首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GABA stimulation of hypothalamic GABAA receptors increases food intake and body weight. Huntingtin-associated protein-1 (Hap1), is highly expressed in the hypothalamus and increases activity at GABAA receptors; mice lacking Hap1 are hypophagic. A recent paper (Sheng et al.,2006) further explores the role of Hap1 in the control of food intake.  相似文献   

2.
Estradiol is a potent hypophagic agent that reduces food intake and body weight without a concomitant fall in plasma leptin levels. We investigated whether the hypophagic effect of estradiol is mediated by stimulating POMC and/or inhibiting NPY neuronal pathways in the hypothalamus, which respectively inhibit and stimulate feeding. We examined hypothalamic gene expression of Ob-Rb, NPY, POMC, MC4-R, and AgRP in intact Wistar rats treated with estradiol for 48 hours. Food intake and body weight were reduced in estradiol-treated rats but fat mass was unchanged; plasma leptin and insulin levels were not significantly different from untreated, freely fed controls. In untreated rats that were pair-fed to match the estradiol-treated group, body weight was also reduced without changes in fat mass, although leptin and insulin levels decreased significantly. Ob-Rb expression was increased in both hypophagic groups despite serum leptin were only decreased in pair-fed animals, suggesting an estradiol-stimulating effect on Ob-Rb expression. No significant differences were found in POMC, AgRP, or MC4-R expression among any of the experimental groups. A significant but small decrease in NPY expression was also found in both hypophagic groups; this was explained by the combined effect of both surgery and reduced food intake. These results indicate that estradiol mediated hypophagia in intact rats could be brought about by an enhanced hypothalamic leptin sensitivity but is unlikely to be driven by changes in NPY or melanocortin system.  相似文献   

3.
Hypothalamic inflammation has been known as a contributor to high-fat diet (HFD)-induced insulin resistance and obesity. Myeloid-specific sirtuin 1 (SIRT1) deletion aggravates insulin resistance and hypothalamic inflammation in HFD-fed mice. Neurogranin, a calmodulin-binding protein, is expressed in the hypothalamus. However, the effects of myeloid SIRT1 deletion on hypothalamic neurogranin has not been fully clarified. To investigate the effect of myeloid SIRT1 deletion on food intake and hypothalamic neurogranin expression, mice were fed a HFD for 20 weeks. Myeloid SIRT1 knockout (KO) mice exhibited higher food intake, weight gain, and lower expression of anorexigenic proopiomelanocortin in the arcuate nucleus than WT mice. In particular, KO mice had lower ventromedial hypothalamus (VMH)-specific neurogranin expression. However, SIRT1 deletion reduced HFD-induced hypothalamic neurogranin. Furthermore, hypothalamic phosphorylated AMPK and parvalbumin protein levels were also lower in HFD-fed KO mice than in HFD-fed WT mice. Thus, these findings suggest that myeloid SIRT1 deletion affects food intake through VMH-specific neurogranin-mediated AMPK signaling and hypothalamic inflammation in mice fed a HFD.  相似文献   

4.
Menopause is one of the triggers that induce obesity. Estradiol (E2), corticotropin-releasing hormone (CRH), and hypothalamic neuronal histamine are anorexigenic substances within the hypothalamus. This study examined the interactions among E2, CRH, and histamine during the regulation of feeding behavior and obesity in rodents. Food intake was measured in rats after the treatment of E2, α-fluoromethyl histidine, a specific suicide inhibitor of histidine decarboxylase that depletes hypothalamic neuronal histamine, or CRH antagonist. We measured food intake and body weight in wild-type mice or mice with targeted disruption of the histamine receptors (H1-R) knockout (H1KO mice). Furthermore, we investigated CRH content and histamine turnover in the hypothalamus after the E2 treatment or ovariectomy (OVX). We used immunohistochemical staining for estrogen receptors (ERs) in the histamine neurons. The E2-induced suppression of feeding was partially attenuated in rats pre-treated with α-fluoromethyl histidine or CRH antagonist and in H1KO mice. E2 treatment increased CRH content and histamine turnover in the hypothalamus. OVX increased food intake and body weight, and decreased CRH content and histamine turnover in the hypothalamus. In addition, E2 replacement reversed the OVX-induced changes in food intake and body weight in wild-type mice but not in H1KO mice. Immunohistochemical analysis revealed ERs were expressed on histamine neurons and western blotting analysis and pre-absorption study confirmed the specificity of ER antiserum we used. These results indicate that CRH and hypothalamic neuronal histamine mediate the suppressive effects of E2 on feeding behavior and body weight.  相似文献   

