首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Determination of the nucleotide sequence of a cDNA for batroxobin, a thrombin-like enzyme from Bothrops atrox, moojeni venom, allowed elucidation of the complete amino acid sequence of batroxobin for the first time for a thrombin-like snake venom enzyme. The molecular weight of batroxobin is 25,503 (231 amino acids). The amino acid sequence of batroxobin exhibits significant homology with those of mammalian serine proteases (trypsin, pancreatic kallikrein, and thrombin), indicating that batroxobin is a member of the serine protease family. Based on this homology and enzymatic and chemical studies, the catalytic residues and disulfide bridges of batroxobin were deduced to be as follows: catalytic residues, His41, Asp86, and Ser178; and disulfide bridges, Cys7-Cys139, Cys26-Cys42, Cys74-Cys230, Cys118-Cys184, Cys150-Cys163, and Cys174-Cys199. The amino-terminal amino acid residue of batroxobin, valine, is preceded by 24 amino acids. This may indicate that the amino-terminal hydrophobic peptide (18 amino acids) is a prepeptide and that the hydrophilic peptide (6 amino acids), preceded by the putative prepeptide, is a propeptide.  相似文献   

2.
A thrombin-like enzyme, named BjussuSP-I, isolated from Bothrops jararacussu snake venom, is an acidic single-chain glycoprotein with M(r)=61,000, pI approximately 3.8 and 6% sugar. BjussuSP-I shows high proteolytic activity upon synthetic substrates, such as S-2238 and S-2288. It also shows procoagulant and kallikrein-like activity, but is unable to act on platelets and plasmin. These activities are inhibited by specific inhibitors of this class of enzymes. The complete cDNA sequence of BjussuSP-I with 696bp encodes open reading frames of 232 amino acid residues, which conserve the common domains of thrombin-like serine proteases. BjussuSP-I shows a high structural homology with other thrombin-like enzymes from snake venoms where common amino acid residues are identified as those corresponding to the catalytic site and subsites S1, S2 and S3 already reported. In this study, we also demonstrated the importance of N-linked glycans to improve thrombin-like activity of BjussuSP-I toxin.  相似文献   

3.
1. A kallikrein-like enzyme from the venom of Crotalus ruber ruber (red rattlesnake) had been isolated and characterized by Mori and Sugihara. The enzyme was active upon the kallikrein substrates, Pro-Phe-Arg-MCA and z-Phe-Arg-MCA, and slightly hydrolyzed Boc-Val-Leu-Lys-MCA, and Boc-Phe-Ser-Arg-MCA. 2. Unlike thrombin, the newly isolated kallikrein-like enzyme did not cause formation of a fibrin clot when fibrinogen was mixed with the enzyme. 3. The B beta chain of fibrinogen was first split and A alpha chain was cleaved later. Pancreatic kallikrein hydrolyzed only the A alpha chain without affecting the B beta chain. 4. The kallikrein-like enzyme produced kallidin (Lys-bradykinin) by splitting the Met-Lys bond instead of producing bradykinin. 5. The kallikrein analog JSI-450 (Ac-Phe-Ser-Pro-Phe-Arg-Ser-Val-Gln-Val-Ser-NH2) was also cleaved at the site of the Arg-Ser bond. 6. Its NH2-terminal amino acid sequence (Val-Ile-Gly-Gly-Asp-Glu-Cys-Asn-Ile-Asn-Glu-Arg-Pro-Phe-Leu-Val-Ala-Leu-Tyr- Asp-Ser-) is homologous to the rat pancreatic kallikrein and other snake venom proteases.  相似文献   

4.
K Akiyama  T Nakamura  S Iwanaga  M Hara 《FEBS letters》1987,225(1-2):168-172
gamma-Seminoprotein (gamma-Sm) is a human prostate-specific antigen and a serine protease judging from the complete amino acid sequence which shows extensive homology with the kallikrein family. The enzymatic activity of gamma-Sm was defined as a chymotrypsin-like activity using reduced and S-3-(trimethylated amino)propylated lysozyme and insulin-oxidized A and B chains as substrates. The -Leu/Ser- peptide bond of lysozyme was rapidly hydrolyzed by gamma-Sm. gamma-Sm also hydrolyzed the -Phe/Glu- of lysozyme and the -Leu/Cys(SO3H)- of insulin B chain. Insulin A chain and arginyl- or lysyl-linkage of these proteins were not hydrolyzed by gamma-Sm at all.  相似文献   

