首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
[Het-s] is a prion from the filamentous fungus Podospora anserina and corresponds to a self-perpetuating amyloid aggregate of the HET-s protein. This prion protein is involved in a fungal self/non-self discrimination process termed heterokaryon incompatibility corresponding to a cell death reaction occurring upon fusion of genetically unlike strains. Two antagonistic allelic variants of this protein exist: HET-s, the prion form of which corresponds to [Het-s] and HET-S, incapable of prion formation. Fusion of a [Het-s] and HET-S strain triggers the incompatibility reaction, so that interaction of HET-S with the [Het-s] prion leads to cell death. HET-s and HET-S are highly homologous two domain proteins with a N-terminal globular domain termed HeLo and a C-terminal unstructured prion forming domain (PFD). The structure of the prion form of the HET-s PFD has been solved by solid state NMR and corresponds to a very well ordered β-solenoid fold with a triangular hydrophobic core. The ability to form this β-solenoid fold is retained in a distant homolog of HET-s from another fungal species. A model for the mechanism of [Het-s]/HET-S incompatibility has been proposed. It is believe that when interacting with the [Het-s] prion seed, the HET-S C-terminal region adopts the β-solenoid fold. This would act as a conformational switch to induce refolding and activation of the HeLo domain which then would exert its toxicity by a yet unknown mechanism.  相似文献   

2.
The [Het-s] infectious element of the filamentous fungus Podospora anserina corresponds to the prion form of the HET-s protein. HET-s (289 amino acids in length) aggregates into amyloid fibers in vitro. Such fibers obtained in vitro are infectious, indicating that the [Het-s] prion can propagate as a self-perpetuating amyloid aggregate of the HET-s protein. Previous analyses have suggested that only a limited region of the HET-s protein is involved in amyloid formation and prion propagation. To document the conformational transition occurring upon amyloid aggregation of HET-s, we have developed a method involving hydrogen/deuterium exchange monitored by MALDI-MS. In a first step, a peptide mass fingerprint of the protein was obtained, leading to 87% coverage of the HET-s primary structure. Amyloid aggregates of HET-s were obtained, and H/D exchange was monitored on the soluble and on the amyloid form of HET-s. This study revealed that in the soluble form of HET-s, the C-terminal region (spanning from residues 240-289) displays a high solvent accessibility. In sharp contrast, solvent accessibility is drastically reduced in that region in the amyloid form. H/D exchange rates and levels in the N-terminal part of the protein (residues 1-220) are comparable in the soluble and the aggregated state. These results indicate that amyloid aggregation of HET-s involves a conformational transition of the C-terminal part of the protein from a mainly disordered to an aggregated state in which this region is highly protected from hydrogen exchange.  相似文献   

3.
Prions have been described in mammals and fungi. The [Het-s] infectious genetic element of the filamentous fungus Podospora anserina is the prion form of the HET-s protein. This protein is involved in the control of a cell death reaction termed heterokaryon incompatibility. The infectious form of HET-s corresponds to a self-perpetuating amyloid. The purpose of the present paper is to describe the techniques that can be used to analyse [Het-s] prion propagation in vivo and HET-s amyloid aggregation in vitro. In addition, we report several methods that can be used to infect Podospora with recombinant HET-s amyloid.  相似文献   

4.
HET-s is a prion protein of the filamentous fungus Podospora anserina. An orthologue of this protein, called FgHET-s has been identified in Fusarium graminearum. The region of the FgHET-s protein corresponding to the prion forming domain of HET-s, forms amyloid fibrils in vitro. These fibrils seed HET-s(218-289) fibril formation in vitro and vice versa. The amyloid fold of HET-s(218-289) and FgHET-s(218-289) are remarkably similar although they share only 38% identity. The present work corresponds to the functional characterization of the FgHET-s(218-289) region as a prion forming domain in vivo. We show that FgHET-s(218-289) is capable of prion propagation in P. anserina and is able to substitute for the HET-s PFD in the full-length HET-s protein. In accordance with the in vitro cross-seeding experiments, we detect no species barrier between P. anserina and F. graminearum PFDs. We use the yeast Saccharomyces cerevisiae as a host to compare the prion performances of the two orthologous PFDs. We find that FgHET-s(218-289) leads to higher spontaneous prion formation rates and mitotic prion stability than HET-s(218-289). Then we analysed the outcome of HET-s(218-289)/FgHET-s(218-289) coexpression. In spite of the cross-seeding ability of HET-s(218-289) and FgHET-s(218-289), in vivo, homotypic polymerization is favoured over mixed fibril formation.  相似文献   

