首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vibronic theory of activation and quantum chemical intermediate neglect of differential overlap (INDO) calculations are used to study the activation of carbon monoxide (change of the C-O bond index and force field constant) by the imidazole complex with heme in dependence on the distortion of the porphyrin ring, geometry of the CO coordination, iron-carbon and iron-imidazole distances, iron displacement out of the porphyrin plane, and presence of the charged groups in the heme environment. It is shown that the main contribution to the CO activation stems from the change in the sigma donation from the 5 sigma CO orbital to iron, and back-bonding from the iron to the 2 pi orbital of CO. It follows from the results that none of the studied distortions can explain, by itself, the wide variation of the C-O vibrational frequency in the experimentally studied model compounds and heme proteins. To study the dependence of the properties of the FeCO unit on the presence of charged groups in the heme environment, the latter are simulated by the homogeneous electric field and point charges of different magnitude and location. The results show that charged groups can strongly affect the strength of the C-O bond and its vibrational frequency. It is found that the charges located on the distal side of the heme plane can affect the Fe-C and C-O bond indexes (and, consequently, the Fe-C and C-O vibrational frequencies), both in the same and in opposite directions, depending on their position. The theoretical results allow us to understand the peculiarities of the effect of charged groups on the properties of the FeCO unit both in heme proteins and in their model compounds.  相似文献   

2.
3.
4.
We have carried out a structural and vibrational study for 5-phenyl-1,3,4-oxadiazole-2-thiol by using the infrared (IR) spectrum and theoretical calculations. For a complete assignment of the compound IR spectrum, density functional theory calculations were combined with Pulay's scaled quantum mechanical force field methodology in order to fit the theoretical wavenumber values to the experimental ones. An agreement between theoretical and available experimental results was found. The theoretical vibrational calculations allowed us to obtain a set of scaled force constants fitting the observed wavenumbers. The results were then used to predict the Raman spectra, for which there are no experimental data. The nature of the benzyl and oxadiazole rings was studied by means of natural bond order and atoms in molecules theory calculations. In addition, the frontier molecular (highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO)) orbitals were analysed and compared with those calculated for the oxadiazole molecule.  相似文献   

5.
6.
7.
In the heme-based oxygen sensor protein FixL, conformational changes induced by oxygen binding to the heme sensor domain regulate the activity of a neighboring histidine kinase, eventually restricting expression of specific genes to hypoxic conditions. The conserved arginine 220 residue is suggested to play a key role in the signal transduction mechanism. To obtain detailed insights into the role of this residue, we replaced Arg(220) by histidine (R220H), glutamine (R220Q), glutamate (R220E), and isoleucine (R220I) in the heme domain FixLH from Bradyrhizobium japonicum. These mutations resulted in dramatic changes in the O(2) affinity with K(d) values in the order R220I < R220Q < wild type < R220H. For the R220H and R220Q mutants, residue 220 interacts with the bound O(2) or CO ligands, as seen by resonance Raman spectroscopy. For the oxy-adducts, this H-bond modifies the pi acidity of the O(2) ligand, and its strength is correlated with the back-bonding-sensitive nu(4) frequency, the k(off) value for O(2) dissociation, and heme core-size conformational changes. This effect is especially strong for the wild-type protein where Arg(220) is, in addition, positively charged. These observations strongly suggest that neither strong ligand fixation nor the displacement of residue 220 into the heme distal pocket are solely responsible for the reported heme conformational changes associated with kinase activity regulation, but that a significant decrease of the heme pi(*) electron density because of strong back-bonding toward the oxygen ligand also plays a key role.  相似文献   

8.
The heme-containing protein CooA of Rhodospirillum rubrum regulates the expression of genes involved in CO oxidation. CooA binds its target DNA sequence in response to CO binding to its heme. Activity measurements and resonance Raman (RR) spectra are reported for CooA variants that bind DNA even in the absence of CO, those in which the wild-type residues at the 121-126 positions, TSCMRT, are replaced by the residues AYLLRL or RYLLRL, and also for variants that bind DNA poorly in the presence of CO, such as L120S and L120F. The Fe-C and C-O stretching resonance Raman (RR) frequencies of all CooAs examined deviate from the expected back-bonding correlation in a manner indicating weakening of the Fe-His-77 proximal ligand bond, and the extent of weakening correlates positively with DNA binding activity. The (A/R) YLLRL variants have detectable populations of a 5-coordinate heme resulting from partial dissociation of the endogenous distal ligand, Pro-2. Selective excitation of this population reveals downshifted Fe-His-77-stretching RR bands, confirming the proximal bond weakening. These results support our previous hypothesis that the conformational change required for DNA binding is initiated by displacement of the heme into an adjacent hydrophobic cavity once CO displaces the Pro-2 ligand. Examination of the crystal structure reveals a physical basis for these results, and a mechanism is proposed to link heme displacement to conformational change.  相似文献   

