首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Kamatani T  Yamamoto T 《Bio Systems》2007,90(2):362-370
To gain insight into the nature of the mitochondrial genomes (mtDNA) of different Candida species, the synonymous codon usage bias of mitochondrial protein coding genes and the tRNAs in C. albicans, C. parapsilosis, C. stellata, C. glabrata and the closely related yeast Saccharomyces cerevisiae were analyzed. Common features of the mtDNA in Candida species are a strong A+T pressure on protein coding genes, and insufficient mitochondrial tRNA species are encoded to perform protein synthesis. The wobble site of the anticodon is always U for the NNR (NNA and NNG) codon families, which are dominated by A-ending codons, and always G for the NNY (NNC and NNU) codon families, which is dominated by U-ending codons, and always U for the NNN (NNA, NNU, NNC and NNG) codon families, which are dominated by A-ending codons and U-ending codons. Patterns of synonymous codon usage of Candida species can be classified into three groups: (1) optimal codon-anticodon usage, Glu, Lys, Leu (translated by anti-codon UAA), Gln, Arg (translated by anti-codon UCU) and Trp are containing NNR codons. NNA, whose corresponding tRNA is encoded in the mtDNA, is used preferentially. (2) Non-optimal codon-anticodon usage, Cys, Asp, Phe, His, Asn, Ser (translated by anti-codon GCU) and Tyr are containing NNY codons. The NNU codon, whose corresponding tRNA is not encoded in the mtDNA, is used preferentially. (3) Combined codon-anticodon usage, Ala, Gly, Leu (translated by anti-codon UAG), Pro, Ser (translated by anti-codon UGA), Thr and Val are containing NNN codons. NNA (tRNA encoded in the mtDNA) and NNU (tRNA not encoded in the mtDNA) are used preferentially. In conclusion, we propose that in Candida species, codons containing A or U at third position are used preferentially, regardless of whether corresponding tRNAs are encoded in the mtDNA. These results might be useful in understanding the common features of the mtDNA in Candida species and patterns of synonymous codon usage.  相似文献   

2.
F Yamao  Y Andachi  A Muto  T Ikemura    S Osawa 《Nucleic acids research》1991,19(22):6119-6122
Transfer RNAs of Mycoplasma capricolum were separated by two-dimensional polyacrylamide gel electrophoresis, and the relative abundance of each of the 28 known tRNA species was measured. There existed a correlation between the relative amount of isoacceptor tRNAs and the frequency in choosing synonymous codons that could be translated by the isoacceptors. Furthermore, it was observed that the total amount of tRNAs for a particular amino acid was paralleled by the composition of the amino acid in ribosomal proteins. A similar relationship was obtained from reexamination of the previous data on Escherichia coli tRNAs, suggesting that the amount of tRNAs for an amino acid is affected by the usage of the amino acid in proteins.  相似文献   

3.
Analysis of codon usage for chick Type I collagen indicates that 89% of glycine codons are GGU/C. Since collagens are one-third glycine, chick Type I collagen synthesis should require large amounts of tRNAGly with the anticodon GCC. Earlier chromatographic studies of chick tRNA had indicated that connective tissues showed altered tRNAGly isoacceptor profiles [P. J. Christner and J. Rosenbloom (1976) Arch. Biochem. Biophys. 172, 399-409; H. J. Drabkin and L. N. Lukens (1978) J. Biol. Chem. 253, 6233-6241]. We have therefore used both two-dimensional gel electrophoresis and hybridization analysis to investigate whether collagen synthesis in chick connective tissues is associated with expression of a novel tRNAGly. Liver and calvaria tRNAs produced qualitatively similar patterns when separated on 2-D gels. Northern blots of 2-D-separated tRNAs from liver and calvaria, when hybridized to genes for vertebrate tRNAGly isoacceptors with GCC or UCC anticodons, showed hybridization to the same tRNAs in both tissues. Quantitation of tRNA species by dot blot hybridization indicated an increase in levels of the tRNAGly isoacceptor with anticodon GCC. Tissues synthesizing Type I collagen had a two- to threefold increase in this tRNA while tissues synthesizing Type II collagen showed a more modest increase. We conclude that elevated tRNAGly levels associated with collagen synthesis are due to increased amounts of the same isoacceptor which is the major tRNAGly in other tissues.  相似文献   