5.
6.
Recent studies show that brain-derived neurotrophic factor (BDNF) decreases feeding and body weight after peripheral and ventricular administration. BDNF mRNA and protein, and its receptor tyrosine kinase B (TrkB) are widely distributed in the hypothalamus and other brain regions. However, there are few reports on specific brain sites of actions for BDNF. We evaluated the effect of BDNF in the hypothalamic paraventricular nucleus (PVN) on feeding. BDNF injected unilaterally or bilaterally into the PVN of food-deprived and nondeprived rats significantly decreased feeding and body weight gain within the 0- to 24-h and 24- to 48-h postinjection intervals. Effective doses producing inhibition of feeding behavior did not establish a conditioned taste aversion. PVN BDNF significantly decreased PVN neuropeptide Y (NPY)-induced feeding at 1, 2, and 4 h following injection. BDNF administration in the PVN abolished food-restriction-induced NPY gene expression in the hypothalamic arcuate nucleus. In conclusion, BDNF in the PVN significantly decreases food intake and body weight gain, suggesting that the PVN is an important site of action for BDNF in its effects on energy metabolism. Furthermore, BDNF appears to interact with NPY in its anorectic actions, although a direct effect on NPY remains to be established.  相似文献   

7.
8.
The cellular level of malonyl-CoA, an intermediate in fatty acid biosynthesis, depends on its rate of synthesis catalyzed by acetyl-CoA carboxylase relative to its rate of utilization and degradation catalyzed by fatty acid synthase and malonyl-CoA decarboxylase, respectively. Recent evidence suggests that hypothalamic malonyl-CoA functions in the regulation of feeding behavior by altering the expression of key orexigenic and anorexigenic neuropeptides. Here we report that 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), a 5'-AMP kinase activator, rapidly lowers malonyl-CoA both in GT1-7 hypothalamic neurons and in the hypothalami of mice. These effects correlate closely with the phosphorylation of acetyl-CoA carboxylase, an established target of AMP kinase. Intracerebroventricular (i.c.v.) administration of AICAR rapidly lowers hypothalamic [malonyl-CoA] and increases food intake. Expression of an adenoviral cytosolic malonyl-CoA decarboxylase vector (Ad-cMCD) in hypothalamic GT1-7 cells decreases malonyl-CoA. When delivered by bilateral stereotaxic injection into the ventral hypothalamus (encompassing the arcuate nucleus) of mice, Ad-cMCD increases food intake and body weight. Ad-MCD delivered into the ventral hypothalamus also reverses the rapid suppression of food intake caused by i.c.v.-administered C75, a fatty acid synthase inhibitor that increases hypothalamic [malonyl-CoA]. Taken together these findings implicate malonyl-CoA in the hypothalamic regulation of feeding behavior.  相似文献   

9.
Dietary obesity compromises brain function, but the effects of high-fat food on synaptic transmission in hypothalamic networks, as well as their potential reversibility, are yet to be fully characterized. We investigated the impact of high-fat feeding on a hallmark of synaptic plasticity, i.e., the expression of glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) that contain the subunits GluA1 and GluA2, in hypothalamic and cortical synaptoneurosomes of male rats. In the main experiment (experiment 1), three days, but not one day of high-fat diet (HFD) decreased the levels of AMPAR GluA1 and GluA2 subunits, as well as GluA1 phosphorylation at Ser845, in hypothalamus but not cortex. In experiment 2, we compared the effects of the three-day HFD with those a three-day HFD followed by four recovery days of normal chow. This experiment corroborated the suppressive effect of high-fat feeding on hypothalamic but not cortical AMPAR GluA1, GluA2, and GluA1 phosphorylation at Ser845, and indicated that the effects are reversed by normal-chow feeding. High-fat feeding generally increased energy intake, body weight, and serum concentrations of insulin, leptin, free fatty acids, and corticosterone; only the three-day HFD increased wakefulness assessed via video analysis. Results indicate a reversible down-regulation of hypothalamic glutamatergic synaptic strength in response to short-term high-fat feeding. Preceding the manifestation of obesity, this rapid change in glutamatergic neurotransmission may underlie counter-regulatory efforts to prevent excess body weight gain, and therefore, represent a new target of interventions to improve metabolic control.  相似文献   

