首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The protein FkpA from the periplasm of Escherichia coli exhibits both cis/trans peptidyl-prolyl isomerase (PPIase) and chaperone activities. The crystal structure of the protein has been determined in three different forms: as the full-length native molecule, as a truncated form lacking the last 21 residues, and as the same truncated form in complex with the immunosuppressant ligand, FK506. FkpA is a dimeric molecule in which the 245-residue subunit is divided into two domains. The N-terminal domain includes three helices that are interlaced with those of the other subunit to provide all inter-subunit contacts maintaining the dimeric species. The C-terminal domain, which belongs to the FK506-binding protein (FKBP) family, binds the FK506 ligand. The overall form of the dimer is V-shaped, and the different crystal structures reveal a flexibility in the relative orientation of the two C-terminal domains located at the extremities of the V. The deletion mutant FkpNL, comprising the N-terminal domain only, exists in solution as a mixture of monomeric and dimeric species, and exhibits chaperone activity. By contrast, a deletion mutant comprising the C-terminal domain only is monomeric, and although it shows PPIase activity, it is devoid of chaperone function. These results suggest that the chaperone and catalytic activities reside in the N and C-terminal domains, respectively. Accordingly, the observed mobility of the C-terminal domains of the dimeric molecule could effectively adapt these two independent folding functions of FkpA to polypeptide substrates.  相似文献   

2.
Xiao H  Jackson V  Lei M 《FEBS letters》2006,580(18):4357-4364
Fpr4, a FK506-binding protein (FKBP), is a recently identified novel histone chaperone. How it interacts with histones and facilitates their deposition onto DNA, however, are not understood. Here, we report a functional analysis that shows Fpr4 forms complexes with histones and facilitates nucleosome assembly like previously characterized acidic histone chaperones. We also show that the chaperone activity of Fpr4 resides solely in an acidic domain, while the peptidylprolyl isomerase domain conserved among all FKBPs inhibits the chaperone activity. These observations argue that Fpr4, while unique structurally, deposits histones onto DNA for nucleosome assembly through the well-established mechanism shared by other chaperones.  相似文献   

3.
The FK506-binding protein 38 (FKBP38) is a pro-apoptotic regulator of Bcl-2 in neuroblastoma cells. Hsp90 inhibits the pro-apoptotic FKBP38/CaM/Ca(2+) complex and thus prevents interactions between FKBP38 and Bcl-2. Here we show that Hsp90 increases cell survival rates of neuroblastoma cells after apoptosis induction. Depletion of FKBP38 by short interference RNA significantly decreased the anti-apoptotic effect of Hsp90 expression. In addition, the influence of high cellular Hsp90 levels was only observed in post-stimulation apoptosis that is sensitive to selective FKBP38 active site inhibition. Similar anti-apoptotic effects in neuroblastoma cells were observed after stimulation of endogenous Hsp90 expression. Hence, the inhibition of FKBP38 by Hsp90 participates in programmed cell death control of neuroblastoma cells.  相似文献   

4.
Suzuki Y  Win OY  Koga Y  Takano K  Kanaya S 《FEBS letters》2005,579(25):5781-5784
SIB1 FKBP22 is a homodimer, with each subunit consisting of the C-terminal catalytic domain and N-terminal dimerization domain. This protein exhibits peptidyl prolyl cis-trans isomerase activity for both peptide and protein substrates. However, truncation of the N-terminal domain greatly reduces the activity only for a protein substrate. Using surface plasmon resonance, we showed that SIB1 FKBP22 loses the binding ability to a folding intermediate of protein upon truncation of the N-terminal domain but does not lose it upon truncation of the C-terminal domain. We propose that the binding site of SIB1 FKBP22 to a protein substrate of PPIase is located at the N-terminal domain.  相似文献   

5.
We have solved the solution structure of the peptidyl-prolyl cis-trans isomerase (PPIase) domain of the trigger factor from Mycoplasma genitalium by homo- and heteronuclear NMR spectroscopy. Our results lead to a well-defined structure with a backbone rmsd of 0.23 A. As predicted, the PPIase domain of the trigger factor adopts the FK506 binding protein (FKBP) fold. Furthermore, our NMR relaxation data indicate that the dynamic behavior of the trigger factor PPIase domain and of FKBP are similar. Structural variations when compared to FKBP exist in the flap region and within the bulges of strand 5 of the beta sheet. Although the active-site crevice is similar to that of FKBP, subtle steric variations in this region can explain why FK506 does not bind to the trigger factor. Sequence variability (27% identity) between trigger factor and FKBP results in significant differences in surface charge distribution and the absence of the first strand of the central beta sheet. Our data indicate, however, that this strand may be partially structured as "nascent" beta strand. This makes the trigger factor PPIase domain the most minimal representative of the FKBP like protein family of PPIases.  相似文献   