4.
Programmed -1 ribosomal frameshifting, involving tRNA re-pairing from an AAG codon to an AAA codon, has been reported to occur at the sequences CGA AAG and CAA AAG. In this study, using the recoding region of insertion sequence IS3, we have investigated the influence on frameshifting in Escherichia coli of the first codon of this type of motif by changing it to all other NNA codons. Two classes of NNA codons were distinguished, depending on whether they favor or limit frameshifting. Their degree of shiftiness is correlated with wobble propensity, and base 34 modification, of their decoding tRNAs. A more flexible anticodon loop very likely makes the tRNAs with extended wobble more prone to liberate the third codon base, A, for re-pairing of tRNALys in the -1 frame.  相似文献   

5.
The nucleotide sequences of the complete set of tRNA species in Mycoplasma capricolum, a derivative of Gram-positive eubacteria, have been determined. This bacterium represents the first genetic system in which the sequences of all the tRNA species have been determined at the RNA level. There are 29 tRNA species: three for Leu, two each for Arg, Ile, Lys, Met, Ser, Thr and Trp, and one each for the other 12 amino acids as judged from aminoacylation and the anticodon nucleotide sequences. The number of tRNA species is the smallest among all known genetic systems except for mitochondria. The tRNA anticodon sequences have revealed several features characteristic of M. capricolum. (1) There is only one tRNA species each for Ala, Gly, Leu, Pro, Ser and Val family boxes (4-codon boxes), and these tRNAs all have an unmodified U residue at the first position of the anticodon. (2) There are two tRNAThr species having anticodons UGU and AGU; the first positions of these anticodons are unmodified. (3) There is only one tRNA with anticodon ICG in the Arg family box (CGN); this tRNA can translate codons CGU, CGC and CGA. No tRNA capable of translating codon CGG has been detected, suggesting that CGG is an unassigned codon in this bacterium. (4) A tRNATrp with anticodon UCA is present, and reads codon UGA as Trp. On the basis of these and other observations, novel codon recognition patterns in M. capricolum are proposed. A comparatively small total, 13, of modified nucleosides is contained in all M. capricolum tRNAs. The 5' end nucleoside of the T psi C-loop (position 54) of all tRNAs is uridine, not modified to ribothymidine. The anticodon composition, and hence codon recognition patterns, of M. capricolum tRNAs resemble those of mitochondrial tRNAs.  相似文献   

6.
Decoding the genome: a modified view   总被引:10,自引:4,他引:6       下载免费PDF全文
Transfer RNA’s role in decoding the genome is critical to the accuracy and efficiency of protein synthesis. Though modified nucleosides were identified in RNA 50 years ago, only recently has their importance to tRNA’s ability to decode cognate and wobble codons become apparent. RNA modifications are ubiquitous. To date, some 100 different posttranslational modifications have been identified. Modifications of tRNA are the most extensively investigated; however, many other RNAs have modified nucleosides. The modifications that occur at the first, or wobble position, of tRNA’s anticodon and those 3′-adjacent to the anticodon are of particular interest. The tRNAs most affected by individual and combinations of modifications respond to codons in mixed codon boxes where distinction of the third codon base is important for discriminating between the correct cognate or wobble codons and the incorrect near-cognate codons (e.g. AAA/G for lysine versus AAU/C asparagine). In contrast, other modifications expand wobble codon recognition, such as U·U base pairing, for tRNAs that respond to multiple codons of a 4-fold degenerate codon box (e.g. GUU/A/C/G for valine). Whether restricting codon recognition, expanding wobble, enabling translocation, or maintaining the messenger RNA, reading frame modifications appear to reduce anticodon loop dynamics to that accepted by the ribosome. Therefore, we suggest that anticodon stem and loop domain nucleoside modifications allow a limited number of tRNAs to accurately and efficiently decode the 61 amino acid codons by selectively restricting some anticodon–codon interactions and expanding others.  相似文献   

