首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
杨春晖  王海燕 《遗传》2007,29(7):874-880
利用TAIL-PCR(Thermal asymmetric interlaced PCR)从短小芽孢杆菌基因组中扩增到碱性蛋白酶基因编码区上游的启动子片段。对该片段的序列测定和分析表明, 此片段长797 bp, 但与基因表达有关的序列长约390 bp。对启动子片段进行不同长度的缺失突变, 以获得最小的基因启动子片段, 结果表明, 该基因起始密码子上游约160 bp的DNA片段就可以启动基因的表达。将含有该片段的碱性蛋白酶基因WApQ3插入大肠杆菌-芽孢杆菌穿梭质粒载体pSUGV4中, 构建了碱性蛋白酶基因表达质粒pSUBpWApQ3。将该质粒分别转入枯草芽孢杆菌和短小芽孢杆菌中表达, 可在胞外检测到碱性蛋白酶活性, 最高酶活分别为466.5 U/mL和3060 U/mL。  相似文献   

2.
A 6.5-kb DNA fragment carrying the functions required for specific secretion of the extracellular alkaline protease produced by Pseudomonas aeruginosa was cloned. The whole 6.5-kb DNA fragment was transcribed in one direction and probably carried three genes involved in secretion. The expression in trans of these genes, together with the apr gene, in Escherichia coli allowed synthesis and secretion of the alkaline protease, which was extensively investigated by performing pulse-chase experiments under various conditions. We demonstrated the absence of a precursor form, as well as the independence of alkaline protease translocation from SecA. The absence of secretion genes impaired alkaline protease secretion; the protein then remained intracellular and was partially degraded.  相似文献   

3.
Mutants for Saccharomycopsis lipolytica temperature sensitive for alkaline extracellular protease production, but not for growth, were isolated. Thirty-three isolates were temperature sensitive for protease production, and one (xpr-32) produced a temperature-sensitive protease. Genetic analysis indicated that xpr-32 was located in gene XPR2, and allele xpr2-7 was found to also produce a temperature-sensitive protease. None of five independently isolated xpr2 mutations affects the production of extracellular ribonucleases and acid protease(s). Diploids with zero, one, or two active alleles of the XPR2 locus were constructed, and the XPR2 locus was shown to exhibit a gene dosage effect on alkaline extracellular protease synthesis (enzyme activity/cell protein). These results suggest that the XPR2 gene is the structural gene for the alkaline extracellular protease of S. lipolytica.  相似文献   

4.
The thermostable neutral protease gene nprT of Bacillus stearothermophilus was sequenced. The DNA sequence revealed only one large open reading frame, composed of 1,644 bases and 548 amino acid residues. A Shine-Dalgarno sequence was found 9 bases upstream from the translation start site (ATG), and the deduced amino acid sequence contained a signal sequence in its amino-terminal region. The sequence of the first 14 amino acids of purified extracellular protease completely matched that deduced from the DNA sequence starting at GTC (Val), 687 bases (229 amino acids) downstream from ATG. This suggests that the protease is translated as a longer polypeptide. The amino acid sequence of the extracellular form of this protease (319 amino acids) was highly homologous to that of the thermostable neutral protease from Bacillus thermoproteolyticus but less homologous to the thermolabile neutral protease from Bacillus subtilis. A promoter region determined by S1 nuclease mapping (TTTTCC for the -35 region and TATTTT for the -10 region) was different from the conserved promoter sequences recognized by the known or factors in bacilli. However, it was very homologous to the promoter sequence of the spo0B gene from B. subtilis. The guanine-plus-cytosine content of the coding region of the nprT gene was 58 mol%, while that of the third letter of the codons was much higher (72 mol%).  相似文献   

5.
AIMS: The isolation and identification of new Bacillus sp. capable of growing under highly alkaline conditions as alkaline protease producers. METHODS AND RESULTS: A Bacillus strain capable of growing under highly alkaline conditions was isolated from compost. The strain is a Gram-positive, spore-forming, motile, aerobic, catalase- and oxidase-positive, alkaliphilic bacterium and designated as GMBAE 42. Good growth of the strain was observed at pH 10. The strain was identified as Bacillus clausii according to the physiological properties, cellular fatty acid composition, G + C content of genomic DNA and 16S rRNA gene sequence analyses. The result of 16S rRNA sequence analyses placed this bacterium in a cluster with B. clausii. The G + C content of the genomic DNA of the isolate GMBAE 42 was found to be 49 mol%. The crude extracellular alkaline protease produced by the isolate showed maximal activity at pH 11.0 and 60 degrees C. CONCLUSIONS: The results suggest that isolated strain GMBAE 42 is a new type of B. clausii capable of growing at pH 10.0 and produce extracellular alkaline protease very active at pH 11.0. SIGNIFICANCE AND IMPACT OF THE STUDY: Isolated strain could be used in commercial alkaline protease production and its enzyme can be considered as a candidate as an additive for commercial detergents.  相似文献   