10.
Leptin is well acknowledged as an anorexigenic hormone that plays an important role in feeding control. Hypothalamic GABA system plays a significant role in leptin regulation on feeding and metabolism control. However, the pharmacological relationship of leptin and GABA receptor is still obscure. Therefore, we investigated the effect of leptin or combined with baclofen on the food intake in fasted mice. We detected the changes in hypothalamic c‐Fos expression, hypothalamic TH, POMC and GAD67 expression, plasma insulin, POMC and GABA levels to demonstrate the mechanisms. We found that leptin inhibit fasting‐induced increased food intake and activated hypothalamic neurons. The inhibitory effect on food intake induced by leptin in fasted mice can be reversed by pretreatment with baclofen. Baclofen reversed leptin's inhibition on c‐Fos expression of PAMM in fasted mice. Therefore, these results indicate that leptin might inhibit fasting‐triggered activation of PVN neurons via presynaptic GABA synaptic functions which might be partially blocked by pharmacological activating GABA‐B. Our findings identify the role of leptin in the regulation of food intake.  相似文献   

11.
Yue JT  Lam TK 《Cell metabolism》2012,15(5):646-655
Lipid sensing and insulin signaling in the brain independently triggers a negative feedback system to lower glucose production and food intake. Here, we discuss the underlying molecular and neuronal mechanisms of lipid sensing and insulin signaling in the hypothalamus and how these mechanisms are affected in response to high-fat feeding. We propose that high-fat feeding concurrently disrupts hypothalamic insulin-signaling and lipid-sensing mechanisms and that experiments aimed to restore both insulin action and lipid sensing in the brain could effectively lower glucose production and food intake to restore metabolic homeostasis in type 2 diabetes and obesity.  相似文献   

12.
Niu SN  Huang ZB  Wang H  Rao XR  Kong H  Xu J  Li XJ  Yang C  Sheng GQ 《FEBS letters》2011,(1):85-91
The function of the brainstem Hap1–Ahi1 complex in the regulation of feeding behavior was investigated. When mice were fasted or treated with 2-deoxy-d-glucose (2-DG), Hap1–Ahi1 was significantly upregulated. By using streptozotocin (STZ) to decrease the circulating insulin in mice, Hap1–Ahi1 was significantly increased. Furthermore, intra-brain injection of insulin decreased the expression of Hap1–Ahi1 in the brainstem. Moreover, when we knocked down the expression of brainstem Hap1 by RNAi, the mice showed decreased food intake and lower body weights. Collectively, our results indicate that the Hap1–Ahi1 complex in the brainstem works as a sensor for insulin signals in feeding control.

Structured summary

Ahi1physically interacts with Hap1: shown by anti bait coimmunoprecipitation (view interactions 1, 2)  相似文献   

13.
Obesity and insulin resistance are major risk factors for a number of metabolic disorders, such as type 2 diabetes mellitus. Insulin has been suggested to function as one of the adiposity signals to the brain for modulation of energy balance. Administration of insulin into the brain reduces food intake and body weight, and mice with a genetic deletion of neuronal insulin receptors are hyperphagic and obese. However, insulin is also an anabolic factor; when administered systemically, pharmacological levels of insulin are associated with body weight gain in patients. In this study, we investigated the efficacy and feasibility of small molecule insulin mimetic compounds to regulate key parameters of energy homeostasis. Central intracerebroventricular (i.c.v.) administration of an insulin mimetic resulted in a dose-dependent reduction of food intake and body weight in rats, and altered the expression of hypothalamic genes known to regulate food intake and body weight. Oral administration of a mimetic in a mouse model of high-fat diet-induced obesity reduced body weight gain, adiposity and insulin resistance. Thus, insulin mimetics have a unique advantage over insulin in the control of body weight and hold potential as a novel anti-obesity treatment.  相似文献   

14.
The hypothalamus is the most important region in the control of food intake and body weight. The ventromedial "satiety center" and lateral hypothalamic "feeding center" have been implicated in the regulation of feeding and energy homeostasis by various studies of brain lesions. The discovery of orexin peptides, whose neurons are localized in the lateral hypothalamus and adjacent areas, has given us new insight into the regulation of feeding. Dense fiber projections are found throughout the brain, especially in the raphe nucleus, locus coeruleus, paraventricular thalamic nucleus, arcuate nucleus, and central gray. Orexins mainly stimulate food intake, but by the virtue of wide immunoreactive projections throughout the brain and spinal cord, orexins interact with various neuronal pathways to potentiate divergent functions. In this review, we summarize recent progress in the physiological, neuroanatomical, and molecular studies of the novel neuropeptide orexins (hypocretins).  相似文献   

