首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cross-protection has already been demonstrated in mice after vaccination with a CaCl2 extract from the Neisseria meningitidis group Y Slaterus strain. The immunogenicity of such extracts from group Y cells, cultivated in a fermenter in Neisseria chemically defined medium, against virulent groups A, B, and C meningococci has been evaluated by two different animal models and a microbactericidal procedure. The mouse challenge system has revealed that the active cross-production observed 7 days after a single immunization with the extract was probably nonspecific, since bacillus Calmette-Guérin gave similar results. However, after three vaccinations, active cross-protection was observed, mainly against the strains of groups B and C, for at least 35 days after the last injection. In the mouse bacteremia model, the extract had a protective effect mainly against the homologous group Y strain but in a few experiments a significant protection was also obtained against the strains of groups A and B. The microbactericidal test revealed that even after three injections of mice, guinea pigs, or humans with the extract only the homologous bactericidal activity was induced. Since there was no close correlation between the results obtained with the two animal models and also with the microbactericidal procedure, no definitive conclusion can be drawn on the protective potential of our extract.  相似文献   

2.
Mice mounting an acute phase response, induced by sterile inflammation after a single s.c. injection of casein 24 h beforehand, were remarkably protected against lethal infection with Gram-positive or Gram-negative bacteria. This was associated with enhanced early clearance of bacteremia, greater phagocytosis and oxidative burst responses by neutrophils, and enhanced recruitment of neutrophils into tissues compared with control, nonacute phase mice. Casein-induced inflammation was also associated with increased concentrations of G-CSF in serum, and administration of neutralizing Ab to this cytokine completely abrogated protection against Escherichia coli infection after casein pretreatment. Injection of recombinant murine G-CSF between 3 and 24 h before infection conferred the same protection as casein injection. In contrast, the casein-induced acute phase response affected neither serum values of TNF-alpha, IL-1 beta, or IL-6 after E. coli infection nor susceptibility to LPS toxicity. Furthermore, protection against infection was unaffected in IL-1R knockout mice, which have deficient acute phase plasma protein responses, or after nonspecific inhibition of acute phase protein synthesis by D-galactosamine or specific depletion of complement C3 by cobra venom factor. Increased production of G-CSF in the acute phase response is thus a key physiological component of host defense, and pretreatment with G-CSF to prevent bacterial infection in at-risk patients now merits further study, especially in view of increasing bacterial resistance to antibiotics.  相似文献   

3.
This study investigated whether subcutaneous vaccination of mice with ribosomes from Candida albicans strain CBS 562 would also provide protection against infections by other isolates of Candida. Experiments with a total of 628 mice demonstrated that vaccination induced significant protection against heterologous C. albicans (serotypes A and B) and C. tropicalis isolates in terms of their 30 day survival rates. In all instances, however, protection was lower than that obtained against the homologous strain. In addition, a significant decrease in fungal colonization of the kidneys was found in immunized animals as compared to the non immunized controls. Cell-mediated immune responses against cytoplasmic extracts of the various fungi, as detected in vivo by the foot pad swelling test and in vitro by the lymphocyte transformation assay, were induced by the C. albicans ribosomal vaccination. The results show it is possible to induce cross protection to various Candida species by immunization with C. albicans ribosomes.  相似文献   

4.
Recombinant vesicular stomatitis virus (VSV) vectors expressing homologous filoviral glycoproteins can completely protect rhesus monkeys against Marburg virus when administered after exposure and can partially protect macaques after challenge with Zaire ebolavirus. Here, we administered a VSV vector expressing the Sudan ebolavirus (SEBOV) glycoprotein to four rhesus macaques shortly after exposure to SEBOV. All four animals survived SEBOV challenge, while a control animal that received a nonspecific vector developed fulminant SEBOV hemorrhagic fever and succumbed. This is the first demonstration of complete postexposure protection against an Ebola virus in nonhuman primates and provides further evidence that postexposure vaccination may have utility in treating exposures to filoviruses.  相似文献   

