首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Alanine substitution mutations in the Cry1Ac domain III region, from amino acid residues 503 to 525, were constructed to study the functional role of domain III in the toxicity and receptor binding of the protein to Lymantria dispar, Manduca sexta, and Heliothis virescens. Five sets of alanine block mutants were generated at the residues (503)SS(504), (506)NNI(508), (509)QNR(511), (522)ST(523), and (524)ST(525). Single alanine substitutions were made at the residues (509)Q, (510)N, (511)R, and (513)Y. All mutant proteins produced stable toxic fragments as judged by trypsin digestion, midgut enzyme digestion, and circular dichroism spectrum analysis. The mutations, (503)SS(504)-AA, (506)NNI(508)-AAA, (522)ST(523)-AA, (524)ST(525)-AA, and (510)N-A affected neither the protein's toxicity nor its binding to brush border membrane vesicles (BBMV) prepared from these insects. Toward L. dispar and M. sexta, the (509)QNR(511)-AAA, (509)Q-A, (511)R-A, and (513)Y-A mutant toxins showed 4- to 10-fold reductions in binding affinities to BBMV, with 2- to 3-fold reductions in toxicity. Toward H. virescens, the (509)QNR(511)-AAA, (509)Q-A, (511)R-A, and (513)Y-mutant toxins showed 8- to 22-fold reductions in binding affinities, but only (509)QNR(511)-AAA and (511)R-A mutant toxins reduced toxicity by approximately three to four times. In the present study, greater loss in binding affinity relative to toxicity has been observed. These data suggest that the residues (509)Q, (511)R, and (513)Y in domain III might be only involved in initial binding to the receptor and that the initial binding step becomes rate limiting only when it is reduced more than fivefold.  相似文献   

2.
We determined that Bacillus thuringiensis Cry1Ac and Cry1Fa delta-endotoxins recognize the same 110, 120 and 170 kDa aminopeptidase N (APN) molecules in brush border membrane vesicles (BBMV) from Heliothis virescens. The 110 kDa protein, not previously identified as an APN, contained a variant APN consensus sequence identical to that found in Helicoverpa punctigera APN 2. PCR amplification of H. virescens cDNA based on this sequence and a conserved APN motif yielded a 0.9 kb product that has 89% sequence homology with H. punctigera APN 2. Western blots revealed that the 110 kDa molecule was not recognized by soybean agglutinin, indicating the absence of GalNAc. A 125I labeled-Cry1Ac domain III mutant (509QNR(511)-AAA) that has an altered GalNAc binding pocket (Lee et al., Appl. Environ. Microbiol. 65 (1999) 4513) showed abolished binding to the 120 APN, reduced binding to the 170 kDa APN, and enhanced binding to the 110 kDa APN. Periodate treated H. virescens BBMV blots were also probed with 125I labeled-Cry1Ac and 509QNR(511)-AAA toxins. Both toxins still recognized the 110 kDa APN and a >210 kDa molecule which may be a cadherin-like protein. Additionally, 125I-(509)QNR(511)-AAA recognized periodate treated 170 kDa APN. Results indicate that the 110 kDa APN is distinct from other Cry1 toxin binding APNs and may be the first described Cry1Ac-binding APN that does not contain GalNAc.  相似文献   

3.
The Cry1Ac toxin from Bacillus thuringiensis was displayed on the surface of T7 phage. The cry1Ac gene was fused to the C-terminal end of T7-10B capsid protein and displayed on the surface of T7 phage as revealed by Western blot analysis of the purified phage particles. The T7-Cry1Ac phages retained toxicity against Manduca sexta larvae. We demonstrated that the T7-Cry1Ac phage interacts with Cry1Ac receptors present in M. sexta BBMV either in solution or in overlay binding assays.  相似文献   

