首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The random amplified polymorphic DNA (RAPD) assay and related techniques like the arbitrarily primed polymerase chain reaction (AP-PCR) have been shown to detect genotoxin-induced DNA damage and mutations. The changes occurring in RAPD profiles following genotoxic treatments include variation in band intensity as well as gain or loss of bands. However, the interpretation of the molecular events responsible for differences in the RAPD patterns is not an easy task since different DNA alterations can induce similar type of changes. In this study, we evaluated the effects of a number of DNA alterations on the RAPD profiles. Genomic DNA from different species was digested with restriction enzymes, ultrasonicated, treated with benzo[a]pyrene (B[a]P) diol epoxide (BPDE) and the resulting RAPD profiles were evaluated. In comparison to the enzymatic DNA digestions, sonication caused greater changes in the RAPD patterns and induced a dose-related disappearance of the high molecular weight amplicons. A DNA sample substantially modified with BPDE caused very similar changes but amplicons of low molecular weight were also affected. Appearance of new bands and increase in band intensity were also evident in the RAPD profiles generated by the BPDE-modified DNA. Random mutations occurring in mismatch repair-deficient strains did not cause any changes in the banding patterns whereas a single base change in 10-mer primers produced substantial differences. Finally, further research is required to better understand the potential and limitations of the RAPD assay for the detection of DNA damage and mutations.  相似文献   

2.
The random amplified polymorphic DNA (RAPD) assay and related techniques like the arbitrarily primed polymerase chain reaction (AP-PCR) have been shown to detect genotoxin-induced DNA damage and mutations. The changes occurring in RAPD profiles following genotoxic treatments include variation in band intensity as well as gain or loss of bands. However, the interpretation of the molecular events responsible for differences in the RAPD patterns is not an easy task since different DNA alterations can induce similar type of changes. In this study, we evaluated the effects of a number of DNA alterations on the RAPD profiles. Genomic DNA from different species was digested with restriction enzymes, ultrasonicated, treated with benzo[a]pyrene (B[a]P) diol epoxide (BPDE) and the resulting RAPD profiles were evaluated. In comparison to the enzymatic DNA digestions, sonication caused greater changes in the RAPD patterns and induced a dose-related disappearance of the high molecular weight amplicons. A DNA sample substantially modified with BPDE caused very similar changes but amplicons of low molecular weight were also affected. Appearance of new bands and increase in band intensity were also evident in the RAPD profiles generated by the BPDE-modified DNA. Random mutations occurring in mismatch repair-deficient strains did not cause any changes in the banding patterns whereas a single base change in 10-mer primers produced substantial differences. Finally, further research is required to better understand the potential and limitations of the RAPD assay for the detection of DNA damage and mutations.  相似文献   

3.
The aim of this study was to evaluate the potential of the random amplified polymorphic DNA (RAPD) assay to qualitatively detect the kinetics of benzo[a]pyrene (B[Ma]P)-induced DNA effects in the water flea Daphnia magna exposed to 25 and 50 µg l-1 B[a]P for 7 and 6 days, respectively. Mortality was recorded on a daily basis in both experiments, and RAPD analysis was performed on samples collected every day following isolation of genomic DNA. The main changes occurring in RAPD profiles produced by the population of Daphnia magna exposed to 25 and 50µg l-1 B[a]P was a decrease and increase in band intensity, respectively. Most of the changes occurring in the RAPD patterns were likely to be the result of B[a]P-induced DNA damage (B[a]P DNA adducts, oxidized bases, DNA breakages) and/or mutations (point mutations and large rearrangements). In addition, reproducible changes also occurred in the profiles generated by control Daphnia magna. The results lead us to suggest that, in addition to B[a]P-induced DNA damage and mutations, factors such as variation in gene expression, steady levels of genetic alterations and changes in metabolic processes could induce some changes in RAPD patterns. Nevertheless, our data suggest that DNA damage and mutations appear to be the main factors influencing RAPD patterns. This study also emphasizes that unexpected variation in control profiles is not always associated with artefacts.  相似文献   