6.
The XPR2 gene encoding an alkaline extracellular protease (AEP) from Yarrowia lipolytica was cloned, and its complete nucleotide sequence was determined. The amino acid sequence deduced from the nucleotide sequence reveals that the mature AEP consists of 297 amino acids with a relative molecular weight of 30,559. The gene codes for a putative 22-amino-acid prepeptide (signal sequence) followed by an additional 135-amino-acid propeptide containing a possible N-linked glycosylation site and two Lys-Arg peptidase-processing sites. The final Lys-Arg site occurs at the junction with the mature, extracellular form. The mature protease contains two potential glycosylation sites. AEP is a member of the subtilisin family of serine proteases, with 42.6% homology to the fungal proteinase K. The functional promoter is more than 700 base pairs long, allowing for the observed complex regulation of this gene. The 5' and 3' flanking regions of the XPR2 gene have structural features in common with other yeast genes.  相似文献   

7.
Vibrio alginolyticus synthesized an inducible extracellular collagenase in a peptone medium during the stationary growth phase. These cultures also possessed extracellular alkaline serine protease activity. The alkaline protease activity did not require a specific inducer and it was produced in tryptone or minimal media. The collagenase was not produced in either the tryptone or minimal media. The alkaline protease activity was sensitive to catabolite repression by a number of carbon sources, including glucose, and by amino acids and ammonium ions. Cyclic AMP, dibutyryl cyclic AMP and cyclic GMP did not relieve catabolite repression. Histidine and urocanic acid stimulated the production of alkaline protease activity in tryptone and minimal media. Other compounds associated with the histidine utilization (hut) pathway did not increase alkaline protease activity. Histidine reversed the repression of alkaline protease activity by glucose of (NH4)2SO4 in minimal medium. Histidine and the compounds associated with the hut pathway inhibited collagenase production.  相似文献   

8.
Five pairs of degenerate universal primers have been designed to identify the general protease gene profiles from some distinct Bacillus thuringiensis strains. Based on the PCR amplification patterns and DNA sequences of the cloned fragments, it was noted that the protease gene profiles of the three distinct strains of B. thuringiensis subsp. kurstaki HD73, tenebrionis and israelensis T14001 are varied. Seven protease genes, neutral protease B (nprB), intracellular serine protease A (ispA), extracellular serine protease (vpr), envelope-associated protease (prtH), neutral protease F (nprF), thermostable alkaline serine protease and alkaline serine protease (aprS), with known functions were identified from three distinct B. thuringiensis strains. In addition, five DNA sequences with unknown functions were also identified by this facile analytical method. However, based on the alignment of the derived protein sequences with the protein domain database, it suggested that at least one of these unknown genes, yunA, might be highly protease-related. Thus, the proposed PCR-mediated amplification design could be a facile method for identifying the protease gene profiles as well as for detecting novel protease genes of the B. thuringiensis strains.  相似文献   

9.
10.
The wheat fungal pathogen Stagonospora nodorum produces an extracellular trypsin-like protease, SNP1, during early stages of hyphal growth on the surface of host leaves and during penetration. Variation of SNP1 mRNA levels and enzyme activity during infection, were correlated with levels of aggressiveness of three wild-type isolates. SNP1 was deleted in two wild-type isolates using a gene replacement strategy. SNP1-deleted mutants completely lacked trypsin activity in vitro and on inoculated wheat leaves, but were not reduced in pathogenicity. SNP1-deleted mutants still have 50% of the total alkaline protease activity of wild-type. This residual activity comes from a previously undetected alkaline protease with subtilisin-like substrate and inhibitor specificities, which is produced in vitro and on host leaves. We hypothesize that this subtilisin protease may act in concert with SNP1 and may compensate for the loss of trypsin protease activity in the SNP1-deletion mutants.  相似文献   

11.
To analyze the processing of extracellular enzymes of Bacillus subtilis, an NH2-terminally extended hybrid alpha-amylase [pTUBE638-alpha-amylase (E24)] was purified from the periplasm of E. coli(pTUBE638) as the substrate for the in vitro processing reaction, in which a 21-amino-acid extra-peptide was added at the NH2-terminus of the mature thermostable alpha-amylase. The extended peptide in pTUBE638-alpha-amylase (E24) was completely processed by the extracellular alkaline protease of B. subtilis alone at pH 7.5 to 10.0. The processing was inhibited by 2 mM PMSF. In contrast, the neutral protease did not process the extended peptide. The processing activity of the purified alkaline protease was fully active in 100 mM phosphate and glycine-NaCl-NaOH buffer while it was partially active in 100 mM Tris-HCl or MOPS buffer. The optimum pH of the activity ranged from 8.0 to 9.0, although the optimum pH of the alkaline protease activity toward casein and Azocoll was 10.5. The NH2-terminal amino acid sequences of the enzymes processed in vitro coincided with those of the mature extracellular thermostable alpha-amylases in the culture medium of B. subtilis (pTUBE638). The appearance of the processing activity of alkaline protease was correlated with the changes of the pH in the culture medium.  相似文献   

