypocotyl, but the details for how BL triggers PIN3 lateralization remain poorly understood. Here, we report a critical role for clathrin in BL‐triggered, PIN3‐mediated asymmetric auxin distribution in hypocotyl phototropism. We show that unilateral BL induces relocalization of clathrin in the hypocotyl. Loss of clathrin light chain 2 (CLC2) and CLC3 affects endocytosis and lateral distribution of PIN3 thereby impairing BL‐triggered establishment of asymmetric auxin distribution and consequently, phototropic bending. Conversely, auxin efflux inhibitors N‐1‐naphthylphthalamic acid and 2,3,5‐triiodobenzoic acid affect BL‐induced relocalization of clathrin, endocytosis and lateralization of PIN3 as well as asymmetric distribution of auxin. These results together demonstrate an important interplay between auxin and clathrin function that dynamically regulates BL‐triggered hypocotyl phototropism in Arabidopsis.  相似文献   

4.
5.
It is well accepted that lateral redistribution of the phytohormone auxin underlies the bending of plant organs towards light. In monocots, photoreception occurs at the shoot tip above the region of differential growth. Despite more than a century of research, it is still unresolved how light regulates auxin distribution and where this occurs in dicots. Here, we establish a system in Arabidopsis thaliana to study hypocotyl phototropism in the absence of developmental events associated with seedling photomorphogenesis. We show that auxin redistribution to the epidermal sites of action occurs at and above the hypocotyl apex, not at the elongation zone. Within this region, we identify the auxin efflux transporter ATP-BINDING CASSETTE B19 (ABCB19) as a substrate target for the photoreceptor kinase PHOTOTROPIN 1 (phot1). Heterologous expression and physiological analyses indicate that phosphorylation of ABCB19 by phot1 inhibits its efflux activity, thereby increasing auxin levels in and above the hypocotyl apex to halt vertical growth and prime lateral fluxes that are subsequently channeled to the elongation zone by PIN-FORMED 3 (PIN3). Together, these results provide new insights into the roles of ABCB19 and PIN3 in establishing phototropic curvatures and demonstrate that the proximity of light perception and differential phototropic growth is conserved in angiosperms.  相似文献   

6.
By being sessile, plants have evolved a remarkable capacity to perceive and respond to changes in environmental conditions throughout their life cycle. Light represents probably the most important environmental factor that impinge on plant development because, other than supplying the energy source for photosynthesis, it also provides seasonal and positional information that are essential for the plant survival and fitness. Changes in the light environment can dramatically alter plant morphogenesis, especially during the early phases of plant life, and a compelling amount of evidence indicates that light-mediated changes in auxin homeostasis are central in these processes. Auxin exerts its morphogenetic action through instructive hormone gradients that drive developmental programs of plants. Such gradients are formed and maintained via an accurate control on directional auxin transport. This review summarizes the recent advances in understanding the influence of the light environment on polar auxin transport.  相似文献   

7.
Maintenance of polarity of auxin movement by basipetal transport   总被引:4,自引:3,他引:1       下载免费PDF全文
The polar, basipetal transport of indoleacetic acid helps to maintain polarity of auxin movement in coleoptiles of Avena sativa L. by opposing acropetal diffusion. This conclusion is supported by 3 different kinds of experiments. In all 3 experiments, sections took up 14C carboxyl-labeled indole-3-acetic acid anaerobically, and the distribution of auxin within all sections was similar at the end of uptake.

[List: see text]

  相似文献   

8.
The involvement of polar auxin transport (PAT) on the growth of light-grown seedlings and rooting is generally accepted, while the role of auxin and PAT on the growth of dark-grown seedlings is subject to controversy. To further investigate this question, we have firstly studied the influence of NPA, a known inhibitor of PAT, on the rooting and growth of etiolated Lupinus albus hypocotyls. Rooting was inhibited when the basal ends of de-rooted seedlings were immersed in 100 micro m NPA but was partially restored after immersion in NPA + auxin. However, NPA applied to de-rooted seedlings or the roots of intact seedlings did not inhibit hypocotyl growth. It was taken up and distributed along the organ, and actually inhibited the basipetal transport of ((3)H)-IAA applied to isolated hypocotyl sections. Since the apex is the presumed auxin source for hypocotyl growth and rooting, and the epidermis is considered the limiting factor in auxin-induced growth, the basipetal and lateral auxin movement (LAM) after application of ((3)H)-IAA to decapitated seedlings were studied, in an attempt to evaluate the role of PAT and LAM in the provision of auxin to competent cells for growth and rooting. Local application of ((3)H)-IAA to the stele led to the basipetal transport of auxin in this tissue, but the process was drastically reduced when roots were immersed in NPA since no radioactivity was detected below the apical elongation region of the hypocotyl. LAM from the stele to the cortex and the epidermis occurred during basipetal transport, since radioactivity in these tissues increased as transport time progressed. Radioactivity on a per FW basis in the epidermis was 2-4 times higher than in the cortex, which suggests that epidermal cells acted as a sink for LAM. NPA did not inhibit LAM along the elongation region. These results suggest that while PAT was essential for rooting, LAM from the PAT pathway to the auxin-sensitive epidermal cells could play a key role in supplying auxin for hypocotyl elongation in etiolated lupin seedlings.  相似文献   

