首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The effects of chlordiazepoxide-hydrochloride (CDZ) on the isolated perfused rat liver were examined. CDZ administration decreased bile flow, biliary excretion of sulfobromophthalein (BSP) and hepatic uptake of BSP. The addition of CDZ to the perfusate of livers obtained from phenobarbital (Pb) pretreated rats led to 50% greater reductions in bile flow, concentration of BSP in bile and hepatic uptake of BSP. The adverse effects of CDZ on BSP excretion per g liver, however, did not appear to be enhanced by Pb pretreatment. The complex nature of the interrelationship of the effects of Pb and of CDZ on the control liver prevented differentiation of the role of CDZ from that of a metabolite on the adverse effect on liver function.  相似文献   

2.
The biliary excretion of 110mAg in rats after i.v. administration of an aqueous solution of 110mAgNO3 (4.57 micrograms; 16kBq per rat) was studied for a period of 24 hours. The maximum rate of excretion was reached in 30th minute after the metal administration and over 70% of the silver dosed was excreted during 24 hours. Using the method of isolated perfused liver it was observed that 110mAg is rapidly taken up in the liver. During the five minutes period of the perfusion less than 50% of silver administered was found in the perfusion medium. In following minutes the level of the metal in the medium remained approximately constant. It was suggested that the rate of excretion of silver and its high uptake in the liver tissue is in connection with an unusual binding of it in the bile.  相似文献   

3.
We previously showed that naproxen induced the oxidative stress in the liver microsomes and the isolated hepatocytes of rats. In this study, the in situ effect of naproxen on the rat liver tissue was investigated, using the isolated perfused liver from the view-point of the naproxen-induced hepatotoxicity. The leakage of glutamic-oxaloacetic transaminase (GOT) from the perfused liver and appearance of thiobarbituric acid reactive substances (TBARS) in the perfusate increased with the progress of perfusion after a lag time of about 1h. The naproxen-perfusion of the liver decreased the biliary excretion of glutathione (GSH) and oxidized glutathione, glutathione disulfide (GSSG) prior to TBARS production and GOT leakage. GSSG content in the naproxen-perfused liver was significantly higher than in the control. TBARS appeared in the perfusate of the naproxen-perfused liver for 30 min, but not in the control. The biliary excretion clearance (CL(bile)) of indocyanine green (ICG), a reagent for testing the liver function, in the liver perfused with naproxen decreased to a half of that in the liver perfused without naproxen. Thus, the naproxen-induced oxidative stress in the liver was shown to affect the physiological function of liver through the impairment of biliary excretion, which is recognized as a detoxification system.  相似文献   

4.
Uptake of [35S]lipoate was studied in perfused rat liver and in isolated rat hepatocytes. During single-pass perfusion of [35S]lipoate about 30% of the radioactivity is retained in the liver. A substantial amount of 5,5'-dithiobis(2-nitrobenzoic acid)-reactive material appears in the effluent perfusate, while hepatic efflux of GSH is unchanged. The hepatic uptake of lipoate, the release of thiols, and also the biliary excretion of 35S-labeled compounds are suppressed by octanoate. In isolated hepatocytes the uptake of lipoate follows saturation kinetics showing a Km value of 38 microM and a Vmax of 180 pmol/mg X 10 s. The uptake is temperature-dependent; from the Arrhenius plot an activation energy of 14.8 kcal/mol at 20 microM lipoate is calculated. At high concentrations of lipoate (above 75 microM) a nonsaturable uptake component becomes predominant. Lipoate uptake is selectively inhibited by medium-chain fatty acids. Only slight inhibition is seen in the presence of long-chain fatty acids, and there is no inhibition with acetate or lactate. Substantial inhibition is also observed with acetylsalicylic acid, but not with taurocholate, bromosulfophthalein or biotin. Lipoate uptake can be inhibited by high concentrations of phloretin (200 microM) and is rather insensitive to 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (200 microM). The results indicate that hepatic uptake of lipoate at physiological concentrations is largely carrier-mediated.  相似文献   

5.
3H-orotic acid incorporation into RNA and the level of RNA polymerase activity in isolated rat liver perfused for 5 hrs were investigated. In spite of a dramatic decrease in 3H-orotic acid uptake by liver cells during perfusion, a constant rate of RNA synthesis was observed. Moreover, RNA polymerase I and II activities were not affected by a 5-hr perfusion. It is suggested that isolated perfused rat liver can be used to study direct effects of hormones and drugs on RNA synthesis.  相似文献   