7.
Twenty-nine genes for 27 species of tRNAs were deduced from the complete nucleotide sequence of the mitochondrial genome from a liverwort, Marchantia polymorpha. One to three species of tRNA genes corresponded to each of 20 amino acids including three species for leucine and arginine, two species for serine and glycine, and one for the rest of the amino acids. Interestingly, all tRNA genes were located in the semicircle of the liverwort mitochondrial genome except for the trnY and trnR genes. The region containing these tRNA genes was originally duplicated, and two trnR genes have diverged from each other. On the other hand, trnY and trnfM are present as two identical copies. The G:U and U:N wobbling between the first nucleotide of the anticodon and the third nucleotide of the codon permit the 27 tRNA identified species to translate almost all codons. However, at least two additional tRNA genes, trnl-GAU for AUY codon and trnT-UGU for ACR codon, are required to read all codons used in the liverwort mitochondrial genome. All of the identified tRNA genes are 'native' in liverwort mitochondria, not 'chloroplast-like' tRNAs as are found in the mitochondria of higher plants. This result implies that the tRNA gene transfer from chloroplast to mitochondrial genome in higher plants has occurred after the divergence from bryophytes.  相似文献   

8.
In all, 238 and 155 transfer (t)RNA genes were predicted from the genomes of Phytophthora sojae and P. ramorum, respectively. After omitting pseudogenes and undetermined types of tRNA genes, there remained 208 P. sojae tRNA genes and 140 P. ramorum tRNA genes. There were 45 types of tRNA genes, with distinct anticodons, in each species. Fourteen common anticodon types of tRNAs are missing altogether from the genome in the two species; however, these appear to be compensated by wobbling of other tRNA anticodons in a manner which is tied to the codon bias in Phytophthora genes. The most abundant tRNA class was arginine in both P. sojae and P. ramorum. A codon usage table was generated for these two organisms from a total of 9,803,525 codons in P. sojae and 7,496,598 codons in P. ramorum. The most abundant codon type detected from the codon usage tables was GAG (encoding glutamic acid), whereas the most numerous tRNA gene had a methionine anticodon (CAT). The correlation between the frequencies of tRNA genes and the codon frequencies in protein-coding genes was very low (0.12 in P. sojae and 0.19 in P. ramorum); however, the correlation between amino acid tRNA gene frequency and the corresponding amino acid codon frequency in P. sojae and P. ramorum was substantially higher (0.53 in P. sojae and 0.77 in P. ramorum). The codon usage frequencies of P. sojae and P ramorum were very strongly correlated (0.99), as were tRNA gene frequencies (0.77). Approximately 60% of orthologous tRNA gene pairs in P sojae and P. ramorum are located in regions that have conserved synteny in the two species.  相似文献   

