首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The dry extract of Hedra helix leaves and its main active compounds, predominantly α-hederin and hederacoside C, has been traditionally believed to act spasmolytic. However, it has been recently proved that both, the extract of ivy and triterpenoid saponins, exhibit strong contractile effect on rat isolated stomach smooth muscle strips. It turned out that the most potent contractile agent isolated from the extract of ivy leaves is α-hederin. Thus, it seems reasonable to estimate the mechanism of the contractile effect of this saponin. The presented study was aimed at verifying the participation of cholinergic pathways (muscarinic and nicotine receptors) in α-hederin-induced contraction. The experiments were carried out on rat isolated stomach corpus and fundus strips under isotonic conditions. The preparations were preincubated with either atropine or hexamethonium and then exposed to α-hederin. All results are expressed as the percentage of the response to acetylcholine - a reference contractile agent. The obtained results revealed that the pretreatment of isolated stomach strips (corpus and fundus) with atropine neither prevented nor remarkably reduced the reaction of the preparations to α-hederin. Similarly, if the application of saponin was preceded by the administration of hexamethonium, the strength of the contraction of stomach fundus strips induced by α-hederin was not modified. Concluding, it can be assumed that the cholinergic pathways do not participate in α-hederin-evoked contraction of rat isolated stomach preparations.  相似文献   

2.
R A Prado-Alcalá 《Life sciences》1985,37(23):2135-2142
A review was made of experiments dealing with the involvement of cholinergic activity of the caudate nucleus in memory processes. Injections of acetylcholine-receptor blockers or of neurotoxins against cholinergic interneurons into the striatum produce marked impairments in acquisition and retention of instrumental tasks while injections of acetylcholine or choline into the caudate produce the opposite effect. However, after a period of overtraining cholinergic blockade or interference with neural activity of the caudate does not produce significant deficits in retention. It is concluded that striatal cholinergic activity is critically involved in memory of recent events and that long-term memory is mediated by different neurochemical systems outside the caudate nucleus.  相似文献   

3.
The interior of purified cholinergic Torpedo vesicles is acidic, pHin = 5.2 at external pH = 7.4. The internal pH changes linearily as a function of external pH yielding ΔpH = 2.0 and 2.5 at pHout = 6.3 and 9.1 respectively. The proton translocator carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) + the ionophore valinomycin dissipate the proton gradient across the vesicular membrane and concurrently induce acetylcholine release from vesicles suspended in K+ buffer. The effect of FCCP + valinomycin is not sensitive to external pH values between 6.3 and 9.1 and is diminished at lower external pH. The possible role of intravesicular pH and of the proton electrochemical gradient in the storage of acetylcholine within cholinergic vesicles is discussed.  相似文献   

4.
The β-adrenergic and muscarinic cholinergic receptors in the splenic homogenates of control and 6-hydroxydopamine (6-OHDA) treated rats were characterized. The specific binding of [3H]dihydroalprenolol (DHA) and [3H]quinuclidinyl benzilate (QNB) in the rat spleen were saturable and of high affinity and showed pharmacological specificity of splenic β-adrenergic and muscarinic cholinergic receptors. Following 6-OHDA treatment, the Bmax value for specific [3H](-)DHA binding to the rat spleen was significantly increased by 26 percent and 22 percent compared to control at 2 and 3 weeks without a change in the Kd. In contrast, there was a 38 percent decrease in the Bmax for [3H](-)QNB in the 6-OHDA treated rat spleen at 2 and 3 weeks respectively without a change in the Kd. The Bmax value at 5 weeks was significantly greater than that at 2 or 3 weeks. The splenic norepinephrine (NE) concentration was markedly reduced by the 6-OHDA treatment at 1 to 3 weeks, while there was a significant recovery in the splenic NE concentration at 5 weeks. Thus, our results strongly suggest that we are biochemically localizing muscarinic cholinergic receptors on the sympathetic nerves of the rat spleen and that the β-adrenergic receptors of the spleen are localized postsynaptically.  相似文献   