6.
In single-pass perfused rat liver, the sinusoidal uptake of infused 3H-labelled leukotriene (LT) C4 (10 nmol.l-1) was inhibited by sulfobromophthalein. Inhibition was half-maximal at sulfobromophthalein concentrations of approximately 1.2 mumol.l-1 in the influent perfusate and leukotriene uptake was inhibited by maximally 34%. Sulfobromophthalein (20 mumol.l-1) also decreased the uptake of infused [3H]LTE4 (10 nmol.l-1) by 31%. Indocyanine green (10 mumol.l-1) inhibited the sinusoidal [3H]LTC4 uptake by 19%. Replacement of sodium in the perfusion medium by choline decreased the uptake of infused [3H]LTC4 (10 nmol.l-1) by 56%, but was without effect on the uptake of sulfobromophthalein. The canalicular excretion of LTC4, LTD4 and N-acetyl-LTE4 was inhibited by sulfobromophthalein. In contrast, the proportion of polar omega-oxidation metabolites recovered in bile following the infusion of [3H]LTC4 was increased. Taurocholate, which had no effect on the sinusoidal leukotriene uptake, increased bile flow and also the biliary elimination of the radioactivity taken up. With increasing taurocholate additions, the amount of LTD4 recovered in bile increased at the expense of LTC4. Following the infusion of [3H]LTD4 (10 nmol.l-1), a major biliary metabolite was LTC4 indicating a reconversion of LTD4 to LTC4. In the presence of taurocholate (40 mumol.l-1), however, this reconversion was completely inhibited. The findings suggest the involvement of different transport systems in the sinusoidal uptake of cysteinyl leukotrienes. LTC4 uptake is not affected by bile acids and has a sodium-dependent and a sodium-independent component, the latter probably being shared with organic dyes. Sulfobromophthalein also interferes with the canalicular transport of LTC4, LTD4 and N-acetyl-LTE4, but not with the excretion of omega-oxidized cysteinyl leukotrienes. The data may be relevant for the understanding of hepatic leukotriene processing in conditions like hyperbilirubinemia or cholestasis.  相似文献   

7.
The effect of oral taurine supplementation on endotoxin-induced cholestasis was investigated in rat liver. At 12h following lipopolysaccharide (LPS) injection (4mg/kg body weight i.p.) bile flow and bromosulfophthalein (BSP) and taurocholate (TC) excretion were determined in the perfused liver and the expression of the canalicular transporters multidrug resistance protein 2 (Mrp2) and bile salt export pump (Bsep) was analyzed. Injection of LPS induced a significant decrease of bile flow ( 2.2+/-0.2 microl/g liver wet weight/min vs 3.3+/-0.1 microl/g liver wet weight in controls), biliary BSP excretion (10.8+/-2.2 nmol/g/min vs 21.0+/-3.8 nmol/g/min), and biliary TC excretion (114+/-23 nmol/g/min vs 228+/-8 nmol/g/min). These effects were due to transporter retrieval from the canalicular membrane and downregulation of Mrp2 and Bsep expression. In taurine-supplemented rats bile flow was 30% higher than that in untreated rats and the expression of Mrp2 and Bsep protein was increased two- to threefold. In taurine-supplemented rats there was no significant reduction of bile flow or of BSP and TC excretion at 12h following LPS injection. This protective effect of taurine was due to higher Mrp2 and Bsep protein levels compared to nonsupplemented LPS-treated rats, whereas relative Mrp2 retrieval from the canalicular membrane induced by LPS was not significantly different. LPS-induced tumor necrosis factor alpha and interleukin-1beta release were lower in taurine-fed rats; however, downregulation of Mrp2 and Bsep expression by LPS was delayed but not prevented. The data show that oral supplementation of taurine induces Mrp2 and Bsep expression and may prevent LPS-induced cholestasis.  相似文献   