5.
《朊病毒》2013,7(1):44-47
Aggregation of amyloid proteins is involved in serious neurodegenerative disorders such as Alzheimer disease and transmissible encephalopathies. The concept of an infectious protein (prion) proposed as the scrapie agent was successfully validated for several proteins of yeast and fungi. Ure2, Sup35 and Rnq1 in Saccharomyces cerevisiae and HET-s in Podospora anserina have been genetically, then biochemically identified as prion proteins. Studies on these proteins have brought critical informations on the mechanisms of prions appearance and propagation. The prion phenotype correlates with the aggregation state of these particular proteins. In vitro, the recombinant prion proteins form amyloid fibers characterized by a rich β-sheet content. In a previous work on the HET-s prion protein of Podospora we have demonstrated the infectivity of HET-s recombinant amyloid aggregates. More recently, the structural analysis of the prion domain of HET-s associated with in vivo mutagenesis allowed us to propose a model for the infectious fold of the HET-s prion domain. Further investigations to complete this model are discussed in this review as well as relevant questions about the [Het-s] system of Podospora anserina.  相似文献   

6.
We have proposed that the [Het-s] infectious cytoplasmic element of the filamentous fungus Podospora anserina is the prion form of the HET-s protein. The HET-s protein is involved in a cellular recognition phenomenon characteristic of filamentous fungi and known as heterokaryon incompatibility. Under the prion form, the HET-s protein causes a cell death reaction when co-expressed with the HET-S protein, from which it differs by only 13 amino acid residues. We show here that the HET-s protein can exist as two alternative states, a soluble and an aggregated form in vivo. As shown for the yeast prions, transition to the infectious prion form leads to aggregation of a HET-s--green fluorescent protein (GFP) fusion protein. The HET-s protein is aggregated in vivo when highly expressed. However, we could not demonstrate HET-s aggregation at wild-type expression levels, which could indicate that only a small fraction of the HET-s protein is in its aggregated form in vivo in wild-type [Het-s] strains. The antagonistic HET-S form is soluble even at high expression level. A double amino acid substitution in HET-s (D23A P33H), which abolishes prion infectivity, suppresses in vivo aggregation of the GFP fusion. Together, these results further support the model that the [Het-s] element corresponds to an abnormal self-perpetuating aggregated form of the HET-s protein.  相似文献   

7.
Two alleles of the het-s/S locus occur naturally in the filamentous fungus Podospora anserina, het-s and het-S. The het-s encoded protein can form a prion that propagates a self-perpetuating amyloid aggregate, resulting in two phenotypes for the het-s strains. The prion-infected [Het-s] shows an antagonistic interaction to het-S whereas the prion-free [Het-s*] is neutral in interaction to het-S. The antagonism between [Het-s] and het-S is seen as heterokaryon incompatibility at the somatic level and as het-S spore killing in the sexual cycle. Two different domains of the HET-s and HET-S proteins have been identified, and a structure-function relationship has been established for interactions at the somatic level. In this study, we correlate accumulation of the HET-s and HET-S proteins (visualized using GFP) during the sexual cycle with timing of het-S spore abortion. Also, we present the structure-function relationship of the HET-s domains for interactions in the sexual cycle. We show that the constructs that ensure het-s incompatibility function in somatic mycelium are also active in het-S spore killing in the sexual cycle. In addition, paternal prion transmission and het-S spore killing has been found with the HET-s(157-289) truncated protein. The consequences of the unique transition from a coenocytic to a cellular state in the sexual phase and the timing, and localization of paternal and maternal HET-s and HET-S expression that are pertinent to prion transmission, and het-S spore killing are elaborated. These data further support our previously proposed model for het-S spore killing.  相似文献   