5.
Previous reports have established that vaccinia virus (VV) recombinants expressing G, F, or N protein of respiratory syncytial (RS) virus protect small animals against intranasal challenge with live RS virus. This work demonstrates that a variety of parameters affect the protection induced by recombinant viruses. The route of vaccination, the subtype of challenge virus, and the species used influenced the antibody titers and extent of protection. During these studies, observations were also made on the subclass of antibody generated, and pulmonary histopathological changes induced by challenge after vaccination were noted. The effect of route of inoculation on host response was examined by vaccinating mice intranasally, intraperitoneally, or by scarification with a recombinant VV expressing the RS virus G glycoprotein. Intranasal vaccination induced 25-fold-higher titers of antibody to RS virus in the lung than the intraperitoneal route did, but both routes resulted in complete suppression of virus replication after intranasal challenge 21 days after vaccination. Scarification was a less effective method of vaccination. The antibody induced by recombinant VV in mice was mostly immunoglobulin G2a (IgG2a) with some IgG2b. No antibody to RS virus was detected in the IgA, IgM, IgG1, or IgG3 subclass irrespective of the vaccination route. The G and F glycoproteins were shown to elicit similar subclasses of antibody. However, animals vaccinated with the G and F vectors differed strikingly in their response to challenge by heterologous virus. Mice or cotton rats vaccinated with recombinant VV carrying the G gene of RS virus were protected against challenge only with homologous subtype A virus. Vaccination with a recombinant VV expressing the F glycoprotein induced protection against both homologous and heterologous subtype B virus challenge. The protection induced in mice was greater than that detected in cotton rats, indicating that the host may also affect immunity. Finally, this report describes histological examination of mouse lungs after vaccination and challenge. Vaccinated mice that were subsequently challenged had significantly greater lung lesion scores than unvaccinated challenged mice. The lesions were primarily peribronchiolar and perivascular infiltrations of polymorphonuclear cells and lymphocytes. Further work will establish whether these pulmonary changes are a desirable immune response to virus invasion or a potential immunopathogenic hazard. The results have important implications for planning a strategy of vaccination against RS virus and emphasize potential dangers that may attend the use of recombinant VV as vaccines.  相似文献   

6.
Marburg virus (MARV) has been associated with sporadic episodes of hemorrhagic fever, including a recent highly publicized outbreak in Angola that produced severe disease and significant mortality in infected patients. MARV is also considered to have potential as a biological weapon. Recently, we reported the development of a promising attenuated, replication-competent vaccine against MARV based on recombinant vesicular stomatitis virus (VSV) expressing the glycoprotein of the Musoke strain of MARV (VSVDeltaG/MARVGP-Musoke). We used this vaccine to demonstrate complete protection of cynomolgus monkeys against a homologous MARV challenge. While these results are highly encouraging, an effective vaccine would need to confer protection against all relevant strains of MARV. Here, we evaluated the protective efficacy of the VSVDeltaG/MARVGP-Musoke vaccine against two heterologous MARV strains, the seemingly more pathogenic Angola strain and the more distantly related Ravn strain. In this study, seven cynomolgus monkeys were vaccinated with the VSVDeltaG/MARVGP-Musoke vector. Three of these animals were challenged with the Angola strain, three with the Ravn strain, and a single animal with the Musoke strain of MARV. Two animals served as controls and were each injected with a nonspecific VSV vector; these controls were challenged with the Angola and Ravn strains, respectively. Both controls succumbed to challenge by day 8. However, none of the specifically vaccinated animals showed any evidence of illness either from the vaccination or from the MARV challenges and all of these animals survived. These data suggest that the VSVDeltaG/MARVGP-Musoke vaccine should be sufficient to protect against all known MARV strains.  相似文献   

7.

Background

Live attenuated simian immunodeficiency virus (SIV) vaccines represent the most effective means of vaccinating macaques against pathogenic SIV challenge. However, thus far, protection has been demonstrated to be more effective against homologous than heterologous strains. Immune correlates of vaccine-induced protection have also been difficult to identify, particularly those measurable in the peripheral circulation.

Methodology/Principal Findings

Here we describe potent protection in 6 out of 8 Mauritian-derived cynomolgus macaques (MCM) against heterologous virus challenge with the pathogenic, uncloned SIVsmE660 viral stock following vaccination with live attenuated SIVmac251/C8. MCM provided a characterised host genetic background with limited Major Histocompatibility Complex (MHC) and TRIM5α allelic diversity. Early protection, observed as soon as 3 weeks post-vaccination, was comparable to that of 20 weeks vaccination. Recrudescence of vaccine virus was most pronounced in breakthrough cases where simultaneous identification of vaccine and challenge viruses by virus-specific PCR was indicative of active co-infection. Persistence of the vaccine virus in a range of lymphoid tissues was typified by a consistent level of SIV RNA positive cells in protected vaccinates. However, no association between MHC class I /II haplotype or TRIM5α polymorphism and study outcome was identified.