8.
1. The uptake, metabolism and biliary excretion of the cysteinyl leukotrienes LTC4, LTD4 and LTE4, were studied in a non-recirculating rat liver perfusion system at constant flow in both antegrade (from the portal to the caval vein) and retrograde (from the caval to the portal vein) perfusion directions. During a 5-min infusion of [3H]LTC4, [3H]LTD4 and [3H]LTE4 (10 nmol/l each) in antegrade perfusions single-pass extractions of radioactivity from the perfusate were 66%, 81% and 83%, respectively. Corresponding values for LTC4 and LTD4 in retrograde perfusions were 83% and 93%, respectively, indicating a more efficient uptake of cysteinyl leukotrienes in retrograde than in antegrade perfusions. The concentrations of unmetabolized leukotrienes in the effluent perfusate were 8-12% in antegrade and 2-4% in retrograde perfusions. [14C]Taurocholate extraction from the perfusate was inhibited by LTC4 by only 3%, suggesting that an opening of portal-venous/hepatic-venous shunts does not explain the effects of perfusion direction on hepatic LTC4 uptake. 2. Following infusion of [3H]LTC4 and [3H]LTD4, in the antegrade perfusion direction, about 80% and 87%, respectively, of the radiolabel taken up by the liver was excreted into bile. In retrograde perfusions, however, only 40% and 57%, respectively, was excreted into bile and the remainder was slowly redistributed into the perfusate, indicating that leukotrienes were taken up into a hepatic compartment with less effective biliary elimination or converted to metabolites escaping biliary excretion. The metabolite pattern found in bile was not affected by the direction of perfusion. Biliary products of LTC4 were polar metabolites (31-38%), LTD4 (27-30%), LTE4 (about 1%) and N-acetyl-LTE4 (3-4%) in addition to unmodified LTC4 (17-18%). 3. LTC4 was identified as a major metabolite of [3H]LTD4 in bile, amounting to about 20% of the total radioactivity excreted into bile. This is probably due to a gamma-glutamyltransferase-catalyzed glutamyl transfer from glutathione in the biliary compartment, as demonstrated in in vitro experiments. The presence of sinusoidal gamma-glutamyltransferase activity in perfused rat liver was shown in experiments on the hydrolysis of infused gamma-glutamyl-p-nitroanilide. 90% inhibition of this enzyme activity by AT-125 did not affect the metabolism of LTC4. 4. When [3H]LTE4 was infused in the antegrade perfusion direction, biliary metabolites comprised N-acetyl-LTE4 (24%) and polar components (60%).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Hepatic uptake and metabolic disposition of leukotriene B4 in rats.   总被引:2,自引:0,他引:2       下载免费PDF全文
1. In isolated perfused rat liver and in vivo, up to 25% of [3H]leukotriene B4 was eliminated from the circulation via hepatic uptake and biliary excretion within 1 h. Total body recovery of 3H amounted to about 60% of infused [3H]leukotriene B4. 2. Hepatobiliary excretion of leukotriene B4 and its metabolites exceeded renal elimination by about 4-fold and depended, in contrast with excretion of cysteinyl leukotriene E4, upon continuous taurocholate supply. 3. Analyses of bile, liver and recirculated perfusate using h.p.l.c. indicated that the liver metabolized leukotriene B4 extensively to omega-carboxyleukotriene B4 and its beta-oxidized derivatives, and no unmetabolized leukotriene B4 appeared in bile. These results substantiate the important contribution of the hepatobiliary system with respect to the metabolic fate of leukotriene B4.  相似文献   

10.
1. The isolated perfused rat liver efficiently takes up cysteinyl leukotrienes (LTs) C4, D4, E4 and N-acetyl-LTE4 from circulation. More than 70% of these cysteinyl LTs are excreted from liver into bile within 1 h of onset of a 5 min infusion, while about 5% remain in the liver. About 20% of infused N-acetyl-LTE4 escapes hepatic first-pass extraction under our conditions. 2. Metabolites of LTC4 appearing in bile within 20 min of the onset of infusion include mainly LTD4 and N-acetyl-LTE4, but also omega-hydroxy-N-acetyl-LTE4 and omega-carboxy-N-acetyl-LTE4. Metabolites generated from omega-carboxy-N-acetyl-LTE4 by beta-oxidation from the omega-end represent the major biliary LTs secreted at later times. 3. Stimulation of the isolated perfused liver by the combined infusion of the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) and the Ca2+ ionophore A23187 results in a transient increase of endogenous cysteinyl LT production, which is independent of extrahepatic cells. 4. The immunosuppressive drug cyclosporine causes a dose-dependent inhibition of hepatobiliary cysteinyl LT excretion, probably by interference with the sinusoidal uptake system for cysteinyl LTs.  相似文献   