4.
Three types of binding assays were used to study the binding of Bacillus thuringiensis delta-endotoxin Cry1Ac to brush border membrane vesicle (BBMV) membranes and a purified putative receptor of the target insect Manduca sexta. Using hybrid proteins consisting of Cry1Ac and the related Cry1C protein, it was shown that domain III of Cry1Ac is involved in specificity of binding as observed by all three techniques. In ligand blotting experiments using SDS-PAGE-separated BBMV proteins as well as the purified putative receptor aminopeptidase N (APN), the presence of domain III of Cry1Ac in a hybrid with Cry1C was necessary and sufficient for specific binding to APN. Using the surface plasmon resonance (SPR) technique with immobilized APN, it was shown that the presence of domain III of Cry1Ac in a hybrid is sufficient for binding to one of the two previously identified Cry1Ac binding sites, whereas the second site requires the full Cry1Ac toxin for binding. In addition, the role of domain III in the very specific inhibition of Cry1Ac binding by the amino sugar N-acetylgalactosamine (GalNac) was determined. Both in ligand blotting and in surface plasmon resonance experiments, as well as in binding assays using intact BBMVs, it was shown that the presence of domain III of Cry1Ac in a toxin molecule is sufficient for the inhibition of binding by GalNAc. These and other results strongly suggest that domain III of delta-endotoxins play a role in insect specificity through their involvement in specific binding to insect gut epithelial receptors.  相似文献   

5.
The effect of polypeptide denaturation of Bacillus thuringiensis Cry1A toxins or purified Manduca sexta 120-kDa aminopeptidase N on the specificities of their interactions was investigated. Ligand and dot blotting experiments were conducted with (125)I-labeled Cry1Ac, Cry1Ac mutant (509)QNR-AAA(511) (QNR-AAA), or 120-kDa aminopeptidase N as the probe. Mutant QNR-AAA does not bind the N-acetylgalactosamine moiety on the 120-kDa aminopeptidase. Both (125)I-Cry1Ac and (125)I-QNR-AAA bound to 210- and 120-kDa proteins from M. sexta brush border membrane vesicles and purified 120-kDa aminopeptidase N on ligand blots. However, on dot blots (125)I-QNR-AAA bound brush border vesicles but did not bind purified aminopeptidase except when aminopeptidase was denatured. In the reciprocal experiment, (125)I-aminopeptidase bound Cry1Ac but did not bind QNR-AAA. (125)I-aminopeptidase bound Cry1Ab to a limited extent but not the Cry1Ab domain I mutant Y153D or Cry1Ca. However, denatured (125)I-aminopeptidase detected each Cry1A toxin and mutant but not Cry1Ca on dot blots. The same pattern of recognition occurred with native (nondenatured) (125)I-aminopeptidase probe and denatured toxins as the targets. The broader pattern of toxin-binding protein interaction is probably due to peptide sequences being exposed upon denaturation. Putative Cry toxin-binding proteins identified by the ligand blot technique need to be investigated under native conditions early in the process of identifying binding proteins that may serve as functional toxin receptors.  相似文献   

6.
Photorhabdus luminescens, a Gram-negative bacterium, secretes a protein toxin (PL toxin) that is toxic to insects. In this study, the effects of the PL toxin on large receptor-free unilamellar phospholipid vesicles (LUVs) of Manduca sexta and on brush border membrane vesicles (BBMVs) of M. sexta and Tenebrio molitor were examined. Cry1Ac served as a positive control in our experiments due to its known channel-forming activity on M. sexta. Voltage clamping assays with dissected midguts of M. sexta and T. molitor clearly showed that both Cry1Ac and PL toxin caused channel formation in the midguts, although channel formation was not detected for T. molitor midguts under Cry1Ac and it was less sensitive to PL toxin than to Cry1Ac for M. sexta midguts. Calcein release experiments showed that both toxins made LUVs (unilamellar lipid vesicles) permeable, and at some concentrations of the toxins such permeabilizing effects were pH-dependent. The lowest concentrations of PL toxin were more than 600-fold and 24-fold lower to induce BBMV permeability of T. molitor and M. sexta than those to induce calcein release from LUVs of M. sexta. These further support that PL toxin is responsible for channel formation in the larvae midguts. The lower concentration to induce permeability in BBMV than in LUV is, probably, attributable to that BBMV has PL toxin receptors that facilitate the toxin to induce permeabilization. Furthermore, our results indicate that the effects of PL toxin on BBMV permeability of M. sexta were not significantly influenced by Gal Nac, but those of Cry1Ac were. This implies that PL toxin and Cry1Ac might use different molecular binding sites in BBMV to cause channel formation.  相似文献   