Conclusion/Significance

This SIV vaccine study, conducted in MHC-characterised MCM, demonstrated potent protection against the pathogenic, heterologous SIVsmE660 challenge stock after only 3 weeks vaccination. This level of protection against this viral stock by intravenous challenge has not been hitherto observed. The mechanism(s) of protection by vaccination with live attenuated SIV must account for the heterologous and early protection data described in this study, including those which relate to the innate immune system.  相似文献   

8.
Pre-emptive culling is becoming increasingly questioned as a means of controlling animal diseases, including classical swine fever (CSF). This has prompted discussions on the use of emergency vaccination to control future CSF outbreaks in domestic pigs. Despite a long history of safe use in endemic areas, there is a paucity of data on aspects important to emergency strategies, such as how rapidly CSFV vaccines would protect against transmission, and if this protection is equivalent for all viral genotypes, including highly divergent genotype 3 strains. To evaluate these questions, pigs were vaccinated with the Riemser® C-strain vaccine at 1, 3 and 5 days prior to challenge with genotype 2.1 and 3.3 challenge strains. The vaccine provided equivalent protection against clinical disease caused by for the two challenge strains and, as expected, protection was complete at 5 days post-vaccination. Substantial protection was achieved after 3 days, which was sufficient to prevent transmission of the 3.3 strain to animals in direct contact. Even by one day post-vaccination approximately half the animals were partially protected, and were able to control the infection, indicating that a reduction of the infectious potential is achieved very rapidly after vaccination. There was a close temporal correlation between T cell IFN-γ responses and protection. Interestingly, compared to responses of animals challenged 5 days after vaccination, challenge of animals 3 or 1 days post-vaccination resulted in impaired vaccine-induced T cell responses. This, together with the failure to detect a T cell IFN-γ response in unprotected and unvaccinated animals, indicates that virulent CSFV can inhibit the potent antiviral host defences primed by C-strain in the early period post vaccination.  相似文献   

9.
In view of our previous findings that vaccination of mice with Candida albicans ribosomes protects them against experimental systemic candidiasis, the aim of this study was to investigate the effect of this vaccination on the course of infection in immunized animals. Since the kidney is the maj or target in systemic candidal infection, we concentrated in this research on studying the histopathology and determining quantitatively the candidal colonization of this organ. The experiments were carried out at various time intervals after intravenous inoculation with live C. albicans. The colonization of kidneys in immunized mice was markedly lower than that in controls. The maximal difference in renal colonization between immunized and non immunized animals was observed when relatively low challenge doses were used. The inhibition of candidal multiplication in immunized mice seemed to be correlated to their increased resistance against lethal challenge, as expressed by a significantly higher survival rate. Histopathological changes and fungal elements were found in kidneys of control mice as early as 20 h post infection, while the kidneys of immunized mice did not seem affected by the disease. Moreover, even 3 days post infection, the kidneys of vaccinated animals still seemed normal. In conclusion, apparently the ribosomal vaccination leads to diminished colonization of the major site of infection in candidiasis, thus affording protection to the immunized animals against these infections.  相似文献   

10.
Ebola virus (EBOV) causes severe and often fatal hemorrhagic fever in humans and nonhuman primates (NHPs). Currently, there are no licensed vaccines or therapeutics for human use. Recombinant vesicular stomatitis virus (rVSV)-based vaccine vectors, which encode an EBOV glycoprotein in place of the VSV glycoprotein, have shown 100% efficacy against homologous Sudan ebolavirus (SEBOV) or Zaire ebolavirus (ZEBOV) challenge in NHPs. In addition, a single injection of a blend of three rVSV vectors completely protected NHPs against challenge with SEBOV, ZEBOV, the former Côte d''Ivoire ebolavirus, and Marburg virus. However, recent studies suggest that complete protection against the newly discovered Bundibugyo ebolavirus (BEBOV) using several different heterologous filovirus vaccines is more difficult and presents a new challenge. As BEBOV caused nearly 50% mortality in a recent outbreak any filovirus vaccine advanced for human use must be able to protect against this new species. Here, we evaluated several different strategies against BEBOV using rVSV-based vaccines. Groups of cynomolgus macaques were vaccinated with a single injection of a homologous BEBOV vaccine, a single injection of a blended heterologous vaccine (SEBOV/ZEBOV), or a prime-boost using heterologous SEBOV and ZEBOV vectors. Animals were challenged with BEBOV 29–36 days after initial vaccination. Macaques vaccinated with the homologous BEBOV vaccine or the prime-boost showed no overt signs of illness and survived challenge. In contrast, animals vaccinated with the heterologous blended vaccine and unvaccinated control animals developed severe clinical symptoms consistent with BEBOV infection with 2 of 3 animals in each group succumbing. These data show that complete protection against BEBOV will likely require incorporation of BEBOV glycoprotein into the vaccine or employment of a prime-boost regimen. Fortunately, our results demonstrate that heterologous rVSV-based filovirus vaccine vectors employed in the prime-boost approach can provide protection against BEBOV using an abbreviated regimen, which may have utility in outbreak settings.  相似文献   