8.
The HET-s prion protein of Podospora anserina represents a valuable model system to study the structural basis of prion propagation. In this system, prion infectivity can be generated in vitro from a recombinant protein. We have previously identified the region of the HET-s protein involved in amyloid formation and prion propagation. Herein, we show that a recombinant peptide corresponding to the C-terminal prion-forming domain of HET-s (residues 218-289) displays infectivity. We used high resolution hydrogen/deuterium exchange analyzed by mass spectrometry to gain insight into the structural organization of this infectious amyloid form of the HET-s-(218-289) protein. Deuterium incorporation was analyzed by ion trap mass spectrometry for 76 peptides generated by pepsin proteolysis of HET-s-(218-289). By taking into account sequence overlaps in these peptides, a resolution ranging from 4-amino acids stretches to a single residue could be achieved. This approach allowed us to define highly protected regions alternating with more accessible segments along the HET-s-(218-289) sequence. The HET-s-(218-289) fibrils are thus likely to be organized as a succession of beta-sheet segments interrupted by short turns or short loops.  相似文献   

9.
Coustou V  Deleu C  Saupe SJ  Bégueret J 《Genetics》1999,153(4):1629-1640
The het-s locus is one of nine known het (heterokaryon incompatibility) loci of the fungus Podospora anserina. This locus exists as two wild-type alleles, het-s and het-S, which encode 289 amino acid proteins differing at 13 amino acid positions. The het-s and het-S alleles are incompatible as their coexpression in the same cytoplasm causes a characteristic cell death reaction. We have proposed that the HET-s protein is a prion analog. Strains of the het-s genotype exist in two phenotypic states, the neutral [Het-s*] and the active [Het-s] phenotype. The [Het-s] phenotype is infectious and is transmitted to [Het-s*] strains through cytoplasmic contact. het-s and het-S were associated in a single haploid nucleus to generate a self-incompatible strain that displays a restricted and abnormal growth. In the present article we report the molecular characterization of a collection of mutants that restore the ability of this self-incompatible strain to grow. We also describe the functional analysis of a series of deletion constructs and site-directed mutants. Together, these analyses define positions critical for reactivity and allele specificity. We show that a 112-amino-acid-long N-terminal peptide of HET-s retains [Het-s] activity. Moreover, expression of a mutant het-s allele truncated at position 26 is sufficient to allow propagation of the [Het-s] prion analog.  相似文献   

10.
Fungal prions are infectious filamentous polymers of proteins that are soluble in uninfected cells. In its prion form, the HET-s protein of Podospora anserina participates in a fungal self/non-self recognition phenomenon called heterokaryon incompatibility. Like other prion proteins, HET-s has a so-called "prion domain" (its C-terminal region, HET-s-(218-289)) that is responsible for induction and propagation of the prion in vivo and for fibril formation in vitro. Prion fibrils are thought to have amyloid backbones of polymerized prion domains. A relatively detailed model has been proposed for prion domain fibrils of HET-s based on a variety of experimental constraints (Ritter, C., Maddelein, M. L., Siemer, A. B., Luhrs, T., Ernst, M., Meier, B. H., Saupe, S. J., and Riek, R. (2005) Nature 435, 844-848). To test specific predictions of this model, which envisages axial stacking of beta-solenoids with two coils per subunit, we examined fibrils by electron microscopy. Electron diffraction gave a prominent meridional reflection at (0.47 nm)(-1), indicative of cross-beta structure, as predicted. STEM (scanning transmission electron microscopy) mass-per-unit-length measurements yielded 1.02 +/- 0.16 subunits per 0.94 nm, in agreement with the model prediction (1 subunit per 0.94 nm). This is half the packing density of approximately 1 subunit per 0.47 nm previously obtained for fibrils of the yeast prion proteins, Ure2p and Sup35p, whence it follows that the respective amyloid architectures are basically different.  相似文献   