4.
The purpose of these guidelines is to provide concise guidance on the planning, performing and interpretation of studies to monitor groups or individuals exposed to genotoxic agents. Most human carcinogens are genotoxic but not all genotoxic agents have been shown to be carcinogenic in humans. Although the main interest in these studies is due to the association of genotoxicity with carcinogenicity, there is also an inherent interest in monitoring human genotoxicity independently of cancer as an endpoint.The most often studied genotoxicity endpoints have been selected for inclusion in this document and they are structural and numerical chromosomal aberrations assessed using cytogenetic methods (classical chromosomal aberration analysis (CA), fluorescence in situ hybridisation (FISH), micronuclei (MN)); DNA damage (adducts, strand breaks, crosslinking, alkali-labile sites) assessed using bio-chemical/electrophoretic assays or sister chromatid exchanges (SCE); protein adducts; and hypoxanthine-guanine phosphoribosyltransferase (HPRT) mutations. The document does not consider germ cells or gene mutation assays other than HPRT or markers of oxidative stress, which have been applied on a more limited scale.  相似文献   

5.
The aim of this study was to evaluate the potential of the random amplified polymorphic DNA (RAPD) assay to qualitatively detect the kinetics of benzo[a]pyrene (B[Ma]P)-induced DNA effects in the water flea Daphnia magna exposed to 25 and 50 μg l-1 B[a]P for 7 and 6 days, respectively. Mortality was recorded on a daily basis in both experiments, and RAPD analysis was performed on samples collected every day following isolation of genomic DNA. The main changes occurring in RAPD profiles produced by the population of Daphnia magna exposed to 25 and 50μg l-1 B[a]P was a decrease and increase in band intensity, respectively. Most of the changes occurring in the RAPD patterns were likely to be the result of B[a]P-induced DNA damage (B[a]P DNA adducts, oxidized bases, DNA breakages) and/or mutations (point mutations and large rearrangements). In addition, reproducible changes also occurred in the profiles generated by control Daphnia magna. The results lead us to suggest that, in addition to B[a]P-induced DNA damage and mutations, factors such as variation in gene expression, steady levels of genetic alterations and changes in metabolic processes could induce some changes in RAPD patterns. Nevertheless, our data suggest that DNA damage and mutations appear to be the main factors influencing RAPD patterns. This study also emphasizes that unexpected variation in control profiles is not always associated with artefacts.  相似文献   

6.
Recently methods based on analysis of arbitrarily amplified target sites of microorganism genomes have been extensively applied in microbiological studies. The range of their applications is limited by problems with discrimination and reproducibility resulting from lack of standardised and reliable methods of optimisation. By orthogonal-array optimisation most advantageous and optimal parameters for highly discriminatory primers (CagA2+CMVin2) were selected and efficient AP-PCR (arbitrarily primed-polymerase chain reaction) fingerprinting conditions for Pseudomonas aeruginosa isolates were set up. Stable and multiplex amplicon profiles obtained in this study revealed high level of intraspecies DNA polymorphism among 20 analysed clinical strains of P. aeruginosa proving optimised AP-PCR fingerprinting to be useful in epidemiological typing of the species.  相似文献   