11.
The protozoan parasite Toxoplasma gondii elicits strong cell-mediated immunity against itself as well as nonspecific resistance against other pathogens and tumors. For this reason, we asked whether recombinant Toxoplasma could be utilized as an effective vaccine vehicle for inducing immunity against heterologous microbial infections. The circumsporozoite protein (PyCSP) of Plasmodium yoelii was engineered into a T. gondii temperature-sensitive strain (ts-4), a mutant that induces complete protection against virulent Toxoplasma challenge. When administered to mice in a single dose, a recombinant ts-4 (CSC3) that both secretes and expresses surface PyCSP induced strong anti-CSP Ab responses, with an isotype distribution pattern similar to that stimulated by the T. gondii carrier. When challenged with P. yoelii sporozoites during the first month after CSC3 vaccination, these animals displayed substantial levels of nonspecific resistance attributable entirely to the T. gondii carrier. Nevertheless, after the nonspecific protection had waned, high levels (up to 79%) of specific immunity against sporozoite challenge were achieved by boosting the animals with recombinant vaccinia virus expressing PyCSP. These CSC3-primed PyCSP-vaccinia-boosted mice displayed high frequencies of splenic PyCSP-specific IFN-gamma-producing cells, as well as CD8+ T cell-dependent cytolytic activity. In vivo depletion of CD8+ lymphocytes at the time of challenge completely ablated protective immunity in the T. gondii-primed/vaccinia-boosted animals, while neutralization of IFN-gamma or IL-12 caused a partial but significant reduction in resistance. Together these findings establish the efficacy of recombinant attenuated Toxoplasma as a vaccine vehicle for priming CD8+-dependent cell-mediated immunity.  相似文献   

12.
The safety of and protection provided by a streptomycin dependent live Pasteurella multocida (serotype 12:A) vaccine was evaluated in New Zealand white rabbits. The vaccine strain was isolated from two of twelve rabbits 24 hours after intranasal administration. Streptomycin independent P. multocida isolates were not recovered for 4 weeks after vaccination, indicating a lack of reversion to the wild type. Thirty days after a single intranasal administration of vaccine, eight rabbits were challenged with either P. multocida serotype 3:A or serotype 12:A. Eight non-vaccinated rabbits were challenged in the same manner. Vaccinated rabbits challenged with serotype 12:A had nasal infections for only 2 weeks following challenge. Vaccinated rabbits challenged with serotype 3:A developed chronic nasal infections but were protected from severe disease. Immunoglobulin A or G antibodies against P. multocida were not detected after vaccination in nasal lavages or sera using an enzyme-linked immunosorbent assay. However, both antibodies increased following challenge with either serotype 3:A or serotype 12:A. These studies indicated that the streptomycin dependent pasteurella strain colonized rabbits briefly and was genetically stable in vivo. The results in challenged rabbits suggest that the vaccine provided protection against chronic infection by a homologous pasteurella serotype and protection against severe disease by a heterologous pasteurella serotype.  相似文献   