9.
The relationships between the distribution of the native auxin indole-3-acetic acid (IAA) and tropisms in the epicotyl of red light-grown pea (Pisum sativum L.) seedlings have been investigated. The distribution measurement was made in a defined zone of the third internode, using (3)H-IAA applied from the plumule as a tracer. The tropisms investigated were gravitropism, pulse-induced phototropism, and time-dependent phototropism. The investigation was extended to the phase of autostraightening (autotropism) that followed gravitropic curvature. It was found that IAA is asymmetrically distributed between the two halves of the zone, with a greater IAA level occurring on the convex side, at early stages of gravitropic and phototropic curvatures. This asymmetry was found in epidermal peels and, except for one case (pulse-induced phototropism), no asymmetry was detected in whole tissues. It was concluded, in support of earlier results, that auxin asymmetry mediates gravitropism and phototropism and that the epidermis or peripheral cell layers play an important role in the establishment of auxin asymmetry in pea epicotyls. During autostraightening, which results from a reversal of growth asymmetry, the extent of IAA asymmetry was reduced, but its direction was not reversed. This result demonstrated that autostraightening is not regulated through auxin distribution. In this study, the growth on either side of the investigated zone was also measured. In some cases, the measured IAA distribution could not adequately explain the local growth rate, necessitating further detailed investigation.  相似文献   

10.
Following asymmetric application of indoleacetic acid to maize (Zea mays L.) coleoptiles the early time course of changes in lateral electrical potential was externally monitored with static-drop electrodes. First, an early negative potential change of ca.-1 mV was measured at the surface on the side of a strong auxin application. This negative auxin effect ended after ca. 15 min and was followed by a strong and lasting auxin stimulation of a positive lateral potential up to +12 mV at the auxin-treated side. The initial auxin effect appeared to depend on the size of the step-up in auxin concentration.  相似文献   

11.
The flowers of the species belonging to the genus Passiflorashow a range of features that are thought to have arisen as adaptations to different pollinators. Some Passiflora species belonging to the subgenus Decaloba sect. Xerogona, show touch-sensitive motile androgynophores. We tested the role of auxin polar transport in the modulation of the androgynophore movement by applying auxin (IAA) or an inhibitor of auxin polar transport (NPA) in the flowers. We recorded the movement of the androgynophore during mechano-stimulation and analyzed the duration, speed, and the angle formed by the androgynophore before and after the movement, and found that both IAA and NPA increase the amplitude of the movement in P. sanguinolenta. We hypothesize that auxin might have a role in modulating the fitness of these Decaloba species to different pollination syndromes and demonstrate that an interspecific hybrid between insect- and hummingbird-pollinated Xerogona species present a heterosis effect on the speed of the androgynophore movement.  相似文献   

12.
13.
14.
15.
In a recent study, we demonstrated that although the auxin efflux carrier PIN-FORMED (PIN) proteins, such as PIN3 and PIN7, are required for the pulse-induced first positive phototropism in etiolated Arabidopsis hypocotyls, they are not necessary for the continuous-light-induced second positive phototropism when the seedlings are grown on the surface of agar medium, which causes the hypocotyls to separate from the agar surface. Previous reports have shown that hypocotyl phototropism is slightly impaired in pin3 single mutants when they are grown along the surface of agar medium, where the hypocotyls always contact the agar, producing some friction. To clarify the possible involvement of PIN3 and PIN7 in continuous-light-induced phototropism, we investigated hypocotyl phototropism in the pin3 pin7 double mutant grown along the surface of agar medium. Intriguingly, the phototropic curvature was slightly impaired in the double mutant when the phototropic stimulus was presented on the adaxial side of the hook, but was not impaired when the phototropic stimulus was presented on the abaxial side of the hook. These results indicate that PIN proteins are required for continuous-light-induced second positive phototropism, depending on the direction of the light stimulus, when the seedlings are in contact with agar medium.  相似文献   