7.
8.
This survey is a compendium of genotoxicity and carcinogenicity information of antihypertensive drugs. Data from 164 marketed drugs were collected. Of the 164 drugs, 65 (39.6%) had no retrievable genotoxicity or carcinogenicity data; this group was comprised largely of drugs marketed in a limited number of countries. The remaining 99 (60.4%) had at least one genotoxicity or carcinogenicity test result. Of these 99, 48 (48.5%) had at least one positive finding: 32 tested positive in at least one genotoxicity assay, 26 in at least one carcinogenicity assay, and 10 gave a positive result in both at least one genotoxicity assay and at least one carcinogenicity assay. In terms of correlation between results of the various genotoxicity assays and absence of carcinogenic activity in both mice and rats 2 of 44 non-carcinogenic drugs tested positive in the in vitro bacterial mutagenesis assay, 2 of 9 tested positive in the mouse lymphoma assay, none of 14 tested positive for gene mutation at the hprt locus, 5 of 25 tested positive in in vitro cytogenetic assays, none of 31 in in vivo cytogenetic assays, and none of 14 in inducing DNA damage and/or repair in in vitro and/or in vivo assays. Concerning the predictivity of genetic toxicology findings for long-term carcinogenesis assays, 75 drugs had both genotoxicity and carcinogenicity data; of these 37 (49.3%) were neither genotoxic nor carcinogenic, 14 (18.7%) were non-carcinogens which tested positive in at least one genotoxicity assay, 14 (18.7%) were carcinogenic in at least one sex of mice or rats but tested negative in genotoxicity assays, and 10 (13.3%) were both genotoxic and carcinogenic. Only 42 of the 164 marketed antihypertensives (25.6%) had all data required by the guidelines for testing of pharmaceuticals.  相似文献   

9.
Environmental tobacco smoke (ETS), or second-hand smoke, is a widespread contaminant of indoor air in environments where smoking is not prohibited. It is a significant source of exposure to a large number of substances known to be hazardous to human health. Numerous expert panels have concluded that there is sufficient evidence to classify involuntary smoking (or passive smoking) as carcinogenic to humans. According to the recent evaluation by the International Agency for Research on Cancer, involuntary smoking causes lung cancer in never-smokers with an excess risk in the order of 20% for women and 30% for men. The present paper reviews studies on genotoxicity and related endpoints carried out on ETS since the mid-1980s. The evidence from in vitro studies demonstrates induction of DNA strand breaks, formation of DNA adducts, mutagenicity in bacterial assays and cytogenetic effects. In vivo experiments in rodents have shown that exposure to tobacco smoke, whole-body exposure to mainstream smoke (MS), sidestream smoke (SS), or their mixture, causes DNA single strand breaks, aromatic adducts and oxidative damage to DNA, chromosome aberrations and micronuclei. Genotoxicity of transplacental exposure to ETS has also been reported. Review of human biomarker studies conducted among non-smokers with involuntary exposure to tobacco smoke indicates presence of DNA adducts, urinary metabolites of carcinogens, urinary mutagenicity, SCEs and hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene mutations (in newborns exposed through involuntary smoking of the mother). Studies on human lung cancer from smokers and never-smokers involuntarily exposed to tobacco smoke suggest occurrence of similar kinds of genetic alterations in both groups. In conclusion, these overwhelming data are compatible with the current knowledge on the mechanisms of carcinogenesis of tobacco-related cancers, occurring not only in smokers but with a high biological plausibility also in involuntary smokers.  相似文献   

10.
Styrene (CAS No. 100-42-5) is an important industrial chemical for which positive results have been reported in in vitro and in vivo genotoxicity assays. Styrene-exposed workers have been studied extensively over two decades for the induction of various types of genotoxic effects. The outcomes of these studies have been conflicting, and where positive responses have been reported, it has proved difficult to demonstrate clear relationships between levels of damage reported and exposure levels. In this review, we have assessed studies addressing mutagenicity (chromosome aberrations, micronuclei and gene mutations) and other endpoints (sister chromatid exchanges, DNA breaks and DNA adducts) using criteria derived from the IPCS guidelines for the conduct of human biomonitoring studies. Based on the re-evaluated outcomes, the data are not convincing that styrene induces gene mutations. The evidence for induction of clastogenicity in occupationally exposed workers is less clear, with a predominant lack of induction of micronuclei in different studies, but conflicting responses in chromosome aberration assays. The results of numerous studies on sister chromatid exchanges do not provide evidence of a clear positive response, despite these being induced in animals exposed to styrene at high concentrations. However, there is evidence that both DNA adducts and DNA single strand breaks are induced in styrene workers. These types of damage are considered indicative of exposure of the target cells and interaction with cellular DNA but do not necessarily result in heritable changes. There is evidence that the metabolism of styrene in humans is affected by genetic polymorphisms of metabolizing genes and that these polymorphisms affect the outcome of in vitro mutagenicity studies on styrene. Therefore, studies that have addressed the potential of this factor to affect in vivo responses were considered. To date, there are no consistent relationships between genetic polymorphisms and induction of genotoxicity by styrene in humans, but further work is warranted on larger samples. The analyses of individual studies, together with a consideration of dose-response relationships and the lack of a common profile of positive responses for the various endpoints in different studies, provide no clear evidence that styrene exposure in workers results in detectable levels of mutagenic damage. However, evidence of exposure to genotoxic metabolites is demonstrated by the formation of DNA adducts and strand breaks.  相似文献   

11.

