首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alterations in receptor-independent activation of adenylate cyclase during proliferation and differentiation of L6E9 myoblasts were studied using Mn2+, forskolin, and Gpp(NH)p. Analyses were performed 3, 6, and 10 days following subculture, corresponding to onset of proliferation, end of proliferation with start of differentiation, and completion of differentiation, respectively. The apparent activation constant for Mn2+ decreases with the age of the culture; the apparent activation constant for Mg2+ does not. Bimodal activation by Mn2+, i.e., at concentrations greater than 10 mM, results in total adenylate cyclase activity less than the Vmax and occurs exclusively in differentiated cultures. Independent of the presence of Mg2+, forskolin activation occurs with low-and high-affinity constants in differentiated cultures and with a low affinity constant in youngest cultures; intermediate cultures (day 6) demonstrate low- and high-affinity activation only in the presence of high Mg2+. In contrast, the Vmax for forskolin increases with increasing Mg2+ in all culture ages. Although Gpp(NH)p-dependent adenylate cyclase activation occurs with an apparent activation constant independent of culture age and Mg2+, low Mg2+ fosters bimodal activation by Gpp(NH)p, i.e., above 100 microM nucleotide, total adenylate cyclase activity is less than the Vmax. The loss of stimulatory capacity by high Gpp(NH)p is greatest in differentiated cultures. Additional experiments are presented to substantiate that bimodal activation by Gpp(NH)p is specific. Cholera- and pertussis toxin-dependent ADP ribosylation patterns demonstrate a marked decrease in both Ns and Ni in differentiated cultures. The data suggest that alterations in postreceptor activation of adenylate cyclase during the course of differentiation and proliferation are mediated by guanine nucleotide binding proteins as well as by allosteric cation regulatory units.  相似文献   

2.
The diterpene forskolin has been reported to activate adenylate cyclase in a manner consistent with an interaction at the catalytic unit. However, some of its actions are more consistent with an interaction at the coupling unit that links the hormone receptor to the adenylate cyclase activity. This report adds support to the latter possibility. Under conditions that lead to stimulation of adenylate cyclase in turkey erythrocyte membranes by GTP, forskolin also becomes more active. Additional evidence to support an influence of forskolin upon adenylate cyclase via the GTP-coupling protein N includes the following: (i) forskolin, at submaximal concentrations, leads to enhanced sensitivity and responsiveness of isoproterenol-dependent adenylate cyclase activity in turkey erythrocyte membranes; (ii) under specified conditions, the nucleotide GDP, an inhibitor of the stimulating nucleotide GTP and its analog, guanyl imidodiphosphate (Gpp(NH)p), also markedly inhibits the action of forskolin; (iii) both Gpp(NH)p and forskolin are associated with a decrease in agonist affinity for the beta-adrenergic receptor. However, actions of forskolin in the turkey erythrocyte are not identical to those of GTP: (i) forskolin is never as potent as Gpp(NH)p in activating adenylate cyclase; (ii) the magnitude of synergism between isoproterenol and forskolin is not equal to that observed with isoproterenol and Gpp(NH)p; (iii) at high concentrations, forskolin inhibits antagonist binding to the beta-receptor. Forskolin appears to have several sites of action in the turkey erythrocyte membrane, including an influence upon the adenylate cyclase regulatory protein N.  相似文献   

3.
The mechanisms by which forskolin stimulates adenylate cyclase activity in turkey erythrocyte membranes and is influenced by manganese and Gpp(NH)p were studied. Forskolin-dependent adenylate cyclase activity in particulate turkey erythrocyte membranes is enhanced following preincubation of membranes with isoproterenol and GMP (cleared membranes). In contrast, solubilization of turkey erythrocyte membranes, previously cleared, renders them relatively refractory to forskolin but not to Gpp(NH)p. Whereas adenylate cyclase activity due to the simultaneous presence of forskolin and Mn2+ in particulate turkey erythrocyte membranes is additive, their copresence becomes synergistic after solubilization. The apparent Kact for forskolin activation of adenylate cyclase is not influenced by clearance or by the presence of Mn2+ in particulate turkey erythrocyte membranes. Following solubilization, the Vmax for forskolin-dependent adenylate cyclase activation determined in the presence of Mn2+ is also independent of clearance. Forskolin activation of turkey erythrocyte adenylate cyclase appears to be influenced at sites in addition to the catalytic unit.  相似文献   