15.
Glucagon-like peptide-1 (GLP-1) stimulates insulin secretion and suppresses food intake. Recent studies indicate that the hepatic vagal afferent nerve is involved in this response. Dipeptidyl peptidase-IV (DPP-IV) inhibitor extends the half-life of endogenous GLP-1 by preventing its degradation. This study aimed to determine whether DPP-IV inhibitor-induced elevation of portal GLP-1 levels affect insulin secretion and feeding behavior via the vagal afferent nerve and hypothalamus. The effect of DPP-IV inhibitor infusion into the portal vein or peritoneum on portal and peripheral GLP-1 levels, food intake, and plasma insulin and glucose was examined in sham-operated and vagotomized male Sprague-Dawley rats. Analyses of neuronal histamine turnover and immunohistochemistry were used to identify the CNS pathway that mediated the response. Intraportal administration of the DPP-IV inhibitor significantly increased portal (but not peripheral) GLP-1 levels, increased insulin levels, and decreased glucose levels. The DPP-IV inhibitor suppressed 1- and 12- but not 24-h cumulative food intake. Intraportal infusion of the DPP-IV inhibitor increased hypothalamic neuronal histamine turnover and increased c-fos expression in several areas of the brain. These responses were blocked by vagotomy. Our results indicate that DPP-IV inhibitor-induced changes in portal but not systemic GLP-1 levels affect insulin secretion and food intake. Furthermore, our findings suggest that a neuronal pathway that includes the hepatic vagal afferent nerve and hypothalamic neuronal histamine plays an important role in the pharmacological actions of DPP-IV inhibitor.  相似文献   

16.
Self-administration of ethanol and food share many common features and Richter hypothesized that an increase in ethanol consumption would decrease feeding to balance the excess calories contained in the ethanol. Previously, we have shown that individual alcohol consumption correlates with neurotransmitter gene expression, especially in the prefrontal cortex. To test the hypothesis of Richter, we measured hypothalamic gene expression of receptors or neuropeptides of known relevance for the regulation of food intake using qPCR and correlated this to individual ethanol consumption in Wistar rats. For validation, gene expression was first correlated with body weight. We found a correlation of dynorphin, somatostatin, melanocortin-4 receptor and serotonin 5-HT2C with body weight and trends to correlation for CART, thus confirming the established role of the hypothalamus in the regulation of weight. For ethanol consumption, correlations were found for CRH receptors 1 and 2 and vasopressin while strong trends were observed for galanin receptor 1, orexin receptor 1, MCH and adrenoceptor 1B. Therefore, alcohol consumption does seem to involve several hypothalamic systems which also mediate feeding responses and suggests that the hypothalamus, together with the prefrontal cortex, may determine the ‘stopping point’ of an individual.  相似文献   

17.
Leptin and ghrelin are known to be main hormones involved in the control of food intake, with opposing effects. Here we have explored whether changes in the leptin and ghrelin system are involved in the long-term effects of high-fat (HF) diet feeding in rats and whether sex-associated differences exist. Male and female Wistar rats were fed until the age of 6 months with a normal-fat (NF) or an HF-diet. Food intake and body weight were followed. Gastric and serum levels of leptin and ghrelin, and mRNA levels of leptin (in stomach and adipose tissue), ghrelin (in stomach), and NPY, POMC, and leptin and ghrelin receptors (OB-Rb and GHS-R) (in the hypothalamus) were measured. In both males and females, total caloric intake and body weight were greater under the HF-diet feeding. In females, circulating ghrelin levels and leptin mRNA expression in the stomach were higher under HF-diet. HF-diet feeding also resulted in higher hypothalamic NPY/POMC mRNA levels, more marked in females, and in lower OB-Rb mRNA levels, more marked in males. In addition, in females, serum ghrelin levels correlated positively with hypothalamic NPY mRNA levels, and these with caloric intake. In males, hypothalamic OB-Rb mRNA levels correlated positively with POMC mRNA levels and these correlated negatively with caloric intake and with body weight. These data reflect differences between sexes in the effects of HF-diet feeding on food intake control systems, suggesting an impairment of the anorexigenic leptin-POMC system in males and an over-stimulation of the orexigenic ghrelin-NPY system in females.  相似文献   