12.
The gene (aspA) encoding the extracellular aspartyl protease from Penicillium roqueforti was cloned and characterized. Northern hybridization analyses and β-casein degradation assays revealed that aspA was strongly induced by casein in the medium and efficiently repressed by ammonia. External alkaline pH overrides casein induction, resulting in aspA repression. Cis-acting motifs known to mediate nitrogen and pH regulation of fungal gene expression are present in the aspA promoter and protein-DNA binding experiments showed that mycelial proteins interact with various regions of the promoter. Due to the efficient environmental controls on aspA expression, the promoter of aspA is an attractive candidate for the development of a controllable gene expression system in P. roqueforti.  相似文献   

13.
Major extracellular protease of Neurospora crassa.   总被引:2,自引:0,他引:2       下载免费PDF全文
The inducible extracellular alkaline protease of Neurospora crassa was demonstrated to be a glycoprotein containing D-galactose residues by use of the enzyme-lectin conjugate horseradish peroxidase-Ricinus communis-agglutinin-120. The carbohydrate moiety of the protease appears to be a poor antigen since an antiserum made to the native enzyme recognizes epitopes determined only by the polypeptide portion of the enzyme. Immunochemical techniques were used to quantitatively precipitate protease labeled in vivo for electrophoretic analysis. Protease synthesis could not be detected in control, uninduced cultures, whereas ca. 0.4% of total cellular protein synthesis is devoted to protease formation under inducing conditions.  相似文献   

14.
AIMS: The present study was conducted by screening soil bacteria in an attempt to isolate a bacterium that produced extracellular alkaline protease, and for purification and characterization of the protease. METHODS AND RESULTS: Soil bacteria were screened by growth on casein as the sole carbon source. Characterization of a strain isolated from soil of Abashiri, Japan indicated a taxonomic affiliation to Stenotrophomonas maltophilia, and was named S-1 strain. The purified S-1 protease, designed S. maltophilia Protease-1 (SmP-1), exhibited an optimal pH of 12.0, optimal reaction temperature of 50 degrees C and a molecular mass of approximately 40 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The cleavage sites of the oxidized-insulin B chain by SmP-1 were identified as Leu6-Cys7, Cys7-Gly8, Tyr16-Leu17 and Leu17-Val18. The N-terminal amino acid sequence of the purified alkaline protease was determined as NH2-SASAPMVSGVAALVLE. CONCLUSION: A novel extracellular alkaline serine protease was isolated from S. maltophilia strain S-1. The optimal pH of the proteolytic activity was pH 12.0. SIGNIFICANCE AND IMPACT OF THE STUDY: The extremely high optimal pH and heat stability of the alkaline serine protease SmP-1 might make it widely applicable to food and other industries.  相似文献   

15.
Depending on the pH of the growth medium, the yeast Yarrowia lipolytica secretes an acidic protease or an alkaline protease, the synthesis of which is also controlled by carbon, nitrogen, and sulfur availability, as well as by the presence of extracellular proteins. Previous results have indicated that the alkaline protease response to pH was dependent on YlRim101p, YlRim8p/YlPalF, and YlRim21p/YlPalH, three components of a conserved pH signaling pathway initially described in Aspergillus nidulans. To identify other partners of this response pathway, as well as pH-independent regulators of proteases, we searched for mutants that affect the expression of either or both acidic and alkaline proteases, using a YlmTn1-transposed genomic library. Four mutations affected only alkaline protease expression and identified the homolog of Saccharomyces cerevisiae SIN3. Eighty-nine mutations affected the expression of both proteases and identified 10 genes. Five of them define a conserved Rim pathway, which acts, as in other ascomycetes, by activating alkaline genes and repressing acidic genes at alkaline pH. Our results further suggest that in Y. lipolytica this pathway is active at acidic pH and is required for the expression of the acidic AXP1 gene. The five other genes are homologous to S. cerevisiae OPT1, SSY5, VPS28, NUP85, and MED4. YlOPT1 and YlSSY5 are not involved in pH sensing but define at least a second protease regulatory pathway.  相似文献   