4.
We have established previously that the regulation of adenylate cyclase is abnormal in adipose tissue membranes of ob/ob mice. To help establish the nature of the defect, we studied the time course of guanine nucleotide activation and inhibition of adenylate cyclase. The activation of adenylate cyclase by Gpp(NH)p in adipocyte membranes of normal (+/+) and ob/ob mice proceeds with a lag phase. In +/+ membranes, this lag could be shortened by increasing the concentration of Mg2+ in the incubation medium or by pretreatment of the membranes with cholera toxin, and it could be abolished by isoproterenol in combination with 4 mM MgCl2. In contrast, in the ob/ob membranes, only pretreatment with cholera toxin was effective in shortening the lag phase. These results indicate an impediment in the activation of adenylate cyclase in ob/ob membranes. In the +/+ membranes, Gpp(NH)p inhibited foreskolin-stimulated adenylate cyclase, following a short lag phase, producing lower steady-state velocities than those seen with forskolin alone. The inhibitory effect of Gpp(NH)p on forskolin-stimulated activity was abolished by pertussis but not by cholera toxin treatment. In the ob/ob membranes, neither Gpp(NH)p nor pertussis treatment had any effect on the steady-state velocity of the forskolin-stimulated activity. These data have been interpreted as meaning that an anomaly in Ni rather than in Ns is likely to be responsible for the impairment of adenylate cyclase activity in the membranes of the ob/ob mouse.  相似文献   

5.
Forskolin activated adenylate cyclase of purified rat adipocyte membranes in the absence of exogenous guanine nucleotides. Guanyl-5'-yl imidodiphosphate (Gpp(NH)p) inhibited the forskolin-activated cyclase immediately upon addition of the nucleotide at concentrations too low to activate adenylate cyclase (10(-9) to 10(-7) M). Inhibition seen with a very high concentration of Gpp(NH)p (10(-4) M) lasted for 3-4 min and was followed by an increase in the synthetic rate which remained constant for at least 15 min. The length of the transient inhibition did not vary with forskolin concentrations above 0.05 microM but low Gpp(NH)p (10(-8) M) exhibited a lengthened (6-7 min) inhibitory phase. The transient inhibitory effects of Gpp(NH)p were eliminated by 10(-7) M isoproterenol, high (40 mM) Mg2+, or preincubation with Gpp(NH)p in the absence of forskolin. While forskolin stimulated fat cell cyclase in the presence of Mn2+, this ion blocked the inhibitory effects of Gpp(NH)p. The well documented inhibitory effects of GTP on the fat cell adenylate cyclase system were also observed in the presence of forskolin. However, the inhibition by GTP is not transitory. These findings indicate that Gpp(NH)p regulation of forskolin-stimulated cyclase has at least two components: 1) an inhibitory component which acts through an undetermined mechanism and which acts immediately to decrease cyclase activity; and 2) an activating component which modulates the inhibited cyclase activity through the guanine nucleotide regulatory protein.  相似文献   