9.
10.
11.
The Heme Nitric oxide/OXygen binding (H-NOX) family of proteins have important functions in gaseous ligand signaling in organisms from bacteria to humans, including nitric oxide (NO) sensing in mammals, and provide a model system for probing ligand selectivity in hemoproteins. A unique vibrational feature that is ubiquitous throughout the H-NOX family is the presence of a high C-O stretching frequency. To investigate the cause of this spectroscopic characteristic, the Fe-CO and C-O stretching frequencies were probed in the H-NOX domain from Thermoanaerobacter tengcongensis (Tt H-NOX) using resonance Raman (RR) spectroscopy. Four classes of heme pocket mutants were generated to assess the changes in stretching frequency: (i) the distal H-bonding network, (ii) the proximal histidine ligand, (iii) modulation of the heme conformation via Ile-5 and Pro-115, and (iv) the conserved Tyr-Ser-Arg (YxSxR) motif. These mutations revealed important electrostatic interactions that dampen the back-donation of the Fe(II) d(π) electrons into the CO π* orbitals. The most significant change occurred upon disruption of the H-bonds between the strictly conserved YxSxR motif and the heme propionate groups, producing two dominant CO-bound heme conformations. One conformer was structurally similar to Tt H-NOX WT, whereas the other displayed a decrease in ν(C-O) of up to ~70 cm(-1) relative to the WT protein, with minimal changes in ν(Fe-CO). Taken together, these results show that the electrostatic interactions in the Tt H-NOX binding pocket are primarily responsible for the high ν(C-O) by decreasing the Fe d(π) → CO π* back-donation and suggest that the dominant mechanism by which this family modulates the Fe(II)-CO bond likely involves the YxSxR motif.  相似文献   

12.
The proton resonances of the heme, the axial ligands, and other hyperfine-shifted resonances in the 1H nuclear magnetic resonance spectrum of horse ferricytochrome c have been investigated by means of one- and two-dimensional nuclear Overhauser and magnetization transfer methods. Conditions for saturation transfer experiments in mixtures of ferro- and ferricytochrome c were optimized for the cross assignment of corresponding resonances in the two oxidation states. New resonance assignments were obtained for the methine protons of both thioether bridges, the beta and gamma meso protons, the propionate six heme substituent, the N pi H of His-18, and the Tyr-67 OH. In addition, several recently reported assignments were confirmed. All of the resolved hyperfine-shifted resonances in the spectrum of ferricytochrome c are now identified. The Fermi contact shifts experienced by the heme and ligand protons are discussed.  相似文献   

13.
In the present paper, the bipyrazine and bi-(N-methylpyridine) dication systems are studied. Charge distributions and occupied and unoccupied molecular orbitals, obtained from semiempirical MNDO calculations, are reported as functions of the length of the -chain connecting the pyrazine/pyridine fragments. Single CI calculations, using ZINDO, are performed, and the transition energies and oscillator strengths for various vertical excitations from the ground state, along with the excited state dipole moments, are reported. The concepts of broken symmetry and localized excitations, to enhance the charge transfer in this class of compounds, are discussed. Comparison with theoretical and experimental studies of core photoionization and valence-excitation in nitrogen-containing molecules is made.  相似文献   

14.
Nutt DR  Meuwly M 《Biophysical journal》2003,85(6):3612-3623
Molecular dynamics simulations of the photodissociated state of carbonmonoxy myoglobin (MbCO) are presented using a fluctuating charge model for CO. A new three-point charge model is fitted to high-level ab initio calculations of the dipole and quadrupole moment functions taken from the literature. The infrared spectrum of the CO molecule in the heme pocket is calculated using the dipole moment time autocorrelation function and shows good agreement with experiment. In particular, the new model reproduces the experimentally observed splitting of the CO absorption spectrum. The splitting of 3-7 cm(-1) (compared to the experimental value of 10 cm(-1)) can be directly attributed to the two possible orientations of CO within the docking site at the edge of the distal heme pocket (the B states), as previously suggested on the basis of experimental femtosecond time-resolved infrared studies. Further information on the time evolution of the position and orientation of the CO molecule is obtained and analyzed. The calculated difference in the free energy between the two possible orientations (Fe...CO and Fe...OC) is 0.3 kcal mol(-1) and agrees well with the experimentally estimated value of 0.29 kcal mol(-1). A comparison of the new fluctuating charge model with an established fixed charge model reveals some differences that may be critical for the correct prediction of the infrared spectrum and energy barriers. The photodissociation of CO from the myoglobin mutant L29F using the new model shows rapid escape of CO from the distal heme pocket, in good agreement with recent experimental data. The effect of the protein environment on the multipole moments of the CO ligand is investigated and taken into account in a refined model. Molecular dynamics simulations with this refined model are in agreement with the calculations based on the gas-phase model. However, it is demonstrated that even small changes in the electrostatics of CO alter the details of the dynamics.  相似文献   