13.
Devrieseasis caused by Devriesea agamarum is a highly prevalent disease in captive desert lizards, resulting in severe dermatitis and in some cases mass mortality. In this study, we assessed the contribution of autovaccination to devrieseasis control by evaluating the capacity of 5 different formalin-inactivated D. agamarum vaccines to induce a humoral immune response in bearded dragons (Pogona vitticeps). Each vaccine contained one of the following adjuvants: CpG, incomplete Freund''s, Ribi, aluminium hydroxide, or curdlan. Lizards were administrated one of the vaccines through subcutaneous injection and booster vaccination was given 3 weeks after primo-vaccination. An indirect ELISA was developed and used to monitor lizard serological responses. Localized adverse effects following subcutaneous immunization were observed in all but the Ribi adjuvanted vaccine group. Following homologous experimental challenge, the incomplete Freund''s as well as the Ribi vaccine were observed to confer protection in bearded dragons against the development of D. agamarum associated septicemia but not against dermatitis. Subsequently, two-dimensional gelelectrophoresis followed by immunoblotting and mass spectrometry was conducted with serum obtained from 3 lizards that showed seroconversion after immunisation with the Ribi vaccine. Fructose-bisphosphate aldolase and aldo-keto reductase of D. agamarum reacted with serum from the latter lizards. Based on the demonstrated seroconversion and partial protection against D. agamarum associated disease following the use of formalin-inactivated vaccines as well as the identification of target antigens in Ribi vaccinated bearded dragons, this study provides promising information towards the development of a vaccination strategy to control devrieseasis in captive lizard collections.  相似文献   

14.
In 1972-1974 and 1977 in the Estonian SSR children and adults were surveyed for the presence of antibodies against tetanus and diphtheria toxins (toxoids) by means of the passive hemagglutination test. The level of protection against tetanus was revealed to correspond to the proportion of child population covered by vaccination: in 1977, with 98.8% covered by vaccination, the level of protection among children aged 7 to 14 years and adolescents of 15-19 years exceeded 98%; with the increase of age (every 10-15 years) the level of protection against tetanus regularly decreased. This dynamics correlated with the existing terms of postvaccinal immunity and the epidemiological independence of tetanus as infectiion. The level of protection in child population against diphtheria in 1972-1974 and 1977 lagged behind the level of protection against tetanus and the coverage by vaccination. The diphtheria component of adsorbed DPT vaccine seemed to be unable to ensure the sufficient level and intensity of immunity under conditions of a sharply decreased risk of encounter with the infective agent. In persons aged 40 years and over the indices of immunity against diphtheria were higher than against tetanus. These indices resulted from diphtheria infection at the prevaccination period and could serve as an objective sign in following up the decrease of the process of diphtheria epidemics.  相似文献   

15.
We investigated fecal IgA antibody responses after oral polyvalent poliovirus vaccination. Infants were given vaccines twice with an interval of 6 weeks. Specific IgA antibodies in the feces were determined by enzyme-linked immunosorbent assay, and viruses were isolated in tissue cultures. We found that, after the first vaccination, antibody responses seemed to be elicited only against the serotypes of isolated viruses. After the second vaccination, however, antibodies were detected to all three serotypes with higher titers, suggesting that the first vaccination induced the immunologic memory. The IgA antibodies had virus-neutralizing activity, and existed in the feces as both intact 11S and fragmented 4S molecules. Next, children were given the third vaccination 3 or 9 years later. Fecal IgA antibody responses were found to be poorer in elder children, while they responded with high serum neutralization titers. The secretory IgA memory seemed to last much shorter the serum IgG memory.  相似文献   

16.
To study the effect of early vaccination, wolffish juveniles of size 50 and 90 mm, respectively, were vaccinated with an oil-adjuvanted atypical A. salmonicida bacterin. Vaccination resulted in significant protection after challenge with the homologous bacterial strain and specific antibody responses were demonstrated against whole bacteria as well as purified A-layer protein and LPS by ELISA and Western blotting but individual variation in immune responses was apparent. The A-protein was the most immunogenic bacterial component. In addition, higher numbers of immunoglobulin producing cells were detected by in situ hybridisation in kidney and spleen of vaccinated fish compared to non-vaccinated fish. Plasma cells were also present in gut and gills in equal numbers irrespective of treatment. No plasma cells were found in the skin. Finally, the frequencies of expressed V(H)families and C(L)isotypes of wolffish immunoglobulins were shown by PCR. The relative expression of the three variable regions of the Ig heavy chain and the three isotypes of the Ig light chain in the spotted wolffish spleen seemed to be unaffected by immunisation with a complex antigen like the A. salmonicida bacterin.  相似文献   

17.
Conventional parenteral injection of vaccines is limited in its ability to induce locally-produced immune responses in the respiratory tract, and has logistical disadvantages in widespread vaccine administration. Recent studies suggest that intranasal delivery or vaccination in the respiratory tract with recombinant viral vectors can enhance immunogenicity and protection against respiratory diseases such as influenza and tuberculosis, and can offer more broad-based generalized protection by eliciting durable mucosal immune responses. Controlled aerosolization is a method to minimize vaccine particle size and ensure delivery to the lower respiratory tract. Here, we characterize the dynamics of aerosolization and show the effects of vaccine concentration on particle size, vector viability, and the actual delivered dose of an aerosolized adenoviral vector. In addition, we demonstrate that aerosol delivery of a recombinant adenoviral vaccine encoding H1N1 hemagglutinin is immunogenic and protects ferrets against homologous viral challenge. Overall, aerosol delivery offers comparable protection to intramuscular injection, and represents an attractive vaccine delivery method for broad-based immunization campaigns.  相似文献   