6.
The properties of the adenylate cyclase from forskolin-resistant mutants of Y1 adrenocortical tumor cells was compared with the properties of the enzyme from parental Y1 cells in order to localize the site of mutation. In parental Y1 cells, forskolin stimulated adenylate cyclase activity with kinetics suggestive of an interaction at two sites; in mutant cells, forskolin resistance was characterized by a decrease in enzymatic activity at both sites. Forskolin potentiated the enzyme's responses to NaF and guanyl-5'-yl imidodiphosphate (Gpp(NH)p) in parent and mutant clones, and the mutant enzyme showed the same requirements for Mg2+ and Mn2+ as did the parent enzyme. The adenylate cyclase associated with forskolin-resistant mutants was insensitive to ACTH and was less responsive to Gpp(NH)p than was the parent enzyme. In parental Y1 cells and in the forskolin-resistant mutants, cholera toxin catalyzed the transfer of [32P]ADP-ribose from [32P]NAD+ into three membrane proteins associated with the alpha subunit of Gs; however, the amount of labeled ADP-ribose incorporated into mutant membranes was reduced by as much as 70%. Both parent and mutant membranes were labeled by pertussis toxin to the same extent. The insensitivity of the mutant adenylate cyclase to ACTH and Gpp(NH)p and the selective resistance of the mutant membranes to cholera toxin-catalyzed ADP-ribosylation suggest that a specific defect associated with Gs is involved in the mutation to forskolin resistance in Y1 cells.  相似文献   

7.
In rat fat cell membranes, a 72-hour fasting fails to alter the adenylate cyclase stimulatory responses to Mn2+, forskolin and cholera toxin and the cholera toxin catalyzed [alpha-32P] ADP ribose incorporation into the Mr = 42,000 and 46,000/48,000 alpha s peptides of Ns. In contrast, dose-response curves for GTP-stimulation of basal and isoproterenol-stimulated adenylate cyclase display higher maximal responses in fasted rats under conditions restraining (2 mM Mg2+) but not promoting (10 mM Mg2+) the dissociation of Ns. Moreover, at 10 mM Mg2+, the sensitivity of isoproterenol-stimulated adenylate cyclase to GTP is clearly increased in fasted rats. Finally, fasting reduces by 40% the lag-phase of adenylate cyclase activation by Gpp(NH)p. Taken together, these results are consistent with the hypothesis that the permissive effect of fasting on the fat cell adenylate cyclase response to stimulatory agonists is related to increased ability of Ns and the ternary H.R.Ns. complex to dissociate which is likely due to enhanced Ns affinity for guanine nucleotides.  相似文献   

8.
The mechanism of action of forskolin stimulation of adenylate cyclase was investigated by examining its effects on the enzyme's Mg2+ activated catalytic unit (C) from bovine sperm, both preceding and following complementation with human erythrocyte membranes as a source of guanine nucleotide regulatory protein (N). Prior to complementation, sperm C was not activated by either NaF (10 mM) or 5'-guanylyl-beta-gamma-imidodiphosphate (Gpp(NH)p, 10 microM), suggesting that functional N was not present in this preparation. Forskolin (100 microM) was also without effect on C. Following complementation of the sperm membranes with those of erythrocytes, Mg2+-dependent sensitivity to forskolin, NaF, and Gpp(NH)p was imparted to C. Our findings are incompatible with the current hypothesis that forskolin stimulates adenylate cyclase by direct activation of C. Rather, the data suggest that the activation process occurs through an effect on N or by augmentation of the interaction between the components of the adenylate cyclase complex.  相似文献   

9.
Lymphocyte adenylate cyclase and human aging   总被引:2,自引:0,他引:2  
Adenylate cyclase activity was determined by enzymatic conversion of [32P]ATP to [32P]cAMP using peripheral lymphocytes freshly isolated from human subjects. The lymphocyte enzyme was stimulated by the potent beta-adrenergic catecholamine agonist isoproterenol and by the nonhydrolyzable GTP-analog Gpp[NH]p. The two activators had a synergistic effect, and agonist-dependent enzyme activity followed simple Michaelis-Menten kinetics with respect to isoproterenol in the presence but not in the absence of Gpp[NH]p. Cyclic AMP production by intact lymphocytes, determined by protein binding assay, also followed simple Michaelis-Menten kinetics with respect to isoproterenol. Kact of isoproterenol was the same in intact cells and the broken cell assay in the presence of Gpp[NH]p, suggesting the indispensable role the GTP-binding coupling factors play in the intact lymphocyte. In 31 human subjects between the age of 21 and 103, adenylate cyclase activity in the presence of isoproterenol, Gpp[NH]p, or isoproterenol in the presence of Gpp[NH]p decreased with the increasing age of the subject. The sensitivity of the enzyme to stimulation by isoproterenol, defined as the Kact and determined in the presence of Gpp[NH]p, was the same in lymphocytes from young (less than 45 years) or elderly (greater than 75 years) subjects. These results suggest a deficiency in the lymphocyte adenylate cyclase system distal to the beta-adrenergic catecholamine receptor could account for deterioration of cAMP-mediated components of the immune response which occur with age.  相似文献   