11.
The [Het-s] prion of the fungus Podospora anserina represents a good model system for studying the structure-function relationship in amyloid proteins because a high resolution solid-state NMR structure of the amyloid prion form of the HET-s prion forming domain (PFD) is available. The HET-s PFD adopts a specific β-solenoid fold with two rungs of β-strands delimiting a triangular hydrophobic core. A C-terminal loop folds back onto the rigid core region and forms a more dynamic semi-hydrophobic pocket extending the hydrophobic core. Herein, an alanine scanning mutagenesis of the HET-s PFD was conducted. Different structural elements identified in the prion fold such as the triangular hydrophobic core, the salt bridges, the asparagines ladders and the C-terminal loop were altered and the effect of these mutations on prion function, fibril structure and stability was assayed. Prion activity and structure were found to be very robust; only a few key mutations were able to corrupt structure and function. While some mutations strongly destabilize the fold, many substitutions in fact increase stability of the fold. This increase in structural stability did not influence prion formation propensity in vivo. However, if an Ala replacement did alter the structure of the core or did influence the shape of the denaturation curve, the corresponding variant showed a decreased prion efficacy. It is also the finding that in addition to the structural elements of the rigid core region, the aromatic residues in the C-terminal semi-hydrophobic pocket are critical for prion propagation. Mutations in the latter region either positively or negatively affected prion formation. We thus identify a region that modulates prion formation although it is not part of the rigid cross-β core, an observation that might be relevant to other amyloid models.  相似文献   

12.
Amyloid protein aggregation is involved in serious neurodegenerative disorders such as Alzheimer''s disease and transmissible encephalopathies. The concept of an infectious protein (prion) being the scrapie agent was successfully validated for several yeast and fungi proteins. Ure2, Sup35 and Rnq1 in Saccharomyces cerevisiae and HET-s in Podospora anserina have been genetically and biochemically identified as prion proteins. Studies on these proteins have revealed critical information on the mechanisms of prions appearance and propagation. The prion phenotype correlates with the aggregation state of these particular proteins. In vitro, the recombinant prion proteins form amyloid fibers characterized by rich β sheet content. In a previous work on the HET-s prion protein Podospora, we demonstrated the infectivity of HET-s recombinant amyloid aggregates. More recently, the structural analysis of the HET-s prion domain associated with in vivo mutagenesis allowed us to propose a model for the infectious fold of the HET-s prion domain. Further investigations to complete this model are discussed in this review, as are relevant questions about the [Het-s] system of Podospora anserina.Key Words: prion, HET-s, Podospora, amyloid, infectious, β sheet, mutagenesis, fold, propagation  相似文献   

13.
The chaperones of the ClpB/HSP100 family play a central role in thermotolerance in bacteria, plants, and fungi by ensuring solubilization of heat-induced protein aggregates. In addition in yeast, Hsp104 was found to be required for prion propagation. Herein, we analyze the role of Podospora anserina Hsp104 (PaHsp104) in the formation and propagation of the [Het-s] prion. We show that DeltaPaHsp104 strains propagate [Het-s], making [Het-s] the first native fungal prion to be propagated in the absence of Hsp104. Nevertheless, we found that [Het-s]-propagon numbers, propagation rate, and spontaneous emergence are reduced in a DeltaPaHsp104 background. In addition, inactivation of PaHsp104 leads to severe meiotic instability of [Het-s] and abolishes its meiotic drive activity. Finally, we show that DeltaPaHSP104 strains are less susceptible than wild type to infection by exogenous recombinant HET-s(218-289) prion amyloids. Like [URE3] and [PIN(+)] in yeast but unlike [PSI(+)], [Het-s] is not cured by constitutive PaHsp104 overexpression. The observed effects of PaHsp104 inactivation are consistent with the described role of Hsp104 in prion aggregate shearing in yeast. However, Hsp104-dependency appears less stringent in P. anserina than in yeast; presumably because in Podospora prion propagation occurs in a syncitium.  相似文献   