5.
AimsWe recently reported that acute exposure to nicotine vasodilates the renal vasculature of male rats via facilitation of endothelial nitric oxide synthase (eNOS). In this study, we investigated whether this effect of nicotine is sexually dimorphic and the role of estrogen in modulating the nicotine effect.Main methodsNicotine-evoked vasodilation was evaluated in phenylephrine-preconstricted perfused kidneys obtained from male, proestrus female, ovariectomized (OVX) and estrogen-replaced OVX (OVXE2) rats.Key findingsNicotine infusion (5 × 10? 5, 1 × 10? 4, and 5 × 10? 4 M) produced greater concentration-dependent reductions in the renal perfusion pressure (RPP) in an isolated kidney from proestrus females than from males. Inhibition of NOS by NG-nitro-l-arginine abolished the nicotine-evoked reduction in RPP and abolished the gender difference in the nicotine effect. Nicotine vasodilation was also attenuated in kidneys isolated from OVX and diestrus rats, models characterized by reduced estrogen levels. Further, estrogen or l-arginine supplementation in OVX rats largely restored the renal vasodilatory response to nicotine. Estrogen receptor blockade by tamoxifen abrogated the enhanced nicotine-evoked vasodilation elicited by E2 in OVX rats. The nitrite/nitrate levels and protein expressions of eNOS and α7 nicotinic cholinergic receptor (α7 nAChRs) were significantly higher in renal tissues of OVXE2 compared with OVX rats, suggesting a facilitatory effect for E2 on α7 nAChRs/eNOS signaling.SignificanceEstrogen-dependent facilitation of NOS signaling mediates the enhanced vasodilator capacity of nicotine in the renal vasculature of female rats. Preliminary evidence also suggests a potential role for α7 nAChRs in this estrogen-dependent phenomenon.  相似文献   

6.
Resolution of (±)3-quinuclidinol into its enantiomers was obtained, at relatively high yield, based on the stereoselective enzymatic hydrolysis of R-(?)-3-quinuclidinyl butyrate by horse serum butyrylcholinesterase. The S-(+) isomer of 3-quinuclidinol was obtained from the racemate of 3-quinuclidinyl butyrate by a complete digestion of the (?) ester; the R-(?) isomer of 3-quinuclidinol was prepared by a partial hydrolysis of the racemate. The enantiomers obtained by this method were of high optical purity ([α]D25 = (+)46°). The cholinergic interactions of the benzilate esters of the 3-quinuclidinol enantiomers were characterized in mice in vivo and in isolated guinea pig ileum. The R to S potency ratio is around 10–15 for the muscarinic antagonist 3-quinuclidinyl benzilate (QNB) in the in vivo experiments compared to the reported ratio of 100 in competition experiments in vitro.  相似文献   

7.
1. To determine if functional cholinergic innervation occurs in the frog duodenum or not, the effects of exogenous acetylcholine and electrical transmural stimulation, the contractile activity of an acid extract from the frog duodenum, and the distribution of acetylcholinesterase (AChE) activity in the wall of the frog duodenum were investigated.2. Acetylcholine caused non-sustained contraction in a dose-dependent manner (100nM−1 mM). The ed50) value was 17 ± 2.4 μM. Atropine (500 nM) shifted the dose-response curve for acetylcholine parallel to the right.3. Transmural stimulation of the frog duodenum caused frequency-dependent (0.5–50 Hz) contraction which was not decreased by atropine (500 nM) at all.4. The acid extract from the frog duodenum caused contraction of a longitudinal muscle strip of guinea-pig ileum but atropine (500 nM) had no significant effect on the contraction.5. Only a little AChE activity was found in Auerbach's plexus of the frog duodenum compared with that of the rat ileum.6. These results suggest that a cholinergic nerve is present in the frog duodenum but its physiological significance is very small.  相似文献   

8.
The change of cholinergic transmission of ?-amyloid protein (β-AP) treated rats was studied by intracerebral microdialysis sampling combined with HPLC analysis. β-AP1—40 was injected into nucleus basalis magnocellularis (NBM). Passive avoidance response test (step-down test) and delayed alternation task were used for memory testing. The impairment of memory after injection of β-AP1—40 into NBM exhibited mainly the deficiency of short-term working memory. One week after injection of β-AP1—40 the release of acetylcholine (ACh) from frontal cortex of freely-moving rats decreased significantly, and the response of cholinergic nerve ending to the action of high [K+] solution was rather weak. In control animals the percentage of increase of ACh-release during behavioral performance was 57%, while in β-AP1—40-treated rats it was 34%. The temporary increase of the ACh-release of the rat put into a new place was also significantly diminished in β-AP1—40-treated rats. The results show that the injection of β-AP1—40 into NBM impairs the cholinergic transmission in frontal cortex, and the impairment of cholinergic transmission may be the main cause of the deficit of working memory.  相似文献   