18.
Corticotropin-releasing factor overexpressing (CRF-OE) male mice showed an inhibited feeding response to a fast, and lower plasma acyl ghrelin and Fos expression in the arcuate nucleus compared to wild-type (WT) mice. We investigated whether hormones and hypothalamic feeding signals are impaired in CRF-OE mice and the influence of sex. Male and female CRF-OE mice and WT littermates (4–6 months old) fed ad libitum or overnight fasted were assessed for body, adrenal glands and perigonadal fat weights, food intake, plasma hormones, blood glucose, and mRNA hypothalamic signals. Under fed conditions, compared to WT, CRF-OE mice have increased adrenal glands and perigonadal fat weight, plasma corticosterone, leptin and insulin, and hypothalamic leptin receptor and decreased plasma acyl ghrelin. Compared to male, female WT mice have lower body and perigonadal fat and plasma leptin but higher adrenal glands weights. CRF-OE mice lost these sex differences except for the adrenals. Male CRF-OE and WT mice did not differ in hypothalamic expression of neuropeptide Y (NPY) and proopiomelanocortin (POMC), while female CRF-OE compared to female WT and male CRF-OE had higher NPY mRNA levels. After fasting, female WT mice lost more body weight and ate more food than male WT, while CRF-OE mice had reduced body weight loss and inhibited food intake without sex difference. In male WT mice, fasting reduced plasma insulin and leptin and increased acyl ghrelin and corticosterone while female WT showed only a rise in corticosterone. In CRF-OE mice, fasting reduced insulin while leptin, acyl ghrelin and corticosterone were unchanged with no sex difference. Fasting blood glucose was higher in CRF-OE with female > male. In WT mice, fasting increased hypothalamic NPY expression in both sexes and decreased POMC only in males, while in CRF-OE mice, NPY did not change, and POMC decreased in males and increased in females. These data indicate that CRF-OE mice have abnormal basal and fasting circulating hormones and hypothalamic feeding-related signals. CRF-OE also abolishes the sex difference in body weight, abdominal fat, and fasting-induced feeding and changes in plasma levels of leptin and acyl ghrelin.  相似文献   

19.
Taurine is known to modulate a number of metabolic parameters such as insulin secretion and action and blood cholesterol levels. Recent data have suggested that taurine can also reduce body adiposity in C. elegans and in rodents. Since body adiposity is mostly regulated by insulin-responsive hypothalamic neurons involved in the control of feeding and thermogenesis, we hypothesized that some of the activity of taurine in the control of body fat would be exerted through a direct action in the hypothalamus. Here, we show that the intracerebroventricular injection of an acute dose of taurine reduces food intake and locomotor activity, and activates signal transduction through the Akt/FOXO1, JAK2/STAT3 and mTOR/AMPK/ACC signaling pathways. These effects are accompanied by the modulation of expression of NPY. In addition, taurine can enhance the anorexigenic action of insulin. Thus, the aminoacid, taurine, exerts a potent anorexigenic action in the hypothalamus and enhances the effect of insulin on the control of food intake.  相似文献   

20.
Running wheel access and resulting voluntary exercise alter food intake and reduce body weight. The neural mechanisms underlying these effects are unclear. In this study, we first assessed the effects of 7 days of running wheel access on food intake, body weight, and hypothalamic gene expression. We demonstrate that running wheel access significantly decreases food intake and body weight and results in a significant elevation of CRF mRNA expression in the dorsomedial hypothalamus (DMH) but not the paraventricular nucleus. Seven-day running wheel access also results in elevated arcuate nucleus and DMH neuropeptide Y gene expression. To assess a potential role for elevated DMH CRF activity in the activity-induced changes in food intake and body weight, we compared changes in food intake, body weight, and hypothalamic gene expression in rats receiving intracerebroventricular (ICV) CRF antagonist alpha-helical CRF or vehicle with or without access to running wheels. During a 4-day period of running wheel access, we found that exercise-induced reductions of food intake and body weight were significantly attenuated by ICV injection of the CRF antagonist. The effect on food intake was specific to a blockade of activity-induced changes in meal size. Central CRF antagonist injection further increased DMH CRF mRNA expression in exercised rats. Together, these data suggest that DMH CRF play a critical role in the anorexia resulting from increased voluntary exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号