14.
In the fungus Podospora anserina, the [Het-s] prion induces programmed cell death by activating the HET-S pore-forming protein. The HET-s β-solenoid prion fold serves as a template for converting the HET-S prion-forming domain into the same fold. This conversion, in turn, activates the HET-S pore-forming domain. The gene immediately adjacent to het-S encodes NWD2, a Nod-like receptor (NLR) with an N-terminal motif similar to the elementary repeat unit of the β-solenoid fold. NLRs are immune receptors controlling cell death and host defense processes in animals, plants and fungi. We have proposed that, analogously to [Het-s], NWD2 can activate the HET-S pore-forming protein by converting its prion-forming region into the β-solenoid fold. Here, we analyze the ability of NWD2 to induce formation of the β-solenoid prion fold. We show that artificial NWD2 variants induce formation of the [Het-s] prion, specifically in presence of their cognate ligands. The N-terminal motif is responsible for this prion induction, and mutations predicted to affect the β-solenoid fold abolish templating activity. In vitro, the N-terminal motif assembles into infectious prion amyloids that display a structure resembling the β-solenoid fold. In vivo, the assembled form of the NWD2 N-terminal region activates the HET-S pore-forming protein. This study documenting the role of the β-solenoid fold in fungal NLR function further highlights the general importance of amyloid and prion-like signaling in immunity-related cell fate pathways.  相似文献   

15.
Prions are self-templating protein structures that can be transferred from organism to organism. The [Het-s] prion propagates as a functional amyloid aggregate in the filamentous fungi Podospora anserina, and is involved in mediating heterokaryon incompatibility. Fusion of a P. anserina strain harboring the [Het-s] prion with another strain expressing the soluble Het-S protein results in cell death. The mechanism of Het-s/Het-S-mediated cell death has now been revealed in a paper just published in PLOS Biology. The study shows that Het-s and Het-S C-terminal domain co-amyloidogenesis induces a profound conformational rearrangement in the N-terminal Het-S HeLo domain, resulting in the exposure of a nascent transmembrane helix. Oligomerization of these helices leads to pore formation, leakage of the cytosolic contents, and subsequent cell death. Thus, Het-s amyloid plays a major role in the life cycle of P. anserina by orchestrating a complex conformational change in the Het-S protein, resulting in cytotoxicity by compromising membrane integrity. This ability of Het-s functional amyloid to initiate programmed cytotoxicity by mediating a conformational change in another protein significantly expands the functional repertoire of amyloid. Moreover, the mechanism of Het-S cell killing may be similar to the mechanism by which some pathological amyloid proteins lead to the demise of post-mitotic tissue.  相似文献   

16.
The HET-s protein of Podospora anserina is a fungal prion. This protein behaves as an infectious cytoplasmic element that is transmitted horizontally from one strain to another. Under the prion form, the HET-s protein forms aggregates in vivo. The specificity of this prion model compared with the yeast prions resides in the fact that under the prion form HET-s causes a growth inhibition and cell death reaction when co-expressed with the HET-S protein from which it differs by 13 residues. Herein we describe the purification and initial characterization of recombinant HET-s protein expressed in Escherichia coli. The HET-s protein self-associates over time into high molecular weight aggregates. These aggregates greatly accelerate precipitation of the soluble form. HET-s aggregates appear as amyloid-like fibrils using electron microscopy. They bind Congo Red and show birefringence under polarized light. In the aggregated form, a HET-s fragment of approximately 7 kDa is resistant to proteinase K digestion. CD and FTIR analyses indicate that upon transition to the aggregated state, the HET-s protein undergoes a structural rearrangement characterized by an increase in antiparallel beta-sheet structure content. These results suggest that the [Het-s] prion element propagates in vivo as an infectious amyloid.  相似文献   

17.

Background

Prions are infectious proteins propagating as self-perpetuating amyloid polymers. The [Het-s] prion of Podospora anserina is involved in a cell death process associated with non-self recognition. The prion forming domain (PFD) of HET-s adopts a β-solenoid amyloid structure characterized by the two fold repetition of an elementary triangular motif. [Het-s] induces cell death when interacting with HET-S, an allelic variant of HET-s. When templated by [Het-s], HET-S undergoes a trans-conformation, relocates to the cell membrane and induces toxicity.