6.
Here we report the solution structure of an archaeal FK506-binding protein (FKBP) from a thermophilic archaeum, Methanococcus thermolithotrophicus (MtFKBP17), which has peptidyl prolyl cis-trans isomerase (PPIase) and chaperone-like activities, to reveal the structural basis for the dual function. In addition to a typical PPIase domain, a newly identified domain is formed in the flap loop by a 48-residue insert that is required for the chaperone-like activity. The new domain, called IF domain (the Insert in the Flap), is a novel-folding motif and exposes a hydrophobic surface, which we consider to play an important role in the chaperone-like activity.  相似文献   

7.
Peptidyl-prolyl isomerase (PPIase) activity is exhibited by many proteins belonging to the PPIase family. However, the catalytic mechanism of this activity remains to be completely elucidated. Here, we selected human FK506-binding protein 12 (FKBP12) as the model PPIase and investigated the nature of amino acid residues essential for the activity. The crystal structures of several complexes of PPIase with short peptides revealed that the residues Asp37, Arg42, Phe46, Val55, Trp59, and Tyr82 in the substrate-binding cavity of FKBP12 appear to play key roles in the PPIase activity. Each of these six residues was substituted by 20 common amino acid residues. The activity of each mutant protein was measured using a peptide analog by the chymotrypsin digestion assay and then compared with wild-type FKBP12. It was found that site-specific interactions by the side chains of amino acid residues constituting the substrate-binding cavity were not essential for the PPIase activity, although the 37th, 55th, and 82nd amino acid residues significantly contributed to the activity. This suggests that the PPIase activity requires only the hydrophobic cavity that captures the Pro-containing peptide.  相似文献   

8.
Peptidyl-prolyl cis-trans-isomerases (PPIases) are enzymes that can cis-trans-isomerize a Xaa-Pro peptide bond. Three families of PPIases are known: cyclophilins, FKBPs, and parvulins. The physiological functions of the PPIases are only poorly understood. In previous work, we reported that the mouse FK506-binding protein 23 (mFKBP23), which comprises an N-terminal PPIase domain and a C-terminal domain with Ca(2+)-binding sites, binds to mBiP in the endoplasmic reticulum (ER) and this binding is affected by the Ca(2+) concentration. In this study, we demonstrate the ability of mFKBP23 to modulate the ATPase activity of BiP, and that the bound mFKBP23, but not the free mFKBP23, can suppress the ATPase activity of mBiP through its PPIase activity.  相似文献   

9.
Proline-directed protein phosphorylation was shown to depend on the capacity of the targeted Ser(Thr)-Pro bond to exhibit conformational polymorphism. The cis/trans isomer specificity underlying ERK2-catalyzed phosphate transfer leads to a complete discrimination of the cis Ser(Thr)-Pro conformer of oligopeptide substrates. We investigated in vitro the ERK2-catalyzed phosphorylation of Aspergillus oryzae RNase T1 containing two Ser-Pro bonds both of which share high stabilization energy in their respective native state conformation, the cis Ser54-Pro and the trans Ser72-Pro moiety. Despite trans isomer specificity of ERK2, a doubly phosphorylated RNase T1 was found as the final reaction product. Similarly, the RNase T1 S54G/P55N and RNase T1 P73V variants, which retain the prolyl bond conformations of the RNase T1-wt, were both monophosphorylated with a catalytic efficiency kcat/KM of 425 M(-1) s(-1) and 1228 M(-1) s(-1), respectively. However, initial phosphorylation rates did not depend linearly on the ERK2 concentration. The phosphorylation rate of the resulting plateau region at high ERK2 concentrations can be increased up to threefold for the RNase T1 P73V variant in the presence of the peptidyl-prolyl cis/trans isomerase Cyclophilin 18, indicating a conformational interconversion as the rate limiting step in the catalyzed phosphate group transfer. Using peptidyl-prolyl cis/trans isomerases with different substrate specificity, we identified a native state conformational equilibrium of the Ser54-Pro bond with the minor trans Ser54-Pro bond as the phosphorylation-sensitive moiety. This technique can therefore be used for a determination of the ratio and the interconversion rates of prolyl bond isomers in the native state of proteins.  相似文献   