9.
Missense and nonsense suppressors can correct frameshift mutations   总被引:6,自引:0,他引:6  
Missense and nonsense suppressor tRNAs, selected for their ability to read a new triplet codon, were observed to suppress one or more frameshift mutations in trpA of Escherichia coli. Two of the suppressible frameshift mutants, trpA8 and trpA46AspPR3, were cloned, sequenced, and found to be of the +1 type, resulting from the insertion of four nucleotides and one nucleotide, respectively. Twenty-two suppressor tRNAs were examined, 20 derived from one of the 3 glycine isoacceptor species, one from lysT, and one from trpT. The sequences of all but four of the mutant tRNAs are known, and two of those four were converted to suppressor tRNAs that were subsequently sequenced. Consideration of the coding specificities and anticodon sequences of the suppressor tRNAs does not suggest a unitary mechanism of frameshift suppression. Rather, the results indicate that different suppressors may shift frame according to different mechanisms. Examination of the suppression windows of the suppressible frameshift mutations indicates that some of the suppressors may work at cognate codons, either in the 0 frame or in the +1 frame, and others may act at noncognate codons (in either frame) by some as-yet-unspecified mechanism. Whatever the mechanisms, it is clear that some +1 frameshifting can occur at non-monotonous sequences. A striking example of a frameshifting missense suppressor is a mutant lysine tRNA that differs from wild-type lysine tRNA by only a single base in the amino acid acceptor stem, a C to U70 transition that results in a G.U base pair. It is suggested that when this mutant lysine tRNA reads its cognate codon, AAA, the presence of the G.U base pair sometimes leads either to a conformational change in the tRNA or to an altered interaction with some component of the translation machinery involved in translocation, resulting in a shift of reading frame. In general, the results indicate that translocation is not simply a function of anticodon loop size, that different frameshifting mechanisms may operate with different tRNAs, and that conformational features, some far removed from the anticodon region, are involved in maintaining fidelity in translocation.  相似文献   

10.
Naturally occurring tRNA mutants are known that suppress +1 frameshift mutations by means of an extended anticodon loop, and a few have been used in protein mutagenesis. In an effort to expand the number of possible ways to uniquely and efficiently encode unnatural amino acids, we have devised a general strategy to select tRNAs with the ability to suppress four-base codons from a library of tRNAs with randomized 8 or 9 nt anticodon loops. Our selectants included both known and novel suppressible four-base codons and resulted in a set of very efficient, non-cross-reactive tRNA/four-base codon pairs for AGGA, UAGA, CCCU and CUAG. The most efficient four-base codon suppressors had Watson-Crick complementary anticodons, and the sequences of the anticodon loops outside of the anticodons varied with the anticodon. Additionally, four-base codon reporter libraries were used to identify "shifty" sites at which +1 frameshifting is most favorable in the absence of suppressor tRNAs in Escherichia coli. We intend to use these tRNAs to explore the limits of unnatural polypeptide biosynthesis, both in vitro and eventually in vivo. In addition, this selection strategy is being extended to identify novel five- and six-base codon suppressors.  相似文献   

11.
The relative quantities of 26 known transfer RNAs of Escherichia coli have been measured previously (Ikemura, 1981). Based on this relative abundance, the usage of cognate codons in E. coli genes as well as in transposon and coliphage genes was examined. A strong positive correlation between tRNA content and the occurrence of respective codons was found for most E. coli genes that had been sequenced, although the correlation was less significant for transposon and phage genes. The dependence of the usage of isoaccepting tRNA, in E. coli genes encoding abundant proteins, on tRNA content was especially noticeable and was greater than that expected from the proportional relationship between the two variables, i.e. these genes selectively use codons corresponding to major tRNAs but almost completely avoid using codons of minor tRNAs. Therefore, codon choice in E. coli genes was considered to be largely constrained by tRNA availability and possibly by translational efficiency. Based on the content of isoaccepting tRNA and the nature of codon-anticodon interaction, it was then possible to predict for most amino acids the order of preference among synonymous codons. The synonymous codon predicted in this way to be the most preferred codon was thought to be optimized for the E. coli translational system and designated as the “Optimal codon”. E. coli genes encoding abundant protein species use the optimal codons selectively, and other E. coli genes, such as amino acid synthesizing genes, use optimal and “non-optimal” codons to a roughly equal degree. The finding that the frequency of usage of optimal codons is closely correlated with the production levels of individual genes was discussed from an evolutionary viewpoint.  相似文献   