5.
The major toxic and fibrinolytic activity of the saliva and hemolymph of the larval form of Lonomia achelous was purified to homogeneity by a combination of metal chelate and affinity chromatography. Two apparent isozymes, Achelase I (213 amino acids, pIcalc = 10.55) and Achelase II (214 amino acids, pIcalc = 8.51), were sequenced by automated Edman degradation, and their C-termini confirmed by Fourier-transform mass spectrometry. The calculated molecular weights (22,473 and 22,727) correspond well to Mr estimates of 24,000 by SDS-PAGE. No carbohydrate was detected during sequencing. The enzymes degraded all three chains of fibrin, alpha greater than beta much greater than gamma, yielding a fragmentation pattern indistinguishable from that produced by trypsin. Chromogenic peptides S-2222 (Factor Xa and trypsin), S-2251 (plasmin), S-2302 (kallikrein) and S-2444 (urokinase) were substrates while S-2288 (broad range of serine proteinases including thrombin) was not hydrolyzed. Among a range of inhibitors Hg+2, aminophenylmercuriacetate, leupeptin, antipain and E-64 but not N-ethylmaleimide or iodoacetate abolished the activity of the purified isozymes against S-2444. Phenylmethylsulfonyl fluoride, soybean trypsin inhibitor and aprotinin were less effective. The presence of the classic catalytic triad (histidine-41, aspartate-86 and serine-189) suggests that Achelases I and II may be serine proteinases, but with a potentially free cysteine-185 which could react with thiol proteinase-directed reagents.  相似文献   

6.
A kallikrein-like proteinase of Lachesis muta muta (bushmaster) venom, designated LV-Ka, was purified by gel filtration and anion exchange chromatographies. Physicochemical studies indicated that the purified enzyme is a 33 kDa monomeric glycoprotein, the Mr of which fell to 28 kDa after deglycosylation with PNGase F. Approximately 77% of the protein sequence was determined by sequencing the various fragments derived from digestions with endoproteases. The partial sequence obtained suggests that LV-Ka is of a similar size to other serine proteinases (i.e., approximately 234 amino acid residues). Sequence studies on the NH2-terminal region of the protein indicate that LV-Ka shares a high degree of sequence homology with the kallikrein-like enzymes EI and EII from Crotalus atrox, with crotalase from Crotalus adamanteus and significant homology with other serine proteinases from snake venoms and vertebrate serum enzymes. LV-Ka showed kallikrein-like activity, releasing bradikinin from kininogen as evidenced by guinea pig bioassay. In addition, intravenous injection of the proteinase (0.8 microg/g) was shown to lower blood pressure in experimental rats. In vitro, the isolated proteinase was shown to have neither fibrin(ogeno)lytic activity nor coagulant effect. LV-Ka was active upon the kallikrein substrates S-2266 and S-2302 (specific activity=13.0 and 31.5 U/mg, respectively; crude venom=0.25 and 6.0 U/mg) but had no proteolytic effect on dimethylcasein and insulin B chain. Its enzymatic activity was inhibited by NPGB and PMSF, indicating that the enzyme is a serine proteinase. Interestingly, one of the other reactions catalyzed by plasma kallikrein, the activation of plasminogen was one of the activities exhibited by LV-Ka.  相似文献   