10.
The mechanism of calmodulin dependent regulation of adenylate cyclase has been studied in human platelet membranes. Calmodulin activated adenylate cyclase exhibited a biphasic response to both Mg2+ and Ca2+. A stimulatory effect of Mg2 on adenylate cyclase was observed at all Mg2+ concentrations employed, although the degree of activation by calmodulin was progressively decreased with increasing concentrations of Mg2+. These results demonstrate that the Vmax of calmodulin dependent platelet adenylate cyclase can be manipulated by varying the relative concentrations of Mg2+ and Ca2+. The activity of calmodulin stimulated adenylate cyclase was always increased 2-fold above respective levels of activity induced by GTP, Gpp(NH)p and/or PGE. The stimulatory influence of calmodulin was not additive but synergistic to the effects of PGE1, GTP and Gpp(NH)p. GDP beta S inhibited GTP-and Gpp(NH)p stimulation of adenylate cyclase but was without effect on calmodulin stimulation. Since the inhibitory effects of GDP beta S have been ascribed to apparent reduction of active N-protein-catalytic unit (C) complex formation, these results suggest that the magnitude of calmodulin dependent adenylate cyclase activity is proportional to the number of N-protein-C complexes, and that calmodulin interacts with preformed N-protein-C complex to increase its catalytic turnover. Our data do not support existence of two isoenzymes of adenylate cyclase (calmodulin sensitive and calmodulin insensitive) in human platelets.  相似文献   

11.
We have compared the effects of Gpp[NH]p on adenylate cyclase activity of platelet membranes in SHR and WKY rats. In the presence of 50 microM forskolin, low concentrations of Gpp[NH]p (0.01 to 0.3 microM) inhibited the enzyme activity in both strains, but the maximal level of inhibition was significantly lower in SHR (- 20%). In the absence of forskolin, 0.1 microM Gpp[NH]p was inhibitory only in WKY and the adenylate cyclase activity was greater in hypertensive rats at this nucleotide concentration. Increasing Gpp[NH]p from 0.1 to 3 microM induced the same increase of enzyme activity in both strains. In SHR, GTP itself induced a lower inhibition of the enzyme stimulated by 50 microM forskolin or 0.1 microM prostaglandin E1. These results suggest that the modulatory effect of the guanine nucleotide inhibitory protein on adenylate cyclase may be reduced in platelets from SHR.  相似文献   

12.
This study presents the results of a kinetic investigation of adenylate cyclase in human polymorphonuclear leukocytes. In the presence of a saturating concentration of substrate (1 mM), the basal activity was increased severalfold by increasing Mg2+ from 1 to 25 mM. A Hill coefficient of 1.9 was obtained for Mg2+ or ATP. The data suggest cooperative interactions between the substrate binding sites in the neutrophil adenylate cyclase complex. It has been observed that guanyl-5'-yl imidodiphosphate (Gpp(NH)p) (S0.5 = 10 MUM) significantly increased and Ca2+ (S0.5 = 0.5 MM) significantly decreased only the Vmax without affecting the Hill coefficient or S0.5 for ATP. The Hill coefficients for Ca2+ or Gpp(NH)p were 0.9 and 0.8, respectively. The Hill coefficient for Ca2+ was not changed by the increased Gpp(NH)p concentrations. It appears that neutrophil adenylate cyclase has distinct binding sites for Gpp(NH)p and Ca2+, one for each compond. The binding of ligands is not changed by the other effectors and the action is directed only toward the Vmax of the enzyme. The stimulatory action of positive effectors (prostaglandin E1, isoproterenol, histamine) was enhanced by Gpp(NH)p and depressed by Ca2+. No preferential stimulation by Gpp(NH)p nor inhibition by Ca2+ of the action of the positive effectors has been found. The data suggests that only one type of catalytic subunit responds to the action of several positive effectors. Extracellular Gpp(NH)p or Ca2+ do not affect the cyclic adenosine 3':5'-monophosphate (cAMP) level in whole neutrophils and the effect of positive effectors on cAMP production is also not significantly changed by 5 mM Ca2+ or 0.1 mM Gpp(NH)p. Ionophore A23187 in the presence of 5 mM Ca2+ enhances Ca2+ entry into cells and decreases the basal cAMP formation. It appears that Gpp(NH)p or Ca2+ act only at the intracellular site of the adenylate cyclase complex.  相似文献   