18.
Heterologous vaccination based on priming with a plasmid DNA vector and boosting with an attenuated vaccinia virus MVA recombinant, with both vectors expressing the Leishmania infantum LACK antigen (DNA-LACK and MVA-LACK), has shown efficacy conferring protection in murine and canine models against cutaneus and visceral leishmaniasis, but the immune parameters of protection remain ill defined. Here we performed by flow cytometry an in depth analysis of the T cell populations induced in BALB/c mice during the vaccination protocol DNA-LACK/MVA-LACK, as well as after challenge with L. major parasites. In the adaptive response, there is a polyfunctional CD4(+) and CD8(+) T cell activation against LACK antigen. At the memory phase the heterologous vaccination induces high quality LACK-specific long-term CD4(+) and CD8(+) effector memory cells. After parasite challenge, there is a moderate boosting of LACK-specific CD4(+) and CD8(+) T cells. Anti-vector responses were largely CD8(+)-mediated. The immune parameters induced against LACK and triggered by the combined vaccination DNA/MVA protocol, like polyfunctionality of CD4(+) and CD8(+) T cells with an effector phenotype, could be relevant in protection against leishmaniasis.  相似文献   

19.
Experimental murine cysticercosis caused by Taenia crassiceps has proved to be a useful model with which to test the efficacy of new vaccine candidates and delivery systems against pig cysticercosis. A high level of protection against murine cysticercosis was previously observed by intramuscular or intradermal DNA immunization with the use of the sequence of the recombinant KETc7 antigen cloned in pcDNA3 (pTc-sp7). To determine the effect of KETc7 differential expression in DNA vaccination, KETc7 was cloned in pGEM 11Zf(+) under the control of the tissue-specific regulatory promoter phosphoenolpyruvate carboxykinase (pPc-sp7). A high level of protection was induced by intrahepatic immunization with pPc-sp7, pTc-sp7 and the empty vector in the absence of any specific immunity. The empty vector pGEM 11Zf(+), the plasmid with the highest content of CpG sequences, provided to the most efficient protection. This protection was related to an increased number of splenocytes, enhanced nonspecific splenocyte proliferation, and intensified intrahepatic INF-gamma production. Overall, intrahepatic plasmid CpG-DNA immunization provokes an exacerbated nonspecific immune response that can effectively control Taenia crassiceps cysticercosis.  相似文献   

20.
Recent epidemiological developments demonstrated that gene segments of swine influenza A viruses can account for antigenic changes as well as reduced drug susceptibility of pandemic influenza A viruses. This raises questions about the efficacy of preventive measures against swine influenza A viruses. Here, the protective effect of vaccination was compared with that of prophylactic Tamiflu® treatment against two Eurasian swine influenza A viruses. 11-week-old pigs were infected by aerosol nebulisation with high doses of influenza virus A/swine/Potsdam/15/1981 (H1N1/1981, heterologous challenge to H1N1 vaccine strain) and A/swine/Bakum/1832/2000 (H1N2/2000, homologous challenge to H1N2 vaccine strain) in two independent trials. In each trial (i) 10 pigs were vaccinated twice with a trivalent vaccine (RESPIPORC® FLU3; 28 and 7 days before infection), (ii) another 10 pigs received 150 mg/day of Tamiflu® for 5 days starting 12 h before infection, and (iii) 12 virus-infected pigs were left unvaccinated and untreated and served as controls. Both viruses replicated efficiently in porcine respiratory organs causing influenza with fever, dyspnoea, and pneumonia. Tamiflu® treatment as well as vaccination prevented clinical signs and significantly reduced virus shedding. Whereas after homologous challenge with H1N2/2000 no infectious virus in lung and hardly any lung inflammation were detected, the virus titre was not and the lung pathology was only partially reduced in H1N1/1981, heterologous challenged pigs. Tamiflu® application did not affect these study parameters.In conclusion, all tested preventive measures provided protection against disease. Vaccination additionally prevented virus replication and histopathological changes in the lung of homologous challenged pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号