16.
Phototropism allows plants to orient their photosynthetic organs towards the light. In Arabidopsis, phototropins 1 and 2 sense directional blue light such that phot1 triggers phototropism in response to low fluence rates, while both phot1 and phot2 mediate this response under higher light conditions. Phototropism results from asymmetric growth in the hypocotyl elongation zone that depends on an auxin gradient across the embryonic stem. How phototropin activation leads to this growth response is still poorly understood. Members of the phytochrome kinase substrate (PKS) family may act early in this pathway, because PKS1, PKS2 and PKS4 are needed for a normal phototropic response and they associate with phot1 in vivo. Here we show that PKS proteins are needed both for phot1‐ and phot2‐mediated phototropism. The phototropic response is conditioned by the developmental asymmetry of dicotyledonous seedlings, such that there is a faster growth reorientation when cotyledons face away from the light compared with seedlings whose cotyledons face the light. The molecular basis for this developmental effect on phototropism is unknown; here we show that PKS proteins play a role at the interface between development and phototropism. Moreover, we present evidence for a role of PKS genes in hypocotyl gravi‐reorientation that is independent of photoreceptors. pks mutants have normal levels of auxin and normal polar auxin transport, however they show altered expression patterns of auxin marker genes. This situation suggests that PKS proteins are involved in auxin signaling and/or lateral auxin redistribution.  相似文献   

17.
Under blue light (BL) illumination, Arabidopsis thaliana roots grow away from the light source, showing a negative phototropic response. However, the mechanism of root phototropism is still unclear. Using a noninvasive microelectrode system, we showed that the BL sensor phototropin1 (phot1), the signal transducer NONPHOTOTROPIC HYPOCOTYL3 (NPH3), and the auxin efflux transporter PIN2 were essential for BL-induced auxin flux in the root apex transition zone. We also found that PIN2-green fluorescent protein (GFP) localized to vacuole-like compartments (VLCs) in dark-grown root epidermal and cortical cells, and phot1/NPH3 mediated a BL-initiated pathway that caused PIN2 redistribution to the plasma membrane. When dark-grown roots were exposed to brefeldin A (BFA), PIN2-GFP remained in VLCs in darkness, and BL caused PIN2-GFP disappearance from VLCs and induced PIN2-GFP-FM4-64 colocalization within enlarged compartments. In the nph3 mutant, both dark and BL BFA treatments caused the disappearance of PIN2-GFP from VLCs. However, in the phot1 mutant, PIN2-GFP remained within VLCs under both dark and BL BFA treatments, suggesting that phot1 and NPH3 play different roles in PIN2 localization. In conclusion, BL-induced root phototropism is based on the phot1/NPH3 signaling pathway, which stimulates the shootward auxin flux by modifying the subcellular targeting of PIN2 in the root apex transition zone.  相似文献   

18.
Experiments with green seedlings of sunflower (Helianthus annuns L.) indicate the existence of a phototropic mechanism which involves the leaves or cotyledons, and which can produce an asymmetry of auxin content without the involvement of lateral auxin transport, the classic explanation of phototropism in etiolated seedlings. The basic lines of evidence for the leaf-mediated tropism are: 1) darkening of one cotyledon will cause curvature of the stem toward the lighted cotyledon: 2) the darkened cotyledon sustains an enhanced growth rate in the stem below it: 3) conversely, light suppresses the growth-stimulating effects of a single cotyledon: and 4) more diffusible auxin is obtained from the stem below darkened cotyledons than below lighted ones.  相似文献   

19.
Moisture inside walls can facilitate mold growth if left untreated. Once spores become airborne they may interact with pressures inside walls. Two laboratory experiments were conducted to determine if airborne spores have the potential to migrate laterally inside walls with and without wiring installations. A simulated wall was fabricated, and Penicillium chrysogenum spores were aerosolized into a distant stud bay and an adjacent stud bay. The wall was subjected to a typical indoor pressure. Spore levels inside the bays were sampled, and a total of 36 trials (n = 36) were conducted. Results of Kruskal–Wallis tests revealed that spore levels inside the sampling bay and the distant bay with wiring installations were not significantly different. Spore levels inside the sampling bay were significantly lower than the adjacent bay without wiring installations (< 0.05). The findings of the study suggest airborne fungal spores have the potential to move laterally inside walls.  相似文献   

20.
Phytotropins, even those not absorbing in the visible region of the spectrum, can induce a phototropic response in maize ( Zea mays L. cv. PX-75) roots when illuminated unilaterally with white light. The most active phytotropin, 2-(1-pyrenoyl) benzoic acid (PBA) can elicit a full response at 10 μ M , while the other active molecules, 2-carboxyphenyl-3-phenylpropane-1,3-dione (CPD), 2-carboxyphenyl-3-phenyl-1,2-pyrazole (CPP), 1-N-naphthylphthalamic acid (NPA) and erythrosin elicit a full response at 100 μ M . The less active phytotropins BBA and fluorescein give a reduced response. It is suggested that the observed effect cannot be explained solely on the basis of auxin transport inhibition. There is a photoreceptor in the extension zone of the root, which may be associated in some way with the receptor for NPA. The results are consistent with the proposal that the phototropic process may form part of the root gravitropic response mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号