7.
A new type of fibrinogenase was isolated from the venom of the western diamondback rattlesnake (Crotalus atrox). Unlike thrombin, the newly isolated fibrinogenase did not cause formation of a fibrin clot. Various properties of the fibrinogenase we isolated were compared with crotalase isolated from the venom of C. adamanteus. It was found that fibrinogenase has considerable similarity to crotalase isolated by Markland and Damus in 1971. Crotalase is a thrombin-like enzyme and produces a fibrin clot from fibrinogen. The A alpha chain of fibrinogen was first split and the B beta chain was cleaved later. The fact that no fibrin clot forms indicates that the cleavage sites in A alpha and B beta chains of fibrinogen must be different from thrombin sites. The fibrinogenase also released bradykinin by interacting with plasma proteins. It hydrolyzed TAME (p-toluenesulfonyl-L-arginine methyl ester), BAEE (N-benzoyl-L-arginine ethyl ester). TLME (N-tosyllysine methyl ester) but not BAA (N-benzoylarginine amide), TAA (N-tosylarginineamide) or ATEE (N-acetyltyrosine ethyl ester). The enzyme is an acidic protein with pI of 4.6 and a mol. wt of 31,000. It consists of 272 total amino acid residues, 21% of which are acidic amino acids. Fibrinogenase is a specific form of protease. A newly liberated amino group after hydrolysis of dimethyl-casein can be detected by the reagent trinitrobenzenesulfonic acid (TNBS). Fibrinogenase differs from trypsin as the soybean trypsin inhibitor does not inhibit the enzyme's action.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
人纤维蛋白原经人凝血酶和浙江蝮蛇毒类凝血酶作用后,释放出血纤纤肽A和血纤肽B,二者可用高效液相色谱法分离鉴定。人凝血酶首先释放出血纤肽A,浙江蝮蛇毒类凝血酶则先释放出血纤肽B,甚至在纤维蛋白凝聚之前,血纤肽B的释放量早已达到极值,即使凝块形成后,血纤肽A与血纤肽B之比仍为1:3。人凝血酶在钙离子存在下,作用于纤维蛋白原时,其凝聚时间缩短,血纤肽A释放量不变,血纤肽B释放量则增高。在同样条件下,浙江蝮蛇毒类凝血酶作用时,血纤肽A释放量无明显变化,血纤肽B释放量却降低近1/3。无论是人凝血酶还是浙江蝮蛇毒类凝血酶,当与纤维蛋白原在2M尿素存在下反应时,均无可见凝块形成,但在37℃下用350nm光吸收监测其聚合过程仍可见光吸收上升,溶液呈乳白色。本文首次报道用电子显微镜观察比较了人凝血酶和浙江蝮蛇毒类凝血酶作用人纤维蛋白原后所形成的凝块结构。前者形成的结构致密,纤维长而细;后者形成的结构松散,较透明,纤维短而粗,这种结构更易为体内纤溶系统所降解。  相似文献   

9.
hK4 (prostase, KLK4), a recently cloned prostate-specific serine protease and a member of the tissue kallikrein family, is a zymogen composed of 228 amino acid residues including an amino-terminal propiece, Ser-Cys-Ser-Gln-. A chimeric form of hK4 (ch-hK4) was constructed in which the propiece of hK4 was replaced by that of prostate-specific antigen (PSA) to create an activation site susceptible to trypsin-type proteases. ch-hK4 was expressed in Escherichia coli, isolated from inclusion bodies, refolded, and purified with an overall yield of 25%. The zymogen was readily self-activated during the refolding process to generate an active form (21 kDa) of hK4 (rhK4). rhK4 cleaved the chromogenic substrates Val-Leu-Arg-pNA (S-2266), Pro-Phe-Arg-pNA (S-2302), Ile-Glu-Gly-Arg-pNA (S-2222), and Val-Leu-Lys-pNA (S-2251), indicating that rhK4 has a trypsin-type substrate specificity. The rhK4 was inhibited by aprotinin (6 kDa), forming an equimolar 27 kDa complex. rhK4 readily activated both the precursor of PSA (pro-PSA) and single chain urokinase-type plasminogen activator (scuPA, pro-uPA). rhK4 also completely degraded prostatic acid phosphatase but failed to cleave serum albumin, another protein purified from human seminal plasma. These results indicate that hK4 may have a role in the physiologic processing of seminal plasma proteins such as pro-PSA, as well as in the pathogenesis of prostate cancer through its activation of pro-uPA.  相似文献   

10.
We have found a wide occurrence of alpha,beta-diaminopropionate ammonia-lyase in bacteria and actinomycetes. Considerable amounts of this enzyme were found in Salmonella typhimurium. The enzyme was purified and crystallized from S. typhimurium (IFO 12529). The relative molecular mass of the native enzyme, estimated by the ultracentrifugal equilibrium method, is 89,000 Da, and the enzyme consists of two subunits identical in molecular mass. The enzyme exhibits absorption maxima at 278 and 413 nm and contains 2 mol of pyridoxal 5'-phosphate(pyridoxal-P)/mol of enzyme. The enzyme catalyzes the alpha,beta-elimination reaction of both L- and D-alpha,beta-diaminopropionate, the most suitable substrates, to form pyruvate and ammonia. The L- and D-isomers of serine were also degraded, though slowly. After the internal Schiff base with pyridoxal-P had been reduced with sodium borohydride, followed by trypsin or lysyl endopeptidase digestion of the enzyme, we determined the sequence of about 20 amino acid residues around the lysine residue which binds pyridoxal-P. No homology was found in either the amino acid sequence of the pyridoxal-P binding peptide or the amino-terminal amino acid sequence between the enzyme and other pyridoxal-P-dependent enzymes.  相似文献   