12.
The strand-biased mutation spectrum in vertebrate mitochondrial genomes results in an AC-rich L-strand and a GT-rich H-strand. Because the L-strand is the sense strand of 12 protein-coding genes out of the 13, the third codon position is overall strongly AC-biased. The wobble site of the anticodon of the 22 mitochondrial tRNAs is either U or G to pair with the most abundant synonymous codon, with only one exception. The wobble site of Met-tRNA is C instead of U, forming the Watson-Crick match with AUG instead of AUA, the latter being much more frequent than the former. This has been attributed to a compromise between translation initiation and elongation; i.e., AUG is not only a methionine codon, but also an initiation codon, and an anticodon matching AUG will increase the initiation rate. However, such an anticodon would impose selection against the use of AUA codons because AUA needs to be wobble-translated. According to this translation conflict hypothesis, AUA should be used relatively less frequently compared to UUA in the UUR codon family. A comprehensive analysis of mitochondrial genomes from a variety of vertebrate species revealed a general deficiency of AUA codons relative to UUA codons. In contrast, urochordate mitochondrial genomes with two tRNA(Met) genes with CAU and UAU anticodons exhibit increased AUA codon usage. Furthermore, six bivalve mitochondrial genomes with both of their tRNA-Met genes with a CAU anticodon have reduced AUA usage relative to three other bivalve mitochondrial genomes with one of their two tRNA-Met genes having a CAU anticodon and the other having a UAU anticodon. We conclude that the translation conflict hypothesis is empirically supported, and our results highlight the fine details of selection in shaping molecular evolution.  相似文献   

13.
14.
Sequence of a new tRNA(Leu)(U*AA) from brewer's yeast.   总被引:3,自引:0,他引:3  
The nucleotide sequence of a new tRNA(Leu)(anticodon U*AA) from Saccharomyces cerevisiae which could recognize exclusively the UUA codon has been determined. Its primary structure is: pGGAGGGUUGm2GCac4CGAGDGmGDCDAAGGCm2(2)GGCAGACmUU*AAm1GA++ + psi CUGUUGGACGGUUGUCCGm5CGCGAGT psi CGm1A(orA)ACCUCGCAUCCUUCACCA. This tRNA has a large extraloop and contains 15 modified nucleotides. So far it is the third isoacceptor tRNA for leucine in yeast. It has 61% homology with tRNA(Leu)(anticodon m5CAA) and 63% homology with tRNA(Leu)(anticodon UAG), the two other known yeast tRNAs(Leu).  相似文献   

15.
Three glutamine tRNA isoacceptors are known in Tetrahymena thermophila. One of these has the anticodon UmUG which reads the two normal glutamine codons CAA and CAG, whereas the two others with CUA and UmUA anticodons recognize UAG and UAA, respectively, which serve as termination codons in other organisms. We have employed these tRNA(Gln)-isoacceptors as tools for studying unconventional base interactions in a mRNA- and tRNA-dependent wheat germ extract. We demonstrate here (i) that tRNA(Gln)UmUG suppresses the UAA as well as the UAG stop codon, involving a single G:U wobble pair at the third anticodon position and two simultaneous wobble base pairings at the first and third position, respectively, and (ii) that tRNA(Gln)CUA, in addition to its cognate codon UAG, reads the UAA stop codon which necessitates a C:A mispairing in the first anticodon position. These unorthodox base interactions take place in a codon context which favours readthrough in tobacco mosaic virus (TMV) or tobacco rattle virus (TRV) RNA, but are not observed in a context that terminates zein and globin protein synthesis. Furthermore, our data reveal that wobble or mispairing in the middle position of anticodon-codon interactions is precluded in either context. The suppressor activities of tRNAs(Gln) are compared with those of other known naturally occurring suppressor tRNAs, i.e., tRNA(Tyr)G psi A and tRNA(Trp)CmCA. Our results indicate that a 'leaky' context is neither restricted to a single stop codon nor to a distinct tRNA species.  相似文献   