10.
FKBP12 encodes a prolyl isomerase and highly conserved in eukaryotic species. In yeasts and animals, FKBP12 can interact with rapamycin and FK506 to form rapamycin-FKBP12 and FK506-FKBP12 complex, respectively. In higher plants, FKBP12 protein lost its function to bind rapamycin and FK506. Early studies showed that yeast and human FKBP12 protein can restore the rapamycin sensitivity in Arabidopsis, but the used concentration is 100–1000 folds higher than that in yeast and animals. High concentration of drugs would increase the cost and cause the potential secondary effects on plant growth and development. Here we further discovered that BP12 plants generated in our previous study are hypersensitive to rapamycin at the concentration as low as that is effective in yeast and animals. It is surprising to observe that WT and BP12 plants are not sensitive to FK506 in normal growth condition. These findings advance the current understanding of rapamycin-TOR signaling in plants.  相似文献   

11.
c-Jun N-terminal kinase (JNK) is activated by dual phosphorylation of both threonine and tyrosine residues in the phosphorylation loop of the protein in response to several stress factors. However, the precise molecular mechanisms for activation after phosphorylation remain elusive. Here we show that Pin1, a peptidyl-prolyl isomerase, has a key role in the JNK1 activation process by modulating a phospho-Thr-Pro motif in the phosphorylation loop. Pin1 overexpression in human breast cancer cell lines correlates with increased JNK activity. In addition, small interfering RNA (siRNA) analyses showed that knockdown of Pin1 in a human breast cancer cell line decreased JNK1 activity. Pin1 associates with JNK1, and then catalyzes prolyl isomerization of the phospho-Thr-Pro motif in JNK1 from trans- to cis-conformation. Furthermore, Pin1 enhances the association of JNK1 with its substrates. As a result, Pin1(-/-) cells are defective in JNK activation and resistant to oxidative stress. These results provide novel insights that, following stress-induced phosphorylation of Thr in the Thr-Pro motif of JNK1, JNK1 associates with Pin1 and undergoes conformational changes to promote the binding of JNK1 to its substrates, resulting in cellular responses from extracellular signals.  相似文献   

12.
Cyclophilins (CyPs) are a widespreading protein family in living organisms and possess the activity of peptidyl-prolyl cis-trans isomerase (PPIase), which is inhibited by cyclosporin A (CsA). The human nuclear cyclophilin (hCyP33) is the first protein which was found to contain two RNA binding domains at the amino-terminus and a PPIase domain at the carboxyl-terminus. We isolated the hCyP33 gene from the human hematopoietic stem/progenitor cells and expressed it in Escherichia coli, and determined the crystal structure of the C domain of hCyP33 at 1.88 A resolution. The core structure is a beta-barrel covered by two alpha-helices. Superposition of the structure of the C domain of hCyP33 with the structure of CypA suggests that the C domain contains PPIase active site which binds to CsA. Furthermore, C domain seems to be able to bind with the Gag-encoded capsid (CA) of HIV-1 and may affect the viral replication of HIV-1. A key residue of the active site is changed from Ala-103-CypA to Ser-239-hCyP33, which may affect the PPIase domain/substrates interactions.  相似文献   

13.
The relation between conformational dynamics and chemistry in enzyme catalysis recently has received increasing attention. While, in the past, the mechanochemical coupling was mainly attributed to molecular motors, nowadays, it seems that this linkage is far more general. Single-molecule fluorescence methods are perfectly suited to directly evidence conformational flexibility and dynamics. By labeling the enzyme SlyD, a member of peptidyl-prolyl cis-trans isomerases of the FK506 binding protein type with an inserted chaperone domain, with donor and acceptor fluorophores for single-molecule fluorescence resonance energy transfer, we directly monitor conformational flexibility and conformational dynamics between the chaperone domain and the FK506 binding protein domain. We find a broad distribution of distances between the labels with two main maxima, which we attribute to an open conformation and to a closed conformation of the enzyme. Correlation analysis demonstrates that the conformations exchange on a rate in the 100 Hz range. With the aid from Monte Carlo simulations, we show that there must be conformational flexibility beyond the two main conformational states. Interestingly, neither the conformational distribution nor the dynamics is significantly altered upon binding of substrates or other known binding partners. Based on these experimental findings, we propose a model where the conformational dynamics is used to search the conformation enabling the chemical step, which also explains the remarkable substrate promiscuity connected with a high efficiency of this class of peptidyl-prolyl cis-trans isomerases.  相似文献   