Due to their large-scale manufacture and widespread application, there have been a number of studies related to toxicological assessment of nanomaterials (NMs) over the past decade. Although there has been extensive research on the cytotoxicity of NMs, concerns have been raised about their possible genotoxicity. The genome is constantly exposed to genotoxic insults that can lead to DNA damage, which in turn can have consequences for health, such as the induction of carcinogenesis. This comprehensive review focuses on the direct and indirect interactions of NMs with DNA. Factors influencing the genotoxicity of NMs, such as their physicochemical characteristics, are also discussed. The mechanisms involved in the direct and indirect interactions of NMs with DNA are also reviewed. Many studies have shown that ENMs have genotoxic effects, such as chromosomal fragmentation, DNA strand breaks, point mutations, oxidative DNA adducts, apoptosis, hypoxic responses, mitochondrial dysfunction, and epigenetic modifications. As the data reported to date are inconsistent, it is difficult to draw definitive conclusions regarding the features of NMs that promote genotoxicity. Therefore, challenges and future research perspectives are discussed. This review provides insights into the genotoxic effects of NMs and their consequences for human health.

  相似文献   

12.
Wang J  Yu S  Jiao S  Lv X  Ma M  Zhu BZ  Du Y 《Mutation research》2012,729(1-2):16-23
Tetrachlorohydroquinone (TCHQ) is a major toxic metabolite of the widely used wood preservative, pentachlorophenol (PCP), and it has also been implicated in PCP genotoxicity. However, the underlying mechanisms of genotoxicity and mutagenesis induced by TCHQ remain unclear. In this study, we examined the genotoxicity of TCHQ by using comet assays to detect DNA breakage and formation of TCHQ-DNA adducts. Then, we further verified the levels of mutagenesis by using the pSP189 shuttle vector in A549 human lung carcinoma cells. We demonstrated that TCHQ causes significant genotoxicity by inducing DNA breakage and forming DNA adducts. Additionally, DNA sequence analysis of the TCHQ-induced mutations revealed that 85.36% were single base substitutions, 9.76% were single base insertions, and 4.88% were large fragment deletions. More than 80% of the base substitutions occurred at G:C base pairs, and the mutations were G:C to C:G, G:C to T:A or G:C to A:T transversions and transitions. The most common types of mutations in A549 cells were G:C to A:T (37.14%) and A:T to C:G transitions (14.29%) and G:C to C:G (34.29%) and G:C to T:A (11.43%) transversions. We identified hotspots at nucleotides 129, 141, and 155 in the supF gene of plasmid pSP189. These mutation hotspots accounted for 63% of all single base substitutions. We conclude that TCHQ induces sequence-specific DNA mutations at high frequencies. Therefore, the safety of using this product would be carefully examined.  相似文献   