7.
Five economically important crop pests, Manduca sexta, Pieris brassicae, Mamestra brassicae, Spodoptera exigua, and Agrotis ipsilon, were tested at two stages of larval development for susceptibility to Bacillus thuringiensis toxins Cry1Ac, Cry1Ca, Cry1J, and Cry1Ba. Bioassay results for M. sexta showed that resistance to all four Cry toxins increased from the neonate stage to the third-instar stage; the increase in resistance was most dramatic for Cry1Ac, the potency of which decreased 37-fold. More subtle increases in resistance during larval development were seen in M. brassicae for Cry1Ca and in P. brassicae for Cry1Ac and Cry1J. By contrast, the sensitivity of S. exigua did not change during development. At both larval stages, A. ipsilon was resistant to all four toxins. Because aminopeptidase N (APN) is a putative Cry1 toxin binding protein, APN activity was measured in neonate and third-instar brush border membrane vesicles (BBMV). With the exception of S. exigua, APN activity was found to be significantly lower in neonates than in third-instar larvae and thus inversely correlated with increased resistance during larval development. The binding characteristics of iodinated Cry1 toxins were determined for neonate and third-instar BBMV. In M. sexta, the increased resistance to Cry1Ac and Cry1Ba during larval development was positively correlated with fewer binding sites in third-instar BBMV than in neonate BBMV. The other species-instar-toxin combinations did not reveal positive correlations between potency and binding characteristics. The correlation between binding and potency was inconsistent for the species-instar-toxin combinations used in this study, reaffirming the complex mode of action of Cry1 toxins.  相似文献   

8.
Transgenic corn expressing the Bacillus thuringiensis Cry1Ab gene is highly insecticidal to Ostrinia nubilalis (European corn borer) larvae. We ascertained whether Cry1F, Cry9C, or Cry9E recognizes the Cry1Ab binding site on the O. nubilalis brush border by three approaches. An optical biosensor technology based on surface plasmon resonance measured binding of brush border membrane vesicles (BBMV) injected over a surface of immobilized Cry toxin. Preincubation with Cry1Ab reduced BBMV binding to immobilized Cry1Ab, whereas preincubation with Cry1F, Cry9C, or Cry9E did not inhibit BBMV binding. BBMV binding to a Cry1F-coated surface was reduced when vesicles were preincubated in Cry1F or Cry1Ab but not Cry9C or Cry9E. A radioligand approach measured 125I-Cry1Ab toxin binding to BBMV in the presence of homologous (Cry1Ab) and heterologous (Cry1Ac, Cry1F, Cry9C, or Cry9E) toxins. Unlabeled Cry1Ac effectively competed for 125I-Cry1Ab binding in a manner comparable to Cry1Ab itself. Unlabeled Cry9C and Cry9E toxins did not inhibit (125)I-Cry1Ab binding to BBMV. Cry1F inhibited (125)I-Cry1Ab binding at concentrations greater than 500 nM. Cry1F had low-level affinity for the Cry1Ab binding site. Ligand blot analysis identified Cry1Ab, Cry1Ac, and Cry1F binding proteins in BBMV. The major Cry1Ab signals on ligand blots were at 145 kDa and 154 kDa, but a strong signal was present at 220 kDa and a weak signal was present at 167 kDa. Cry1Ac and Cry1F binding proteins were detected at 220 and 154 kDa. Anti-Manduca sexta aminopeptidase serum recognized proteins of 145, 154, and 167 kDa, and anti-cadherin serum recognized the 220 kDa protein. We speculate that isoforms of aminopeptidase and cadherin in the brush border membrane serve as Cry1Ab, Cry1Ac, and Cry1F binding proteins.  相似文献   