11.
The chronic exposure to Aluminum (Al) may compromise different liver functions, mainly during the hepatic regeneration. The aim of this study is to investigate the interactions between the chronic i.p. exposure to Al and hepatic regeneration (HR) on bile flow and organic anion transport in experimental animals. For this purpose, we studied bile flow and fractional transfer rates for the transport of hepatic organic anions (hepatic uptake, sinusoidal efflux, and canalicular excretion), as well as parameters related with the oxidative stress (OS), on rats chronically treated with Al at 0 and 2 days of HR. The Al treatment and time of HR caused a decrease in the biliary flow and in the hepatic uptake and canalicular excretion constants. In addition, Al and HR increased the lipoperoxidation associated with a reduction of the glutathione content and glutathione peroxidase and catalase enzyme’s activities. Since the effects of Al and HR on biliary flow and transport systems were additive, but not on the oxidative status, different mechanisms might be involved on these alterations. Even though the OS may play a key role on the hepatic deleterious effects, there is no unique cause–effect relationship between OS and liver dysfunction in this experimental animal model.  相似文献   

12.
In the liver of adjuvant arthritic rats perfused with a hemoglobin-free buffer solution, the rate of metabolism of a model drug, 2,6-dichloro-4-nitroanisole, was approximately half that of the control, while the bile flow rate was normal. Granulation tissue extracts and arthritic rat serum had no effect on the activity of CNA metabolism in normal rat liver preparations. In the perfused normal rat liver, the rate of CNA metabolism was inhibited by addition of prostaglandin (PG) E1, PGE2, and PGF2 alpha, respectively, in a final concentration of 0.5 microM. The inhibition by PGE1 was increased in the concentration range from 0.1 to 2.5 microM. The bile flow rate was not affected by the added PGs. However, these PGs had no direct effect on the CNA demethylating activity of the isolated hepatocytes from normal rat liver in a high concentration of 10 microM. Serotonin stimulated slightly CNA metabolism and bile production in the perfused livers by the intermittent infusion, but was without effect in the isolated hepatocytes. Epinephrine and histamine had no significant effect on CNA metabolism in both liver preparations. A similar pattern of the inhibition of CNA metabolism by PGs was reproduced in the normal rat liver perfused with the medium containing the supernatant of the hepatic nonparenchymal cells incubated in the presence of PGE1. The involvement of liver sinusoidal cells as secretory cells in depression of hepatic drug metabolism has been discussed.  相似文献   

13.
Digoxin-quinidine interaction was studied in the experimental model of isolated perfused rat liver. Neither digoxin nor quinidine were toxic to the isolated rat liver. The clearance of digoxin and quinidine by the liver was directly related to the rate of bile flow and the size of the initial dose of digoxin. In the presence of quinidine, after initial doses of digoxin of 0.5 and 1 micrograms, the concentration of digoxin in the perfusate was increased 2.5 and 3-fold. Its excretion in the bile was reduced by 45% and 20.5%, respectively (all comparisons, p less than 0.01). Digoxin concentration in the liver tissue was calculated and found to be appreciably elevated in the presence of quinidine. A reduction of about 30% (p less than 0.05) in the excretion of quinidine in the bile was observed in the presence of digoxin. Thus, a competition of digoxin and quinidine for biliary excretion was demonstrated as an underlying cause for digoxin-quinidine interaction in the isolated perfused rat liver.  相似文献   

14.
Eosine is excreted in rat bile unchanged, which makes it suitable for the study of age dependent changes in hepatic uptake and excretion. Bile flow was approximately 40 μl/kg/min in 20-day-old rats and twice as high in 30-day-old animals. In 60- and 120-day-old rats the bile volume was decreased, moreover in 220-day-old ones it fell to the level of 20-day-old rats. The biliary excretion of eosine (150 μmol/kg i.v.) was highest in 60-day-old rats, however, the biliary flow reached its peak in 30-day-old rats. After phenobarbital (PB) pretreatment (75 mg/kg i.p. daily for five days) each age group showed enhancement in liver weight and bile volume. On the other hand, the hepatic concentration of eosine did not change after PB pretreatment caused an increase in the biliary excretion of eosine in 30-, 60-, 120- and 220-day-old rats but no significant change in 20-day-old animals. Our results indicate that the hepatic transport in young rats was immature and was not induced by PB. However, PB can increase the low excretion rate in old rats.  相似文献   