13.
Potassium bromate (KBrO(3)) is strongly carcinogenic in rodents and mutagenic in bacteria and mammalian cells in vitro. The proposed genotoxic mechanism for KBrO(3) is oxidative DNA damage. KBrO(3) can generate high yields of 8-hydroxydeoxyguanosine (8OHdG) DNA adducts, which cause GC>TA transversions in cell-free systems. In this study, we investigated the in vitro genotoxicity of KBrO(3) in human lymphoblastoid TK6 cells using the comet (COM) assay, the micronucleus (MN) test, and the thymidine kinase (TK) gene mutation assay. After a 4h treatment, the alkaline and neutral COM assay demonstrated that KBrO(3) directly yielded DNA damages including DNA double strand breaks (DSBs). KBrO(3) also induced MN and TK mutations concentration-dependently. At the highest concentration (5mM), KBrO(3) induced MN and TK mutation frequencies that were over 30 times the background level. Molecular analysis revealed that 90% of the induced mutations were large deletions that involved loss of heterozygosity (LOH) at the TK locus. Ionizing-irradiation exhibited similar mutational spectrum in our system. These results indicate that the major genotoxicity of KBrO(3) may be due to DSBs that lead to large deletions rather than to 8OHdG adducts that lead to GC>TA transversions, as is commonly believed. To better understand the genotoxic mechanism of KBrO(3), we analyzed gene expression profiles of TK6 cells using Affymetrix Genechip. Some genes involved in stress, apoptosis, and DNA repair were up-regulated by the treatment of KBrO(3). However, we could not observe the similarity of gene expression profile in the treatment of KBrO(3) to ionizing-irradiation as well as oxidative damage inducers.  相似文献   

14.
Exposure to particulate matter (PM) is associated with several health effects including lung cancer. However, the mechanisms of particle-induced carcinogenesis are not fully understood. The main aim of this study was to investigate the genotoxicity of PM in relation to particle-cell interactions and to study the effect of removal of DNA-damaging substances by extraction of PM with different solvents. Genotoxicity was analyzed by means of the comet assay after exposure of cultured human fibroblasts to urban dust particles (SRM 1649). It was found that PM induced DNA damage in a dose-dependent manner and that cells interacting with PM suffered more DNA single-strand breaks relative to other cells. The genotoxicity of PM was significantly reduced after extraction with dichloromethane (DCM), dimethyl sulfoxide (DMSO) and water, but not with acetone and hexane. However, the insoluble particle core still induced DNA single-strand breaks. The extracts were further investigated in cell-free systems. Analysis of aromatic DNA adducts with 32P-HPLC showed that the DMSO and DCM extracts contained most of the DNA-reactive polyaromatic compounds (PACs). Further, the formation of 8-oxo-2'-deoxyguanosine (8-oxodG) upon incubation of the extracts with 2'-deoxyguanosine (dG) showed that the water extract contained most of the oxidizing substances. Thus, the genotoxicity of PM was caused both by adduct-forming PACs and oxidizing substances as well as the insoluble particle-core. This study showed that all these factors together contribute to explaining the mechanisms of PM genotoxicity.  相似文献   

15.
Zhao X  Wan Z  Zhu H  Chen R 《Mutation research》2003,540(1):107-117
The genotoxicity of extractable organic matter (EOM) from airborne particles in Shanghai has been determined using short-term bioassays. EOM samples were investigated using cell morphological transformation and two-stage model of mouse skin tumorigenicity assays to detect their carcinogenic activity. DNA adducts were detected using the 32P-postlabeling technique. The results showed that EOMs induced cell morphological transformation and played a role in tumor-initiating carcinogenesis. The EOMs of airborne particles from different districts of Shanghai had similar carcinogenic activity except the result of sample E (at downtown of Shanghai) was relatively high. The polycyclic aromatic hydrocarbon (PAH) fraction makes a major contribution to carcinogenic activity according to the results of cell morphological transformation assay. DNA adducts were also detected in skin, liver, and kidney of mouse after treatment with EOMs. It is suggested that the urban airborne particles in Shanghai, which show carcinogenic potential and genotoxic activity in our bioassays, may be responsible for the increased incidence of lung cancer in Shanghai in last few years.  相似文献   