9.
Binding of the insecticidal Bacillus thuringiensis Cry1Ac toxin to the putative receptor aminopeptidase N is specifically inhibited by N-acetylgalactosamine (GalNAc), suggesting that this toxin recognises GalNAc on the receptor. A possible structural basis for involvement of domain III of the toxin in carbohydrate-mediated receptor recognition was noted in the similarity between the domain III fold of the related toxin Cry3A and a carbohydrate-binding domain in the 1,4-beta-glucanase from Cellulomonas fimi. This possibility was investigated by making selected mutations in domain III of the Cry1Ac delta-endotoxin. Mutagenesis of residues Asn506, Gln509 or Tyr513 resulted in toxins with reduced binding and a slower rate of pore formation in Manduca sexta midgut membrane vesicles compared to the wild-type Cry1Ac. These mutants also showed reduced binding to the 120 kDa Cry1Ac putative receptor aminopeptidase N. Unlike the wild-type toxin, binding of the triple mutant N506D,Q509E,Y513A (Tmut) to M. sexta midgut membrane vesicles could not be inhibited by GalNAc. These data indicate that GalNAc binding is located on domain III of Cry1Ac and therefore support a lectin-like role for this domain. A preliminary analysis of the Cry1Ac crystal structure locates Asn506, Gln509 and Tyr513 in a region on and adjacent to beta-16 in domain III, which has a unique conformation compared to the other known Cry structures. These residues are in a favourable position to interact with either soluble or protein-bound carbohydrate.  相似文献   

10.
Phage display is an in vitro method for selecting polypeptides with desired properties from a large collection of variants. The insecticidal Cry toxins produced by Bacillus thuringiensis are highly specific to different insects. Various proteins such as cadherin, aminopeptidase-N (APN) and alkaline phosphatase (ALP) have been characterized as potential Cry-receptors. We used phage display to characterize the Cry toxin-receptor interaction(s). By employing phage-libraries that display single-chain antibodies (scFv) from humans or from immunized rabbits with Cry1Ab toxin or random 12-residues peptides, we have identified the epitopes that mediate binding of lepidopteran Cry1Ab toxin with cadherin and APN receptors from Manduca sexta and the interaction of dipteran Cry11Aa toxin with the ALP receptor from Aedes aegypti. Finally we displayed in phages the Cry1Ac toxin and discuss the potential for selecting Cry variants with improved toxicity or different specificity.  相似文献   

11.
Abstract The binding and pore formation properties of toxins derived form Bacillus thuringiensis 9816C were analyzed by using brush border membrane vesicles (BBMV) of Spodoptera exigua and Helicoverpa armigera , and the results were compared to the results of toxicity bioassays. The strain 9816C is highly toxic to both S. exigua and H. armigera , whereas HΔ-73, which only produces Cry1Ac, is merely effective for H. armigera. Ligand blot experiment performed with peroxidase-labeled toxins revealed that the toxins of the two strains had the same binding sites as H. armigera BBMV and different binding sites from S. exigua BBMV. The toxins of Bt 9816C bind to a 210-kDa protein of S. exigua BBMV, while Cry1Ac cannot recognize this binding site. Both toxins were tested for the ability to alter the permeability of S. exigua BBMV, as measured by a light scattering assay. The toxins of Bt 9816C, which is toxic to S. exigua , permeabilized BBMV, whereas Cry1Ac did not. These results suggest that the specific binding site recognized by Bt 9816C toxins is responsible for its high toxicity against Spodoptera exigua.  相似文献   