13.
The inhibition of adenylate cyclase from rat striatal plasma membranes by guanyl-5'-yl-imidodiphosphate [Gpp(NH)p] and morphine was compared to determine whether Gpp(NH)p-mediated inhibition accurately reflected hormone-mediated inhibition in this system. Inhibition of adenylate cyclase activity by Gpp(NH)p and morphine was examined with respect to temperature, divalent cation concentration, and the presence of Ca2+/calmodulin (Ca2+/CaM). Gpp(NH)p-mediated inhibition was dependent on the presence of Ca2+/CaM at 24 degrees C; the inhibition was independent of Ca2+/CaM at 18 degrees C; and inhibition could not be detected in the presence, or absence, of Ca2+/CaM at 30 degrees C. In contrast, naloxone-reversible, morphine-induced inhibition of adenylate cyclase was independent of both temperature and the presence of Ca2+/CaM. Mg2+ dose-response curves also reinforced the differences in the Ca2+/CaM requirement for Gpp(NH)p- and morphine-induced inhibition. Because Gpp(NH)p-mediated inhibition was independent of Ca2+/CaM at low basal activities (i.e., 18 degrees C, or below 1 mM Mg2+) and dependent on the presence of Ca2+/CaM at higher basal activities (24 degrees C, or above 1 mM Mg2+), the inhibitory effects of Gpp(NH)p were examined at 1 mM Mg2+ in the presence of 100 nM forskolin. Under these conditions, both Gpp(NH)p- and morphine-induced inhibition of adenylate cyclase were independent of Ca2+/CaM. The results demonstrate that the requirement for Ca2+/CaM to observe Gpp(NH)p-mediated inhibition depends on the basal activity of adenylate cyclase, whereas hormone-mediated inhibition is Ca2+/CaM independent under all conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
[3H]Forskolin binds to human platelet membranes in the presence of 5 mM MgCl2 with a Bmax of 125 fmol/mg of protein and a Kd of 20 nM. The Bmax for [3H]forskolin binding is increased to 455 and 425 fmol/mg of protein in the presence of 100 microM guanyl-5'-yl imidodiphosphate (Gpp(NH)p) and 10 mM NaF, respectively. The increase in the Bmax for [3H]forskolin in the presence of Gpp(NH)p or NaF is not observed in the absence of MgCl2. The EC50 values for the increase in the number of binding sites for [3H]forskolin by Gpp(NH)p and NaF are 600 nM and 4 mM, respectively. The EC50 value for Gpp(NH)p to increase the number of [3H]forskolin binding sites is reduced to 35 mM and 150 nM in the presence of 50 microM PGE1 or PGD2, respectively. The increase in the number of [3H]forskolin binding sites observed in the presence of NaF is unaffected by prostaglandins. The binding of [3H]forskolin to membranes that are preincubated with Gpp(NH)p for 120 min or assayed in the presence of PGE1 reaches equilibrium within 15 min. In contrast, a slow linear increase in [3H]forskolin binding is observed over a period of 60 min when Gpp(NH)p and [3H]forskolin are added simultaneously to membranes. A slow linear increase in adenylate cyclase activity is also observed as a result of preincubating membranes with Gpp(NH)p. In human platelet membranes, agents that activate adenylate cyclase via the guanine nucleotide stimulatory protein (Ns) increase the number of binding sites for [3H]forskolin in a magnesium-dependent manner. This is consistent with the high affinity binding sites for [3H]forskolin being associated with the formation of an activated complex of the Ns protein and adenylate cyclase. This state of the adenylate cyclase may be representative of that formed by a synergistic combination of hormones and forskolin.  相似文献   