16.
Aminoacylated (charged) transfer RNA isoacceptors read different messenger RNA codons for the same amino acid. The concentration of an isoacceptor and its charged fraction are principal determinants of the translation rate of its codons. A recent theoretical model predicts that amino-acid starvation results in 'selective charging' where the charging levels of some tRNA isoacceptors will be low and those of others will remain high. Here, we developed a microarray for the analysis of charged fractions of tRNAs and measured charging for all Escherichia coli tRNAs before and during leucine, threonine or arginine starvation. Before starvation, most tRNAs were fully charged. During starvation, the isoacceptors in the leucine, threonine or arginine families showed selective charging when cells were starved for their cognate amino acid, directly confirming the theoretical prediction. Codons read by isoacceptors that retain high charging can be used for efficient translation of genes that are essential during amino-acid starvation. Selective charging can explain anomalous patterns of codon usage in the genes for different families of proteins.  相似文献   

17.
18.
Over 450 transfer RNA (tRNA) genes have been annotated in the human genome. Reliable quantitation of tRNA levels in human samples using microarray methods presents a technical challenge. We have developed a microarray method to quantify tRNAs based on a fluorescent dye-labeling technique. The first-generation tRNA microarray consists of 42 probes for nuclear encoded tRNAs and 21 probes for mitochondrial encoded tRNAs. These probes cover tRNAs for all 20 amino acids and 11 isoacceptor families. Using this array, we report that the amounts of tRNA within the total cellular RNA vary widely among eight different human tissues. The brain expresses higher overall levels of nuclear encoded tRNAs than every tissue examined but one and higher levels of mitochondrial encoded tRNAs than every tissue examined. We found tissue-specific differences in the expression of individual tRNA species, and tRNAs decoding amino acids with similar chemical properties exhibited coordinated expression in distinct tissue types. Relative tRNA abundance exhibits a statistically significant correlation to the codon usage of a collection of highly expressed, tissue-specific genes in a subset of tissues or tRNA isoacceptors. Our findings demonstrate the existence of tissue-specific expression of tRNA species that strongly implicates a role for tRNA heterogeneity in regulating translation and possibly additional processes in vertebrate organisms.  相似文献   

19.
Extragenic suppressors of +1 frameshift mutations in proline codons map in genes encoding two major proline tRNA isoacceptors. We have shown previously that one isoacceptor encoded by the SUF2 gene (chromosome 3) contains no intervening sequence. SUF2 suppressor mutations result from the base insertion of a G within a 3'-GGA-5' anticodon, allowing the tRNA to read a 4-base code word. In this communication we describe suppressor mutations in genes encoding a second proline tRNA isoacceptor (wild-type anticodon 3'-GGU-5') that result in a novel mechanism for translation of a 4-base genetic code word. The genes that encode this isoacceptor include SUF7 (chromosome 13), SUF8 (chromosome 8), trn1 (chromosome 1), and at least two additional unmapped genes, all of which contain an intervening sequence. We show that suppressor mutations in the SUF7 and SUF8 genes result in G-to-U base substitutions at position 39 that disrupted the normal G . C base pairing in the last base pair of the anticodon stem adjacent to the anticodon loop. These anticodon stem mutations might alter the size of the anticodon loop and permit the use of a 3'-GGGU-5' sequence within the loop to read 4-base proline codons. Uncertainty regarding the exact structure of the mature suppressor tRNAs results from the possibility that anticodon stem mutations might affect sites of intervening sequence removal. The possible role of the intervening sequence in the generation of mature suppressor tRNA is discussed. Besides an analysis of suppressor tRNA genes, we have extended previous observations of the apparent relationship between tRNA genes and repetitive delta sequences found as solo elements or in association with the transposable element TY1. Hybridization studies and a computer analysis of the DNA sequence surrounding the SUF7 gene revealed two incomplete, inverted delta sequences that form a stem and loop structure located 165 base pairs from the 5' end of the tRNA gene. In addition, sequences beginning 164 base pairs from the 5' end of the trn1 gene also exhibit partial homology to delta. These observations provide further evidence for a nonrandom association between tRNA genes and delta sequences.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号