12.
Insecticidal activity and receptor binding properties of Bacillus thuringiensis toxins to yellow and striped rice stem borers (Sciropophaga incertulas and Chilo suppresalis, respectively) were investigated. Yellow stem borer (YSB) was susceptible to Cry1Aa, Cry1Ac, Cry2A, and Cry1C toxins with similar toxicities. To striped stem borer (SSB), Cry1Ac, Cry2A, and Cry1C were more toxic than Cry1Aa toxin. Binding assays were performed with (sup125)I-labeled toxins (Cry1Aa, Cry1Ac, Cry2A, and Cry1C) and brush border membrane vesicles (BBMV) prepared from YSB and SSB midguts. Both Cry1Aa and Cry1Ac toxins showed saturable, high-affinity binding to YSB BBMV. Cry2A and Cry1C toxins bound to YSB BBMV with relatively low binding affinity but with high binding site concentration. To SSB, both Cry1Aa and Cry1Ac exhibited high binding affinity, although these toxins are less toxic than Cry1C and Cry2A. Cry1C and Cry2A toxins bound to SSB BBMV with relatively low binding affinity but with high binding site concentration. Heterologous competition binding assays were performed to investigate the binding site cross-reactivity. The results showed that Cry1Aa and Cry1Ac recognize the same binding site, which is different from the Cry2A or Cry1C binding site in YSB and SSB. These data suggest that development of multitoxin systems in transgenic rice with toxin combinations which recognize different binding sites may be useful in implementing deployment strategies that decrease the rate of pest adaptation to B. thuringiensis toxin-expressing rice varieties.  相似文献   

13.
The receptor binding step in the molecular mode of action of five delta-endotoxins (Cry1Ab, Cry1Ac, Cry1C, Cry2A, and Cry9C) from Bacillus thuringiensis was examined to find toxins with different receptor sites in the midgut of the striped stem borer (SSB) Chilo suppressalis (Walker) and yellow stem borer (YSB) Scirpophaga incertulas (Walker) (Lepidoptera: Pyralidae). Homologous competition assays were used to estimate binding affinities (K(com)) of (125)I-labelled toxins to brush border membrane vesicles (BBMV). The SSB BBMV affinities in decreasing order was: Cry1Ab = Cry1Ac > Cry9C > Cry2A > Cry1C. In YSB, the order of decreasing affinities was: Cry1Ac > Cry1Ab > Cry9C = Cry2A > Cry1C. The number of binding sites (B(max)) estimated by homologous competition binding among the Cry toxins did not affect toxin binding affinity (K(com)) to both insect midgut BBMVs. Results of the heterologous competition binding assays suggest that Cry1Ab and Cry1Ac compete for the same binding sites in SSB and YSB. Other toxins bind with weak (Cry1C, Cry2A) or no affinity (Cry9C) to Cry1Ab and Cry1Ac binding sites in both species. Cry2A had the lowest toxicity to 10-day-old SSB and Cry1Ab and Cry1Ac were the most toxic. Taken together, the results of this study show that Cry1Ab or Cry1Ac could be combined with either Cry1C, Cry2A, or Cry9C for more durable resistance in transgenic rice. Cry1Ab should not be used together with Cry1Ac because a mutation in one receptor site could diminish binding of both toxins.  相似文献   

14.
Our previous mutagenic analysis showed that the unique residue N546 in the apex of β18-β19 loop of Bacillus thuringiensis Cry1Ac toxin is important for its toxicity. In this study, trypsin digestion susceptibility, binding to BBMV and oligomer formation activity was therefore analyzed to determine the mechanism of toxicity change of these mutant toxins. The results showed that residue N546 was not involved in toxin oligomerisation and maintaining the stability of toxin, the enhanced toxicity of mutant N546A was just because of increased binding to BBMV, and reduction in toxicity of other mutants were caused by reduction in initial or irreversible binding to BBMV. This is the first report that revealed N546 in Cry1Ac domain III played an essential role in its insecticidal activity and binding to insect BBMV.  相似文献   

15.
Bacillus thuringiensis Cry2Ab toxin has been used in combination with Cry1Ac for resistance management on the Bt-cotton that is widely planted worldwide. However, little is known regarding Cry2Ab mode of action. Particularly, there is a gap of knowledge on the identification of insect midgut proteins that bind Cry2Ab and mediate toxicity. In the case of Cry1Ab toxin, a transmembrane cadherin protein and glycosyl-phosphatidylinositol (GPI) anchored proteins like aminopeptidase-N1 (APN1) or alkaline-phosphatase (ALP) from Manduca sexta, have been shown to be important for oligomer formation and insertion into the membrane. Binding competition experiments showed that Cry2Ab toxin does not share binding sites with Cry1Ab toxin in M. sexta brush border membrane vesicles (BBMV). Also, that Cry2Ab shows reduced binding to the Cry1Ab binding molecules cadherin, APN1 or ALP. Finally, ligand blot experiments and protein sequence by LC–MS/MS identified APN2 isoform as a Cry2Ab binding protein. Cloning and expression of APN2 confirmed that APN2 is a Cry2Ab binding protein.  相似文献   