15.
The characteristics and kinetics of calcium uptake activity were studied in isolated hepatic microsomes. The sustained accumulation of calcium was ATP- and oxalate-dependent. Glucagon increased microsomal Ca2+ uptake upon either in vivo injection, or in vitro perfusion of the hormone in the liver. In contrast, the effect of insulin depended on the route of administration. Calcium accumulation by subsequently isolated hepatic microsomes increased when insulin was injected intraperitoneally whereas it decreased when the hormone was perfused directly into the liver. These effects of glucagon and insulin were dose dependent. When insulin was added to the perfusate prior to the addition of glucagon, insulin blocked the glucagon-stimulated increase in microsomal Ca2+ uptake. Cyclic AMP mimicked the effect of glucagon on microsomal Ca2+ accumulation when the cyclic nucleotide was perfused into the liver. The effects of glucagon and insulin on the kinetics of hepatic microsomal Ca2+ uptake were investigated. In microsomes isolated from perfused rat livers treated with glucagon the V of the uptake was significantly increased over the control values (12.2 vs. 8.6 nmol Ca2+ per min per mg protein, P less than 0.02). In contrast, the addition of insulin to the perfusate significantly decreased the V of Ca2+ uptake by subsequently isolated microsomes (6.8 vs. 8.3 nmol Ca2+ per min per mg protein, P less than 0.05). However, neither hormone had an effect on the apparent Km for Ca2+ (4.1 +/- 0.5 microM) of the reaction. The effect of these hormones on the activity of Ca2+-stimulated ATPase was also studied. No significant changes in either V or Km for Ca2+ of the enzymatic reaction were detected.  相似文献   

16.
Studies were carried out using an isolated rat liver system to define: the contribution of exogenous phosphatidylcholine (PC) to biliary phospholipid secretion; and its hepatic metabolism during perfusion of the livers with conjugated bile salts with different hydrophilic/hydrophobic properties. A tracer dose of sn-1-palmitoyl-sn-2-[14C]linoleoylPC was injected as a bolus into the recirculating liver perfusate, under constant infusion of 0.75 mumol/min of tauroursodeoxycholate or taurodeoxycholate. The effects on bile flow, biliary lipid secretion, 14C disappearance from the perfusate and its appearance in bile, as well as hepatic and biliary biotransformation were determined. With both the bile salts, about 40% of the [14C]PC was taken up by the liver from the perfusate over 100 min. During the same period less than 2% of the given radioactivity was secreted into bile. More than 95% of the 14C recovered in bile was located within the identical injected PC molecular species. The biliary secretion of labeled as well as unlabeled PC, however, was significantly higher in livers perfused with taurodeoxycholate than tauroursodeoxycholate, while the reverse was observed with respect to bile flow and total bile salt secretion. The exogenous PC underwent extensive hepatic metabolization which appeared to be influenced by the type of bile salt perfusing the liver. After 2 h perfusion, the liver radioactivity was found, in decreasing order, in PC, triacylglycerol, phosphatidylethanolamine and diacylglycerol. In addition, the specific activity of triacylglycerol was significantly higher in tauroursodeoxycholate than in taurodeoxycholate-perfused livers (P less than 0.025), while the reverse was true for the specific activity of hepatic PC (P less than 0.01). Because taurodeoxycholate and tauroursodeoxycholate showed opposite effects on both biliary lipid secretion and hepatic PC biotransformations, we conclude that the hepatic metabolism of glycerolipids is influenced by the physiochemical properties of bile salts.  相似文献   