15.
Adenylate cyclase activity in bovine cerebellar membranes is regulated by calmodulin, forskolin, and both stimulatory (Ns) and inhibitory (Ni) guanine nucleotide-binding components. The susceptibility of the enzyme to chymotrypsin proteolysis was used as a probe of structure-function relationships for these different regulatory pathways. Pretreatment of membranes with low concentrations of chymotrypsin (1-2 micrograms/ml) caused a three- to fourfold increase in basal adenylate cyclase activity and abolished the Ca2+-dependent activation of the enzyme by calmodulin. In contrast, the stimulation of the enzyme by GTP plus isoproterenol was strongly potentiated after protease treatment, an effect that mimics the synergistic activation of adenylate cyclase by Ns and calmodulin in unproteolyzed membranes. Limited proteolysis revealed low- and high-affinity components in the activation of adenylate cyclase by forskolin. The low-affinity component was readily lost on proteolysis, together with calmodulin stimulation of the enzyme. The activation via the high-affinity component was resistant to proteolysis and nonadditive with the Ns-mediated activation of the enzyme, suggesting that both effectors utilize a common pathway. The inhibitory effect of low concentrations (10(-7) M) of guanyl-5'-yl imidodiphosphate [Gpp(NH)p] on forskolin-activated adenylate cyclase was retained after limited proteolysis of the membranes, indicating that the proteolytic activation does not result from an impairment of the Ni subunit. Moreover, in the rat cerebellum, proteolysis as well as calmodulin was found to enhance strongly the inhibitory effect of Gpp(NH)p on basal adenylate cyclase activity. Our results suggest that calmodulin and Ns/Ni interact with two structurally distinct but allosterically linked domains of the enzyme. Both domains appear to be involved in the mode of action of forskolin.  相似文献   

16.
Basal as well as GTP-dependent adenylate cyclase activity was partially resistant to porcine pancreatic phospholipase A2, although more activity was degraded at 16 than at 2 degrees C. In contrast, isoproterenol-dependent activity was completely destroyed regardless of the temperature. Snake venom phospholipase A2 destroyed approximately 90% of basal and GTP-dependent adenylate cyclase activity at all temperatures. The difference between the lipases is consistent with earlier evidence that elevated temperature facilitates the entry of some forms of phospholipase into the membrane bilayer. The temperature dependence of adenylate cyclase activation by the GTP analog Gpp[NH]p and its pancreatic phospholipase sensitivity were compared. The Arrhenius plots were markedly similar and biphasic with discontinuities at approximately 8 degrees C. The same temperature-dependent phospholipid phase transition might account, therefore, for both adenylate cyclase properties. Only small amounts of membrane phosphatidylethanolamine and phosphatidic acid were hydrolyzed by pancreatic phospholipase in a temperature-dependent manner analogous to adenylate cyclase degradation. These results suggest that specific phospholipids support catalysis and adenylate cyclase activation, but that different phospholipids are required for receptor coupling which may occur in a less viscous part of the membrane.  相似文献   

17.
Basal adenylate cyclase activity was similar in plasma membranes prepared from the lungs of 12 week old spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY). However, sensitivity to Gpp[NH]p, isoproterenol plus GTP or Gpp[NH]p was significantly greater in the SHR. Beta-receptor density measured by [3H]DHA binding was unaltered. The dissociation constant, Kd, revealed a significantly greater binding affinity of the radioligand in the SHR (6.23 +/- 0.45 nM) compared with the WKY (8.53 +/- 0.82 nM). Activity of Gs was assessed by complementing S49 cyc- acceptor membranes with lung cholate extract. Basal activity of the reconstituted system was decreased 43% in the SHR. However, sensitivity to NaF, Gpp[NH]p, and isoproterenol plus Gpp[NH]p was significantly elevated. These data suggest that desensitization of the adenylate cyclase complex is not a generalized response to chronic hypertension. A tissue specific increase in sympathetic drive appears to be responsible for the lowered concentration of cardiac beta-adrenoceptors in the SHR. In contrast, both indirect and direct evidence indicate an enhanced functional sensitivity of pulmonary Gs in the hypertensive rats.  相似文献   