11.
Previously, we reported the purification and characterization of a myofibril-bound serine proteinase (MBP) from carp muscle (Osatomi K, Sasai H, Cao M-J, Hara K, Ishihara T. Comp Biochem Physiol 1997;116B:159–66). In the present study, the N-terminal amino acid sequence of the enzyme was determined, which showed high identity with those of other trypsin-like serine proteases. The cleavage specificity of MBP for dibasic and monobasic residues was investigated using various fluorogenic substrates and peptides. Analyses of the cleaved peptide products showed that the enzyme hydrolyzed peptides both at monobasic and dibasic amino acid residues. Monobasic amino acid residues were hydrolyzed at the carboxyl side; dibasic residues were cleaved either at the carboxyl side of the pair or between the two basic residues and the enzyme showed a cleavage preference for the Arg-Arg pair. Unexpectedly, MBP hydrolyzed lysyl-bradykinin and methionyl–lysyl–bradykinin at the carboxyl side of Gly fairly specifically and efficiently displaying a unique cleavage. Because MBP also degraded protein substrates such as casein and myofibrillar proteins, the substrate specificity of MBP appeared not to be strictly specific.  相似文献   

12.
cDNA cloning and expression of acutin   总被引:19,自引:0,他引:19  
Acutin, a thrombin-like enzyme was purified from Agkistrodon acutus venom in three steps by DEAE-Sepharose CL-6B, Superose 12 column on FPLC and Mono-Q column chromatographies. Its first 15 N-terminal amino acid residues sequence was then determined and the acutin cDNA was isolated from venom gland total RNA using RT-PCR. Determination of its nucleotide sequence allowed elucidation of the amino acid sequence of mature peptide for the first time. The mature acutin has 233 amino acids and its amino acid sequence exhibits significant homology with those of thrombin-like enzymes from crotaline snakes venoms. Based on the homology, the catalytic residues and disulfide bridges of acutin were deduced to be as follows: catalytic residues, His41, Asp84 and Ser179; and disulfide bridges, Cys7-Cys139, Cys26-Cys42, Cys74-Cys231, Cys118-Cys185, Cys150-Cys164, Cys175-Cys200. The recombinant acutin has been expressed in E. coli and purified by affinity column. The renatured recombinant acutin is reported for the first time to have the activity of clotting fibrinogen and arginine-esterase.  相似文献   

13.
A novel fish muscle serine protease named muscle soluble serine protease (MSSP) was purified from the soluble fraction of lizard fish (Saurida undosquamis: Synodontidae) muscle by ammonium sulfate fractionation followed by four steps of column chromatographies. In native-PAGE, the purified enzyme appeared as a single band with an estimated mol. mass of approximately 380 kDa by gel filtration. In SDS-PAGE under reducing conditions, the purified enzyme migrated as two protein bands at 110 and 100 kDa, named subunits A and B, respectively. The 20 residues of N-terminal amino acid sequence of subunit B showed 70% of homology to beta-chain of carp alpha(2)-macroglobulin-1. Moreover, both subunits A and B showed immunoreactivity with anti carp alpha(2)-macroglobulin antibody. Purified MSSP was inactivated by Pefabloc SC, aprotinin, benzamidine and TLCK, but not by alpha(1)-antitrypsin. After acid treatment (pH 2, 24 h), however, the enzyme activity eluted at 14 kDa from Sephacryl S-200 carried out under acidic conditions was inhibited by alpha(1)-antitrypsin. Lizard fish MSSP most rapidly hydrolyzed Boc-Val-Pro-Arg-MCA and Boc-Gln-Arg-Arg-MCA, but did not hydrolyzed Suc-Leu-Leu-Val-Tyr-MCA and Suc-Ala-Ala-Pro-Phe-MCA, and was not suppressed either by E-64, pepstatin A and ethylenediaminetetraacetic acid (EDTA). These results indicate that the purified MSSP is a serine protease complexed with alpha(2)-macroglobulin, and the entrapped protease was dissociated by the acid treatment. Purified and free MSSPs were most active at pH 10.0 and 9.0, respectively. Purified MSSP degraded myofibrillar proteins and casein but time courses of degradation of these substrates by the enzyme differed.  相似文献   