Methodology/Principal Findings

Here, comparing HET-s homologs from different species, we devise a consensus for the HET-s elementary triangular motif. We use this motif to screen genomic databases and find a match to the N-terminus of NWD2, a STAND protein, encoded by the gene immediately adjacent to het-S. STAND proteins are signal transducing ATPases which undergo ligand-induced oligomerisation. Homology modelling predicts that the NWD2 N-terminal region adopts a HET-s-like fold. We propose that upon NWD2 oligomerisation, these N-terminal extensions adopt the β-solenoid fold and template HET-S to adopt the amyloid fold and trigger toxicity. We extend this model to a putative prion, the σ infectious element in Nectria haematococca, because the s locus controlling propagation of σ also encodes a STAND protein and displays analogous features. Comparative genomic analyses indicate evolutionary conservation of these STAND/prion-like gene pairs, identify a number of novel prion candidates and define, in addition to the HET-s PFD motif, two distinct, novel putative PFD-like motifs.

Conclusions/Significance

We suggest the existence, in the fungal kingdom, of a widespread and evolutionarily conserved mode of signal transduction based on the transmission of an amyloid-fold from a NOD-like STAND receptor protein to an effector protein.  相似文献   

18.
Prion and non-prion amyloids of the HET-s prion forming domain   总被引:2,自引:0,他引:2  
HET-s is a prion protein of the fungus Podospora anserina. A plausible structural model for the infectious amyloid fold of the HET-s prion-forming domain, HET-s(218-289), makes it an attractive system to study structure-function relationships in amyloid assembly and prion propagation. Here, we report on the diversity of HET-s(218-289) amyloids formed in vitro. We distinguish two types formed at pH 7 from fibrils formed at pH 2, on morphological grounds. Unlike pH 7 fibrils, the pH 2 fibrils show very little if any prion infectivity. They also differ in ThT-binding, resistance to denaturants, assembly kinetics, secondary structure, and intrinsic fluorescence. Both contain 5 nm fibrils, either bundled or disordered (pH 7) or as tightly twisted protofibrils (pH 2). We show that electrostatic interactions are critical for the formation and stability of the infectious prion fold given in the current model. The altered properties of the amyloid assembled at pH 2 may arise from a perturbation in the subunit fold or fibrillar stacking.  相似文献   

19.
We describe a distant homologue of the fungal HET-s prion, which is found in the fungus Fusarium graminearum. The domain FgHET-s(218-289), which corresponds to the prion domain in HET-s from Podospora anserina, forms amyloid fibrils in vitro and is able to efficiently cross-seed HET-s(218-289) prion formation. We structurally characterize FgHET-s(218-289), which displays 38% sequence identity with HET-s(218-289). Solid-state NMR and hydrogen/deuterium exchange detected by NMR show that the fold and a number of structural details are very similar for the prion domains of the two proteins. This structural similarity readily explains why cross-seeding occurs here in spite of the sequence divergence.  相似文献   

20.
Prion diseases are associated with accumulation of the amyloid form of the prion protein, but the mechanisms of toxicity are unknown. Amyloid toxicity is also associated with fungal prions. In Podospora anserina, the simultaneous presence of [Het-s] prion and its allelic protein HET-S causes cell death in a self-/nonself-discrimination process. Here, using the prion form of a fragment of HET-s ([PrD(157)(+)]), we show that [Het-s]-HET-S toxicity can be faithfully recapitulated in yeast. Overexpression of Hsp40 chaperone, Sis1, rescues this toxicity by curing cells of [PrD(157)(+)]. We find no evidence for toxic [PrD(157)(+)] conformers in the presence of HET-S. Instead, [PrD(157)(+)] appears to seed HET-S to accumulate at the cell periphery and to form aggregates distinct from visible [PrD(157)(+)] aggregates. Furthermore, HET-S mutants that cause HET-S to be sequestered into [PrD(157)(+)] prion aggregates are not toxic. The localization of HET-S at the cell periphery and its association with cell death was also observed in the native host Podospora anserina. Thus, upon interaction with [Het-s], HET-S localizes to the cell periphery, and this relocalization, rather than the formation of mixed HET-s/HET-S aggregates, is associated with toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号