18.
Expression of activation of rat liver adenylate cyclase by the A1 peptide of cholera toxin and NAD is dependent on GTP. The nucleotide is effective either when added to the assay medium or during toxin (and NAD) treatment. Toxin treatment increases the Vmax for activation by GTP and the effect of GTP persists in toxin-treated membranes, a property seen in control membranes only with non-hydrolyzable analogs of GTP such as Gpp(NH)p. These observations could be explained by a recent report that cholera toxin acts to inhibit a GTPase associated with denylate cyclase. However, we have observed that one of the major effects of the toxin is to decrease the affinity of guanine nucleotides for the processes involved in the activation of adenylate cyclase and in the regulation of the binding of glucagon to its receptor. Moreover, the absence of lag time in the activation of adenylate cyclase by GTP, in contrast to by Gpp(NH)p, and the markedly reduced fluoride action after toxin treatment suggest that GTPase inhibition may not be the only action of cholera toxin on the adenylate cyclase system. We believe that the multiple effects of toxin action is a reflection of the recently revealed complexity of the regulation of adenylate cyclase by guanine nucleotides.  相似文献   

19.
Continuous treatment (1-10 days) of rats with desipramine (10 mg/kg, twice per day) caused desensitization of the beta-adrenergic receptor-coupled adenylate cyclase system of cerebral cortical membranes. The decrease in the isoproterenol-stimulated adenylate cyclase activity was more rapid and greater than the decrease in the number of beta-adrenergic receptors in membranes during treatment of the membrane donor rats with desipramine, indicating that the desensitization occurring at an early stage of the treatment was not accounted for solely by the decrease in the receptor number. Neither the guanine nucleotide regulatory protein (N) nor the adenylate cyclase catalyst was impaired by the drug treatment, since there was no decrease in the cyclase activity measured in the presence or absence of GTP, guanyl-5'-yl-beta-gamma-imidodiphosphate [Gpp(NH)p], NaF, or forskolin. Gpp(NH)p-induced activation of membrane adenylate cyclase developed with a lag time of a few minutes in membranes from control or drug-treated rats. The lag was shortened by the addition of isoproterenol, indicating that beta-receptors were coupled to N in such a manner as to facilitate the exchange of added Gpp(NH)p with endogenous GDP on N. This effect of isoproterenol rapidly decreased during the drug treatment of rats. Thus, functional uncoupling of the N protein from receptors was responsible for early development of desensitization of beta-adrenergic receptor-mediated adenylate cyclase in the cerebral cortex during desipramine therapy.  相似文献   

20.
Influence of cholera toxin on the regulation of adenylate cyclase by GTP.   总被引:6,自引:0,他引:6  
In the presence of NAD+, cholera toxin activates adenylate cyclase in membranes of S49 mouse lymphoma cells. The following evidence supports the hypothesis that the toxin acts by inhibiting a specific GTPase associated with a guanyl nucleotide regulatory component of hormone-responsive cyclase: 1. GTP alone markedly stimulates cyclase activity in toxin-treated, but not in untreated membranes; 2. The poorly hydrolyzable GTP analog, guanosine 5′-(β,γ-imino) triphosphate (Gpp(NH)p), stimulates cyclase equally well in toxin-treated and untreated membranes; 3. Cyclase activation by isoproterenol plus GTP persists in toxin-treated membranes, but not in controls, after addition of propranolol; 4. GTP is a more potent competitive inhibitor of the irreversible activation of cyclase by Gpp(NH)p in toxin-treated than in untreated membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号