14.
A 427-fold purification of rat urinary kallikrein (RUK) was achieved in three steps involving chromatography on columns of DEAE-Sepharose CL-6B, gel filtration on Sephadex G-100 and affinity chromatography on a column of benzamidine-Sepharose. Purified enzyme showed a single band on SDS-PAGE with an estimated molecular weight of 43,000. The amino-terminal sequences of the first 25 residues of RUK resemble the reported sequence for true kallikrein and share 80% identity with rat submandibular gland (RSMG) kallikrein-like serine protease. The RUK is highly reactive towards kallikrein substrates Bz-pro-phe-arg-pNA and DL-val-leu-arg-pNA, and plasmin substrate D-val-leu-lys-pNA. RSMG enzyme is more reactive towards Bz-val-gly-arg-pNA and tosyl-gly-pro-arg-pNA, preferential chromogenic substrates for trypsin-like proteases and thrombin, respectively. Both leupeptin and aprotinin inhibit RUK strongly, but soy bean trypsin inhibitor has no effect on this enzyme. RSMG enzyme is poorly inhibited by any of these inhibitors. The data suggest that although both enzymes are members of tissue kallikrein multigene family, urinary enzyme is a true kallikrein and RSMG enzyme is a kallikrein-like serine protease with different substrate specificity.  相似文献   

15.
Abstract

A 427-fold purification of rat urinary kallikrein (RUK) was achieved in three steps involving chromatography on columns of DEAE-Sepharose CL-6B, gel filtration on Sephadex G-100 and affinity chromatography on a column of benzamidine-Sepharose. Purified enzyme showed a single band on SDS-PAGE with an estimated molecular weight of 43,000. The amino-terminal sequences of the first 25 residues of RUK resemble the reported sequence for true kallikrein and share 80% identity with rat submandibular gland (RSMG) kallikrein-like serine protease. The RUK is highly reactive towards kallikrein substrates Bz-pro-phe-arg-pNA and DL-val-leu-arg-pNA, and plasmin substrate D-val-leu-lys-pNA. RSMG enzyme is more reactive towards Bz-val-gly-arg-pNA and tosyl-gly-pro-arg-pNA, preferential chromogenic substrates for trypsin-like proteases and thrombin, respectively. Both leupeptin and aprotinin inhibit RUK strongly, but soy bean trypsin inhibitor has no effect on this enzyme. RSMG enzyme is poorly inhibited by any of these inhibitors. The data suggest that although both enzymes are members of tissue kallikrein multigene family, urinary enzyme is a true kallikrein and RSMG enzyme is a kallikrein-like serine protease with different substrate specificity.  相似文献   

16.
In this study we purified a fibrinolytic enzyme from the culture supernatant of Flammulina velutipes mycelia by ion exchange and gel filtration chromatographies, it was designated as F. velutipes protease (FVP-I). This purification protocol resulted in 18.52-fold purification of the enzyme at a final yield of 0.69%. The molecular mass of the purified enzyme was estimated to be 37 kDa by SDS-PAGE, fibrin-zymography and size exclusion by FPLC. This protease effectively hydrolyzed fibrin, preferentially digesting alpha-chain over beta-and gamma-gamma chain. Optimal protease activity was found to occur at a pH of 6.0 and a temperature of 20 to 30 degrees C. The protease activity was inhibited by Cu2+, Fe2+ and Fe3+ ions, but was found to be enhanced by Mn2+ and Mg2+ ions. Furthermore, FVP-I activity was potently inhibited by EDTA and EGTA, and it was found to exhibit a higher specificity for chromogenic substrate S-2586 for chymotrypsin, indicating that the enzyme is a chymotrypsin-like metalloprotease. The first 20 amino acid residues of the N-terminal sequence of FVP-I were LTYRVIPITKQAVTEGTELL. They had a high degree of homology with hypothetical protein CC1G_11771, GeneBank Accession no. EAU86463.  相似文献   