16.
The binding and pore formation abilities of Cry1A and Cry1Fa Bacillus thuringiensis toxins were analyzed by using brush border membrane vesicles (BBMV) prepared from sensitive (YDK) and resistant (YHD2) strains of Heliothis virescens. 125I-labeled Cry1Aa, Cry1Ab, and Cry1Ac toxins did not bind to BBMV from the resistant YHD2 strain, while specific binding to sensitive YDK vesicles was observed. Binding assays revealed a reduction in Cry1Fa binding to BBMV from resistant larvae compared to Cry1Fa binding to BBMV from sensitive larvae. In agreement with this reduction in binding, neither Cry1A nor Cry1Fa toxin altered the permeability of membrane vesicles from resistant larvae, as measured by a light-scattering assay. Ligand blotting experiments performed with BBMV and 125I-Cry1Ac did not differentiate sensitive larvae from resistant larvae. Iodination of BBMV surface proteins suggested that putative toxin-binding proteins were exposed on the surface of the BBMV from resistant insects. BBMV protein blots probed with the N-acetylgalactosamine-specific lectin soybean agglutinin (SBA) revealed altered glycosylation of 63- and 68-kDa glycoproteins but not altered glycosylation of known Cry1 toxin-binding proteins in YHD2 BBMV. The F1 progeny of crosses between sensitive and resistant insects were similar to the sensitive strain when they were tested by toxin-binding assays, light-scattering assays, and lectin blotting with SBA. These results are evidence that a dramatic reduction in toxin binding is responsible for the increased resistance and cross-resistance to Cry1 toxins observed in the YHD2 strain of H. virescens and that this trait correlates with altered glycosylation of specific brush border membrane glycoproteins.  相似文献   

17.
The Manduca sexta receptor for the Bacillus thuringiensis Cry1Aa, Cry1Ab, and Cry1Ac toxins, BT-R1, has been expressed in heterologous cell culture, and its ligand binding characteristics have been determined. When transfected with the BT-R1 cDNA, insect and mammalian cell cultures produce a binding protein of approximately 195 kDa, in contrast to natural BT-R1 from M. sexia, which has an apparent molecular weight of 210 kDa. Transfection of cultured Spodoptera frugiperda cells with the BT-R1 cDNA imparts Cry1A-specific high-affinity binding activity typical of membranes prepared from larval M. sexta midguts. Competition assays with BT-R1 prepared from larval M. sexta midguts and transiently expressed in cell culture reveal virtually identical affinities for the Cry1Aa, Cry1Ab, and Cry1Ac toxins, clearly demonstrating the absolute specificity of the receptor for toxins of the lepidopteran-specific Cry1A family. BT-R1 therefore remains the only M. sexta Cry1A binding protein to be purified, cloned, and functionally expressed in heterologous cell culture, and for the first time, we are able to correlate the Cry1Aa, Cry1Ab, and Cry1Ac toxin sensitivities of M. sexta to the identity and ligand binding characteristics of a single midgut receptor molecule.  相似文献   