15.
13C, 17O and 57Fe NMR spectra of several carbonmonoxy hemoprotein models with varying polar and steric effects of the distal organic superstructure, constraints of the proximal side, and porphyrin ruffling are reported. Both heme models and heme proteins obey a similar excellent linear delta(13C) versus nu(C-O) relationship which is primarily due to modulation of pi-back-bonding from the Fe d(pi) to CO pi* orbital by the distal pocket polar interactions. The lack of correlation between delta(13C) and delta(17O) suggests that the two probes do not reflect a similar type of electronic and structural perturbation. delta(17O) is not primarily influenced by the local distal field interactions and does not correlate with any single structural property of the Fe-C-O unit; however, atropisomerism and deformation of the porphyrin geometry appear to play a significant role. 57Fe shieldings vary by nearly 900 ppm among various hemes and an excellent correlation was found between delta(57Fe) and the absolute crystallographic average displacement of the meso carbon atoms, /Cm/, relative to the porphyrin core mean plane. The excellent correlation between iron-57 shieldings and the average shieldings of the meso carbons of the porphyrin skeleton of TPP derivatives suggests that the two probes reflect a similar type of electronic and structural perturbation which is primarily porphyrin ruffling.  相似文献   

16.
The M?ssbauer effect in Fe(57) has been used to study the molecules, hemoglobin, O(2)-hemoglobin, CO(2)-hemoglobin, and CO-hemoglobin (within red cells) and the molecules, hemin and hematin (in the crystalline state). Quadrupole splittings and isomeric shifts observed in the M?ssbauer spectra of these molecules are tabulated. The temperature dependence of the quadrupole splitting and relative recoil-free fraction for hemoglobin with different ligands has been investigated. An estimate of the Debye-Waller factor in O(2)-hemoglobin at 5 degrees K is 0.83. An asymmetry in the quadrupole splitting observed in hemoglobin is attributed to a directional dependence of the recoil-free fraction which establishes the sign of the electric field gradient in the molecule and indicates that the lowest lying d orbital of the Fe atoms is |xy>. This asymmetry indicates that the iron atoms in hemoglobin are vibrating farther perpendicular to the heme planes than parallel to them, and, in fact, the ratio of the mean square displacements perpendicular and parallel to the heme planes in hemoglobin is approximately 5.5 at 5 degrees K. The temperature dependence of the quadrupole splitting in hemoglobin has been used to estimate a splitting between the lowest lying iron atom d orbitals of approximately 420 cm(-1).  相似文献   

17.
The Self Consistent Modified Extended Hückel (SC-MEH) molecular orbital method has been applied to the HCo(CO)4 and Co(CO)4 molecules. The results show that the highest occupied orbitals are predominantly ligand in character, which is at variance with other published calculations. Computation of the UV and photoelectron spectra, bond energy and some associated parameters, and magnetic hyperfine parameters of Co(CO)4 have been carried out and found to be in exceptionally good agreement with experiment. The reported results also provide an acceptable rationalization for the observed photolysis and homolytic activity of the HCo(CO)4 molecule.  相似文献   

18.
19.
20.
Mechanisms of cytochrome P-450 catalysis   总被引:8,自引:0,他引:8  
Cytochrome P-450 (P-450) enzymes catalyze the oxidation of a wide variety of substrates. Although a large number of P-450s have been characterized in different species and tissues, the mechanisms of catalysis of oxygenation may be understood in terms of a few basic principles. The chemistry is dominated by the ability of a high-valent formal (FeO)3+ species to carry out one-electron oxidations through the abstraction of hydrogen atoms, abstraction of electrons in n or pi orbitals, or the addition to pi bonds. A series of radical recombination reactions then completes the oxidation process. The protein structures are postulated to provide the axial thiolate ligand to the heme, to control the juxtaposition of the substrate (and therefore the regio- and stereoselectivity of oxidation), to alter the effective oxidation potential of the (FeO)3+ complex, and possibly to participate in specific acid/base catalysis in the oxidation of some substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号