16.
The production of extracellular protease during sporulation in Bacillus subtilis 168 was investigated. Two proteases are produced, an alkaline serine protease and a neutral metalloprotease. In vivo inhibition of the serine protease with phenylmethylsulfonylfluoride indicated that the metalloprotease was degraded by the serine protease during sporulation. The experiments with phenylmethylsulfonylfluoride also show that the serine protease is necessary for the sequential process of sporulation and that it is required continuously for the first 2 to 3 h of the 8-h process.  相似文献   

17.
The gene (aspA) encoding the extracellular aspartyl protease from Penicillium roqueforti was cloned and characterized. Northern hybridization analyses and β-casein degradation assays revealed that aspA was strongly induced by casein in the medium and efficiently repressed by ammonia. External alkaline pH overrides casein induction, resulting in aspA repression. Cis-acting motifs known to mediate nitrogen and pH regulation of fungal gene expression are present in the aspA promoter and protein-DNA binding experiments showed that mycelial proteins interact with various regions of the promoter. Due to the efficient environmental controls on aspA expression, the promoter of aspA is an attractive candidate for the development of a controllable gene expression system in P. roqueforti. Received: 20 March 1997 / Accepted: 21 June 1997  相似文献   

18.
根据B.licheniformis YP1A来源的碱性蛋白酶具有的高强度耐有机溶剂性能及相关数据库分析,采用PCR克隆B.licheniformis YP1A耐有机溶剂碱性蛋白酶基因,序列分析显示该基因(1264bp)包含启动子与编码380个氨基酸的开放阅读框(ORF),ORF包括信号肽、前肽及编码254个氨基酸的成熟肽序列。相关基因分析表明,YP1A耐有机溶剂碱性蛋白酶基因与地衣芽孢杆菌ATCC14580的碱性蛋白酶基因仅有6个氨基酸残基差异:构建2种含YP1A碱性蛋白酶CDS的组成型穿梭表达载体pHY/aprYP与pHY/aprP43,前者采用YP1A蛋白酶自带的启动子,后者则采用来自于质粒pP43NMK的P43强启动子。利用这2种表达载体在枯草芽孢杆菌WB800中成功进行蛋白酶的功能表达.其中P43强启动子的表达能力明显优于碱性蛋白酶自带的启动子,表达的蛋白酶比酶活为395U/ml。重组菌表达的碱性蛋白酶在体积分数50%的亲水及疏水有机溶剂中表现出了很好的耐受性,验证了克隆基因为地衣芽孢杆菌YP1A的高强度耐有机溶剂碱性蛋白酶基因.  相似文献   

19.
Production of extracellular protease by Candida lipolytica NRRL Y-1094 was depressed upon transfer to carbon-, nitrogen- or sulphur-free medium but not upon transfer to phosphorus-free medium. The protease activities produced under the three nutrient limitations had alkaline pH optima and similar substrate and inhibitor specificities. Any one of the following three conditions wass found to be sufficient for depression of extracellular protease: (1) “poor” carbon source, (b) cysteine intracellular pool below 0.5 μmol/g dry weight cells and (c) ammonia intracellular pool below 10 μmol/g dry weight cells. Thus, extracellular protease production in C. lipolyutica was subject to at least three different regulatory controls, carbon, sulphur and nitrogen repression. Intracellular cysteine and ammonia appeared to be the metabolic signals for sulphur and nitrogen repression, respectively. Anabolic glutamate dehydrogenase did not act as a regulatory protein mediating nitrogen repression. Exogenous protein had an inductive effect on extracellular protease production.  相似文献   

20.
AIMS: To evaluate the production of an extracellular serine protease by Dactylella shizishanna and its potential as a pathogenesis factor. METHODS AND RESULTS: An extracellular alkaline serine protease (Ds1) was purified and characterized from the nematode-trapping fungus D. shizishanna using cation-exchange chromatography and hydrophobic interaction chromatography. The molecular mass of the protease was approximately 35 kDa estimated by SDS-PAGE. The optimum activity of Ds1 was at pH 10 and 55 degrees C (over 30 min). The purified protease could degrade purified cuticle of Penagrellus redivivus and a broad range of protein substrates. The purified protease was highly sensitive to phenylmethyl sulfonyl fluoride (PMSF) (0.1 mmol l(-1)), indicating it belonged to the serine protease family. The N-terminal amino acid residues of Ds1 are AEQTDSTWGL and showed a high homology with Aozl and PII, two serine proteases purified from the nematode-trapping fungus Arthrobotrys oligospora. CONCLUSIONS: Nematicidal activity of D. shizishanna was partly related to its ability to produce extracellular serine protease. SIGNIFICANCE AND IMPACT OF THE STUDY: In this report, we purified a new serine protease from D. shizishanna and provided a good foundation for future research on infection mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号