18.
分离和鉴定二化螟Chilo suppresalis幼虫中肠刷状缘膜囊泡(BBMV)中Cry1A毒素的受体蛋白,对于阐明Cry1A毒素作用机理和二化螟抗性机理具有十分重要的意义。为此,本文就Cry1A毒素对二化螟杀虫活性及Cry1Ac与二化螟中肠受体的配基结合进行了研究。结果表明: Cry1Ab对二化螟室内品系(CN)的毒力高于Cry1Ac,而Cry1Ac高于Cry1Aa。配基结合分析表明二化螟CN品系幼虫中肠BBMV中有6个Cry1Ac结合蛋白(分子量分别为50,70,90,120,160和180 kDa), 其中180,160和90 kDa结合蛋白的条带颜色明显深于其他结合蛋白的条带,表明这3个受体蛋白具有较高的结合浓度。同源竞争结合研究表明,180和90 kDa结合蛋白为Cry1Ac的低亲合性结合蛋白,其他4个为高亲合性结合蛋白。为了研究Cry1Ac和Cry1Ab受体结合部位的相互作用,进行了异源竞争结合研究。Cry1Ab可以与Cry1Ac所有的6个结合蛋白进行竞争性结合,与180,120,70和50 kDa结合蛋白具有高亲合性,而与160和90 kDa结合蛋白具有低亲合性。结果显示,Cry1Ac与Cry1Ab在二化螟幼虫中肠BBMV上拥有多个共享的结合位点,但对每个结合位点的亲合性有差异。基于毒素结合部位的相似性,Cry1Ac和Cry1Ab不宜同时用于转基因Bt水稻来控制二化螟。  相似文献   

19.
The primary action of Cry toxins produced by Bacillus thuringiensis is to lyse midgut epithelial cells in their target insect by forming lytic pores. The toxin-receptor interaction is a complex process, involving multiple interactions with different receptor and carbohydrate molecules. It has been proposed that Cry1A toxins sequentially interact with a cadherin receptor, leading to the formation of a pre-pore oligomer structure, and that the oligomeric structure binds to glycosylphosphatidyl-inositol-anchored aminopeptidase-N (APN) receptor. The Cry1Ac toxin specifically recognizes the N-acetylgalactosamine (GalNAc) carbohydrate present in the APN receptor from Manduca sexta larvae. In this work, we show that the Cry1Ac pre-pore oligomer has a higher binding affinity with APN than the monomeric toxin. The effects of GalNAc binding on the toxin structure were studied in the monomeric Cry1Ac, in the soluble pre-pore oligomeric structure, and in its membrane inserted state by recording the fluorescence status of the tryptophan (W) residues. Our results indicate that the W residues of Cry1Ac have a different exposure to the solvent when compared with that of the closely related Cry1Ab toxin. GalNAc binding specifically affects the exposure of W545 in the pre-pore oligomer in contrast to the monomer where GalNAc binding did not affect the fluorescence of the toxin. These results indicate a subtle conformational change in the GalNAc binding pocket in the pre-pore oligomer that could explain the increased binding affinity of the Cry1Ac pre-pore to APN. Although our analysis did not reveal major structural changes in the pore-forming domain I upon GalNAc binding, it showed that sugar interaction enhanced membrane insertion of soluble pre-pore oligomeric structure. Therefore, the data presented here permits to propose a model in which the interaction of Cry1Ac pre-pore oligomer with APN receptor facilitates membrane insertion and pore formation.  相似文献   

20.
Plutella xylostella strain resistant (PXR) to Bacillus thuringiensis Cry1Ac toxin was not killed at even more than 1000 μg Cry1Ac/g diet but killed by Cry1Ab at 0.5 μg/g diet. In contrast, susceptible strain (PXS) was killed by Cry1Ac at 1 μg/g diet. Cy3-labeld Cry1A(s) binding to brush border membrane vesicles (BBMV) prepared from both strains were analyzed with direct binding assay. The Kd value of Cry1Aa to both BBMV was almost identical: 213.2 and 205.8 nM, and 263.5 and 265.0 nM for Cry1Ac. The highest Kd values were in Cry1Ab which showed most effective insecticidal activity in PXS and PXR, 2126 and 2463 nM, respectively. These results clearly showed that the BBMV from PXR and PXS could equally bind to Cry1Ac. The binding between BBMV and Cy3-labeled Cry1Ac was inhibited only by anti-175 kDa cadherin-like protein (CadLP) and -252 kDa protein antisera, but not by anti-120 kDa aminopeptidase. This supports that resistance in PXR resulted from the abortion of pore formation after the binding of Cry1Ac to the BBMV. And furthermore, the importance of 175K CadLP and P252 proteins in those bindings was suggested. We briefly discuss possible mechanisms of the resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号