14.
E. coli Par10 is a peptidyl-prolyl cis/trans isomerase (PPIase) from Escherichia coli catalyzing the isomerization of Xaa-Pro bonds in oligopeptides with a broad substrate specificity. The structure of E. coli Par10 has been determined by multidimensional solution-state NMR spectroscopy based on 1207 conformational constraints (1067 NOE-derived distances, 42 vicinal coupling-constant restraints, 30 hydrogen-bond restraints, and 68 phi/psi restraints derived from the Chemical Shift Index). Simulated-annealing calculations with the program ARIA and subsequent refinement with XPLOR yielded a set of 18 convergent structures with an average backbone RMSD from mean atomic coordinates of 0.50 A within the well-defined secondary structure elements. E. coli Par10 is the smallest known PPIase so far, with a high catalytic efficiency comparable to that of FKBPs and cyclophilins. The secondary structure of E. coli Par10 consists of four helical regions and a four-stranded antiparallel beta-sheet. The N terminus forms a beta-strand, followed by a large stretch comprising three alpha-helices. A loop region containing a short beta-strand separates these helices from a fourth alpha-helix. The C terminus consists of two more beta-strands completing the four-stranded anti-parallel beta-sheet with strand order 2143. Interestingly, the third beta-strand includes a Gly-Pro cis peptide bond. The curved beta-strand forms a hydrophobic binding pocket together with alpha-helix 4, which also contains a number of highly conserved residues. The three-dimensional structure of Par10 closely resembles that of the human proteins hPin1 and hPar14 and the plant protein Pin1At, belonging to the same family of highly homologous proteins.  相似文献   

15.
We present the three-dimensional structure of the N-terminal FK506-binding protein (FKBP)-like domain of the immunophilin FKBP42 from Arabidopsis thaliana. The data provide the structural background for the explanation of key functional properties reported previously.  相似文献   

16.
The WW module of the peptidyl-prolyl cis/trans isomerase Pin1 targets specifically phosphorylated proteins involved in the cell cycle through the recognition of phospho-Thr(Ser)-Pro motifs. When the microtubule-associated Tau protein becomes hyperphosphorylated, it equally becomes a substrate for Pin1, with two recognition sites described around the phosphorylated Thr212 and Thr231. The Pin1 WW domain binds both sites with moderate affinity, but only the Thr212-Pro213 bond is isomerized by the catalytic domain of Pin1. We show here that, in a peptide carrying a single recognition site, the WW module increases significantly the enzymatic isomerase activity of Pin1. However, with addition of a second recognition motif, the affinity of both the WW and catalytic domain for the substrate increases, but the isomerization efficacy decreases. We therefore conclude that the WW domain can act as a negative regulator of enzymatic activity when multiple phosphorylation is present, thereby suggesting a subtle mechanism of its functional regulation.  相似文献   

17.
Aggregation of alpha-synuclein (α-SYN) plays a key role in Parkinson's disease. We have previously shown that aggregation of α-SYN in vitro is accelerated by addition of FK506 binding proteins (FKBP) and that this effect can be counteracted by FK506, a specific inhibitor of these enzymes. In this paper, we investigated in detail the effect of FKBP12 on early aggregation and on fibril formation of wild-type, A53T and A30P α-SYN. FKBP12 has a much smaller effect on the fibril formation of these two clinical mutants α-SYN. Using an inactive enzyme, we were able to discriminate between catalytic and non-catalytic effects that differentially influence the two processes. A model explaining non-linear concentration dependencies is proposed.  相似文献   

18.
19.
20.
Fanghänel J  Akiyama H  Uchida C  Uchida T 《FEBS letters》2006,580(13):3237-3245
We investigated the enzyme activity of peptidyl prolyl cis/trans isomerases (PPIases) in brain, testis, lung, liver, and mouse embryonic fibroblasts (MEF) of Pin1+/+ and Pin1-/- mice. The aim of this study is to determine if other PPIases can substitute for the loss of Pin1 activity in Pin1-/- mice and what influence Pin1 depletion has on the activities of other PPIases members. The results show that high PPIase activities of Pin1 are found in organs that have the tendency to develop Pin1 knockout phenotypes and, therefore, provide for the first time an enzymological basis for these observations. Furthermore we determined the specific activity (k(cat)/K(M)) of endogenous Pin1 and found that it is strongly reduced as compared with the recombinant protein in all investigated organs. These results suggest that posttranslational modifications may influence the PPIase activity in vivo. The activities originating from cyclophilin and FKBP are not influenced by the Pin1 knockout, but a basal enzymatic activity towards phosphorylated substrates could be found in Pin1-/- lysates. Real time PCR experiments of all PPIases in different mouse organs and MEF of Pin1+/+ and Pin1-/- mice support the finding and reveal the specific expression profiles of PPIases in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号