17.
V Fleury  E Anglés-Cano 《Biochemistry》1991,30(30):7630-7638
In the present study we have quantitatively characterized the interaction of purified human Glu- and Lys-plasminogen with intact and degraded fibrin by ligand-binding experiments using a radioisotopic dilution method and antibodies against human plasminogen. A fibrinogen monolayer was covalently linked to a solid support with polyglutaraldehyde and was treated with thrombin or with thrombin and then plasmin to respectively obtain intact and degraded fibrin surfaces. Under these conditions, a well-defined surface of fibrin is obtained (410 +/- 4 fmol/cm2) and, except for a 39-kDa fragment, most of the fibrin degradation products remain bound to the support. New binding sites for plasminogen were detected on the degraded surface of fibrin. These sites were identified as carboxy-terminal lysine residues both by inhibition of the binding by the lysine analogue 6-aminohexanoic acid and by carboxy-terminal end-group digestion with carboxypeptidase B. The binding curves exhibited a characteristic Langmuir adsorption isotherm saturation profile. The data were therefore analyzed accordingly, assuming a single-site binding model to simplify the analysis. Equilibrium dissociation constants (Kd) and the maximum number of binding sites (Bmax) were derived from linearized expression of the Langmuir isotherm equation. The Kd for the binding of Glu-plasminogen to intact fibrin was 0.99 +/- 0.17 microM and for degraded fibrin was 0.66 +/- 0.22 microM. The Kd for the binding of Lys-plasminogen to intact fibrin was 0.41 +/- 0.22 microM and for degraded fibrin was 0.51 +/- 0.12 microM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
19.
A serine protease (Mr 70,000 to 75,000) appearing in sheep lung lymph after capillary damage induced by Escherichia coli endotoxin, oleic acid, or air emboli, was studied for its specificity toward a series of synthetic peptide and thioester substrates containing an Arg residue in the P1 position. High specificity constants (kcat/Km) were generally obtained with substrates having two or more basic amino acid residues, and with those having a Gln residues in the P2 position. Secondary enzyme-substrate interactions at sites more removed from the scissile bond are of importance, since a few peptides with two basic residues were hydrolyzed slowly, and the site of cleavage of natural peptides was influenced by the amino acid sequence beyond the immediate vicinity of the hydrolyzed bond. The properties of the enzyme and its pattern of specificity distinguish it from enzymes of the clotting cascade, from components of the complement system, and from lung and skin tryptase. The enzyme was inactivated by p-amidinophenylmethanesulfonyl fluoride and by a series of mechanism-based isocoumarin derivatives, the most potent inhibitor being 4-chloro-7-guanidino-3-(2-phenylethoxy)isocoumarin. Enzyme solutions inactivated by reaction with isocoumarin inhibitors could be completely reactivated after 30 h by treatment with hydroxylamine at neutral pH. Formation of a stable sheep lymph acyl enzyme--in contrast to thrombin and other trypsin-like enzymes--is not followed by alkylation of an active site nucleophile that leads to irreversible enzyme inactivation. The high activity toward substrates with two basic residues suggests that the enzyme may potentially function in processing of precursors of bioactive peptides.  相似文献   

20.
This study examined whether the neurointermediate lobe (NIL) of the rat pituitary contains latent kallikrein- and thrombin-like proteases activated by trypsin. Partial characterization of such proteases was attempted. Also examined were the distribution of proteolytic activity within the NIL and levels in both male and female lobes. NIL homogenates were assayed for proteolytic activity at pH 8.0 before and after incubation with trypsin (10 micrograms/ml). Trypsin caused a 10-fold activation of kallikrein-like activity and a 40-fold activation of thrombin-like activity in NIL homogenates. The kallikrein-like activity was separated into two components using diethylaminoethyl-Sephadex. The predominant kallikrein-like protease was a potent kininogenase closely related or identical to glandular kallikrein and was almost exclusively localized to the intermediate lobe. The second kallikrein-like protease (kallikrein A) was a weak kininogenase sensitive to inhibition by both soybean trypsin inhibitor and aprotinin and was similarly concentrated in both the neural lobe and the intermediate lobe. The thrombin-like protease was sensitive to inhibition by hirudin (a specific thrombin inhibitor), clotted fibrinogen, and was slightly more concentrated in the neural lobe than in the intermediate lobe. NILs from female rats contained approximately 40% less kallikrein activity than NILs from male rats but did not differ in their content of thrombin-like activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号