17.
Like rat C apolipoproteins, each of the C apolipoproteins from human blood plasma (C-I, C-II, C-III-1, and C-III-2) bound to small chylomicrons from mesenteric lymph of estradiol-treated rats and inhibited their uptake by the isolated perfused rat liver. This inhibitory effect of the C apolipoproteins was independent of apolipoprotein E, which is present only in trace amounts in these chylomicrons. Addition of rat apolipoprotein E to small chylomicrons from mesenteric lymph of normal rats did not displace C apolipoproteins and had no effect on the uptake of these particles by the perfused liver, indicating that an increased ratio of E apolipoproteins to C apolipoproteins on chylomicron particles, unaccompanied by depletion of the latter, may not promote recognition by the chylomicron remnant receptor. The hepatic uptake of remnants of rat hepatic very low density lipoproteins (VLDL) and small chylomicrons, which had been produced in functionally eviscerated rats, was also inhibited by addition of C apolipoproteins. These observations are consistent with the hypothesis that the addition of all of the C apolipoproteins to newly secreted chylomicrons and VLDL inhibits premature uptake of these particles by the liver and that depletion of all of these apolipoproteins from remnant particles facilitates their hepatic uptake. Remnants of chylomicrons and VLDL incubated with rat C apolipoproteins efficiently took up C-III apolipoproteins, but not apolipoprotein C-II (the activator protein for lipoprotein lipase). Preferential loss of apolipoprotein C-II during remnant formation may regulate the termination of triglyceride hydrolysis prior to complete removal of triglycerides from chylomicrons and VLDL.  相似文献   

18.
An isolated, thermally regulated, perfused rat liver model system is presented. The model was developed to evaluate thermal methods to quantify perfusion in small volumes of tissue. The surgically isolated rat liver is perfused with an isothermal oxygenated Krebs-Ringer bicarbonate buffer solution via the cannulated portal vein. A constant-pressure head variable-resistance scheme is utilized to control the total flow to the liver. Total flow is quantified by hepatic vein collection. The spatial distribution of perfusion within the liver is determined using two independent methods. In the first method, radio-labelled microspheres are injected into the portal vein, and the regional flow distribution is determined from the relative radioactivity of each section of tissue. In the second method, the tissue is thermally perturbed, and the time constant of the tissue temperature recovery is measured. The regional distribution is determined from the relative time constants of each section of tissue. Both methods require the measurement of total liver flow to determine the absolute perfusion at each point. Results obtained by the two methods were well correlated (0.973). The rat liver system offers a stable, controllable, and measurable perfusion model for the evaluation of new perfusion measurement techniques.  相似文献   

19.
Since in the usual perfusion of isolated rat liver via the portal vein an insulin-dependent increase of hepatic glucose uptake could not be demonstrated, the possibility was considered that hepatic glucose uptake might not be a function of the absolute concentration of this substrate but of its concentration gradient between the portal vein and the hepatic artery. Therefore a new method was established for the simultaneous perfusion of isolated rat liver via both the hepatic artery (20-35% flow) and the portal vein (80-65% flow). When glucose was offered in a concentration gradient, 9.5 mM in the portal vein and 6 mM in the hepatic artery, insulin given via both vessels caused a shift from net glucose release to uptake. This insulin-dependent shift was not observed when glucose was offered without a gradient or with an inverse gradient, 6 mM in the portal vein and 9.5 mM in the hepatic artery. Using a portal-arterial glucose gradient as a signal the liver might be able to differentiate between endogenous and exogenous glucose.  相似文献   

20.
A number of organic anions are known to decrease biliary secretion of cholesterol and phospholipid without affecting bile acid secretion. Cyclobutyrol (CB) is a choleretic agent which also inhibits biliary lipid secretion. Using isolated perfused rat liver we have studied this inhibition in relation to possible mechanisms suggested for other anions. Shortly after its administration to the isolated perfused liver, CB decreases biliary outputs of cholesterol and phospholipid, without changes in bile acid secretion, at low (450 nmol/min), high (1350 nmol/min) and nil taurocholate infusion rates. The absolute inhibition does not appear to be decreased by elevated bile acid secretion. There is a differential effect on secretion of cholesterol and phospholipid, more marked at low bile acid secretion rates. Biliary outputs of the canalicular membrane enzymes 5'-nucleotidase and alkaline phosphodiesterase I are also depressed by CB administration, but the anion does not affect the biliary output of bovine serum albumin or the output of rat serum albumin into the perfusion fluid. Since CB does not inhibit intracellular vesicular transport or apparently inhibit intracanalicular events, its effect is different from the effect of several other anions. From these studies it appears that the most likely effect of CB is exerted at the level of the canalicular membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号