16.
Feng Z  Hu W  Amin S  Tang MS 《Biochemistry》2003,42(25):7848-7854
trans-4-Hydroxy-2-nonenal (4-HNE), a major product of lipid peroxidation, is able to interact with DNA to form 6-(1-hydroxyhexanyl)-8-hydroxy-1,N(2)-propano-2'-deoxyguanosine (4-HNE-dG) adducts, but its genotoxicity and mutagenicity remain elusive. It has been reported that 4-HNE treatment in human cells induces a high frequency of G.C to T.A mutations at the third base of codon 249 (AGG*) of the p53 gene, a mutational hot spot in human cancers, particularly in hepatocellular carcinoma. This G.C to T.A transversion at codon 249, however, has been thought to be caused by etheno-DNA adducts induced by the endogenous metabolite of 4-HNE, 2,3-epoxy-4-hydroxynonanal. We have recently found that 4-HNE preferentially forms 4-HNE-dG adducts at the GAGG*C/A sequence in the p53 gene including codon 249 (GAGG*C). Our finding supports the possibility that G.C to T.A mutations at codon 249 may be induced by 4-HNE-dG adducts. To investigate this possibility, we determined the mutational spectrum induced by 4-HNE-dG adducts in the supF gene of shuttle vector pSP189 replicated in human cells. We have found that 4-HNE-dG adducts are mutagenic and genotoxic in human cells, and that G.C to T.A transversions are the most prevalent mutations induced by 4-HNE-dG adducts. Furthermore, 4-HNE-dG adducts induce a significantly higher level of genotoxicity and mutagenicity in nucleotide excision repair (NER)-deficient human and Escherichia coli cells than in NER-proficient cells, indicating that NER is a major pathway for repairing 4-HNE-dG adducts in both human and E. coli cells. Together, these results suggest that 4-HNE-dG adducts may contribute greatly to the G.C to T.A mutation at codon 249 of the p53 gene, and may play an important role in carcinogenesis.  相似文献   

17.
Enzymes that form transient DNA–protein covalent complexes are targets for several potent classes of drugs used to treat infectious disease and cancer, making it important to establish robust and rapid procedures for analysis of these complexes. We report a method for isolation of DNA–protein adducts and their identification and quantification, using techniques compatible with high-throughput screening. This method is based on the RADAR assay for DNA adducts that we previously developed (Kiianitsa and Maizels (2013) A rapid and sensitive assay for DNA–protein covalent complexes in living cells. Nucleic Acids Res., 41:e104), but incorporates three key new steps of broad applicability. (i) Silica-assisted ethanol/isopropanol precipitation ensures reproducible and efficient recovery of DNA and DNA–protein adducts at low centrifugal forces, enabling cell culture and DNA precipitation to be carried out in a single microtiter plate. (ii) Rigorous purification of DNA–protein adducts by a procedure that eliminates free proteins and free nucleic acids, generating samples suitable for detection of novel protein adducts (e.g. by mass spectroscopy). (iii) Identification and quantification of DNA–protein adducts by direct ELISA assay. The ELISA-based RADAR assay can detect Top1–DNA and Top2a–DNA adducts in human cells, and gyrase–DNA adducts in Escherichia coli. This approach will be useful for discovery and characterization of new drugs to treat infectious disease and cancer, and for development of companion diagnostics assays for individualized medicine.  相似文献   

18.
Epidemiological studies have demonstrated that areca quid chewing can be an independent risk factor for developing esophageal cancer. However, no studies are available to elucidate the mechanisms of how areca induces carcinogenesis in the esophagus. Since the areca nut in Taiwan contains a high concentration of safrole, a well-known carcinogenic agent, we analyzed safrole–DNA adducts by the 32P-postlabelling method in tissue specimens from esophageal cancer patients. In total, we evaluated 47 patients with esophageal cancer (16 areca chewers and 31 non-chewers) who underwent esophagectomy at the National Taiwan University Hospital between 1996 and 2002. Of the individuals with a history of habitual areca chewing (14 cigarette smokers and two non-smokers), one of the tumor tissue samples and five of the normal esophageal mucosa samples were positive for safrole–DNA adducts. All patients positive for safrole–DNA adducts were also cigarette smokers. Such adducts could not be found in patients who did not chew areca, irrespective of their habits of alcohol consumption or cigarette smoking (p < 0.001, comparing the areca chewers with non-chewers). The genotoxicity of safrole was also tested in vitro in three esophageal cell lines and four cultures of primary esophageal keratinocytes. In two of the esophageal keratinocyte cultures, adduct formation was increased by treatment with safrole after induction of cytochrome P450 by 3-methyl-cholanthrene. This paper provides the first observation of how areca induces esophageal carcinogenesis, i.e., through the genotoxicity of safrole, a component of the areca juice.  相似文献   

19.
Benz[a]anthracene (BA), dibenz[a,h]anthracene (DBA), dibenzo[a,i]pyrene (DBP), and dibenz[a,h]acridine (DBAC) are by-products found in many industrial wastes and emissions. Workers in the related occupational settings are potentially exposed to these substances through inhalation. In the present study, induction of DNA adducts in vivo by these chemicals was investigated using 32P-postlabeling analysis in the rat-lung-cell system. The potency of DNA-adduct inducing activity was also compared to that of two cytogenetic endpoints i.e., sister-chromatid exchange (SCE) and micronucleus formation. Via intratracheal instillation, male CD rats (6/group) were dosed 3 times with BA, DBA, DBP or DBAC in a 24-h interval. Lung cells were enzymatically separated and used to determine the frequency of DNA adducts, SCE and micronuclei. Results show that all 4 test compounds induced DNA adducts, SCEs, and micronuclei in the rat-lung cell in vivo and that the postlabeling DNA adduct assay detected genotoxic activity at lower dose levels than the two cytogenetic assays. These findings suggest that BA, DBA, DBP or DBAC are rat pulmonary genetoxicants and the DNA-adduct assay is more sensitive than SCE or micronucleus assays for detecting the pulmonary genotoxicity of these industrial PAHs in the in vivo rat-lung-cell system.  相似文献   

20.
Benzo[a]pyrene-7,8-quinone (BPQ) is one of the reactive metabolites of the widely distributed archetypal polycyclic aromatic hydrocarbon, benzo[a]pyrene (B[a]P). The formation of BPQ from B[a]P through trans-7,8-dihydroxy-7,8-dihydroB[a]P by the mediation of aldo-keto reductases and its role in the genotoxicity and carcinogenesis of B[a]P currently are under extensive investigation. Toxicity pathways related to BPQ are believed to include both stable and unstable (depurinating) DNA adduct formation as well as reactive oxygen species. We previously reported the complete characterization of four novel stable BPQ-deoxyguanosine (dG) and two BPQ-deoxyadenosine (dA) adducts (Balu et al., Chem. Res. Toxicol. 17 (2004) 827-838). However, the identification of BPQ-DNA adducts by 32P postlabeling methods from in vitro and in vivo exposures required 3'-monophosphate derivatives of BPQ-dG, BPQ-dA, and BPQ-deoxycytidine (dC) as standards. Therefore, in the current study, BPQ adducts of dGMP(3'), dAMP(3'), and dCMP(3') were prepared. The syntheses of the BPQ-3'-mononucleotide standards were carried out in a manner similar to that reported previously for the nucleoside analogs. Reaction products were characterized by UV, LC/MS analyses, and one- and two-dimensional NMR techniques. The spectral studies indicated that all adducts existed as diastereomeric mixtures. Furthermore, the structural identities of the novel BPQ-dGMP, BPQ-dAMP, and BPQ-dCMP adducts were confirmed by acid phosphatase dephosphorylation of the BPQ-nucleotide adducts to the corresponding known BPQ-nucleoside adduct standards. The BPQ-dGMP, BPQ-dAMP, and BPQ-dCMP adduct standards were used in 32P postlabeling studies to identify BPQ adducts formed in vitro with calf thymus DNA and DNA homopolymers. 32P postlabeling analysis revealed the formation of 8 major and at least 10 minor calf thymus DNA adducts. Of these BPQ-DNA adducts, the following were identified: 1 BPQ-dGMP adduct, 2 BPQ-dAMP adducts, and 3 BPQ-dCMP adducts. This study represents the first reported example of the characterization of stable BPQ-DNA adducts in isolated mammalian DNA and is expected to contribute significantly to the future BPQ-DNA adduct studies in vivo and thereby to the contribution of BPQ in B[a]P carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号