9.
The change of cholinergic transmission of p-amyloid protein (P-AP) treated rats was studied by intracerebral microdialysis sampling combined with HPLC analysis. β-AP1-40 was injected into nucleus basalis magnocellularis (NBM). Passive avoidance response test (step-down test) and delayed alternation task were used for memory testing. The impairment of memory after injection of β-AP1-40 into NBM exhibited mainly the deficiency of short-term working memory. One week after injection of β-AP1-40 the release of acetylcholine (ACh) from frontal cortex of freely-moving rats decreased significantly, and the response of cholinergic nerve ending to the action of high [K+] solution was rather weak. In control animals the percentage of increase of ACh-release during behavioral performance was 57%, while in β-AP1-40-treated rats it was 34%. The temporary increase of the ACh-release of the rat put into a new place was also significantly diminished in β-AP1-40 -treated rats. The results show that the injection of   相似文献   

10.
Previous experiments demonstrated that second-based transient increases in choline concentrations measured by electrodes coated with choline oxidase (ChOx) and the amperometric detection of hydrogen peroxide validly indicate the depolarization-dependent release of acetylcholine (ACh) and its hydrolysis by endogenous acetylcholinesterase (AChE). Therefore, choline-sensitive microelectrodes have become valuable tools in neuropharmacological and behavioral research. The present experiments were designed to test the possibility that co-immobilization of ChOx plus AChE on recording sites increases the level of detection for evoked ACh release in the brain. If newly released ACh is not completely hydrolyzed by endogenous AChE and capable of reaching the extracellular space, currents recorded via sites equipped with both enzymes should be greater when compared with sites coated with ChOx only. Pairs of platinum-recording sites were coated either with AChE plus ChOx or ChOx alone. Potassium or nicotine-evoked currents were recorded throughout the entire dorsal–ventral extent of the medial prefrontal cortex (mPFC). The amplitudes of evoked cholinergic signals did not differ significantly between AChE + ChOx and ChOx-only coated recording sites. Additional experiments controlling for several potential confounds suggested that, in vivo, ACh levels ≥150 fmol were detected by recordings sites featuring dual enzyme coating. Collectively, these results indicate that co-coating of microelectrodes with AChE does not enhance the detection of cholinergic activity in the cortex compared with measurements via recording sites coated only with ChOx.  相似文献   

11.
Vasoactive intestinal peptide (VIP) and the -adrenergic agonist isoproterenol stimulated cyclic AMP formation through independent receptors in isolated epithelial ceils of rat ventral prostate. The specific -adrenergic antagonist propranolol inhibited the stimulatory effect of isoproterenol but not that of VIP. Besides small differences in the efficiency of both agents, results indicated that isoproterenol was 500 times less potent than VIP. Acetylcholine did not modify the basal cyclic AMP levels but inhibited the accumulation of the cyclic nucleotide in the presence of either VIP or isoproterenol. The inhibitory action of muscarinic receptors was calcium-dependent. The coexistence of receptors for cholinergic, adrenergic and peptidergic agents which can regulate cyclic AMP suggests that the functions of prostatic epithelium may be interdependently controlled by multiple neural effectors.  相似文献   

12.
Devi L  Ohno M 《PloS one》2010,5(9):e12974
β-Site APP-cleaving enzyme 1 (BACE1) initiates amyloid-β (Aβ) generation and thus represents a prime therapeutic target in treating Alzheimer's disease (AD). Notably, increasing evidence indicates that BACE1 levels become elevated in AD brains as disease progresses; however, it remains unclear how the BACE1 upregulation may affect efficacies of therapeutic interventions including BACE1-inhibiting approaches. Here, we crossed heterozygous BACE1 knockout mice with AD transgenic mice (5XFAD model) and compared the abilities of partial BACE1 reduction to rescue AD-like phenotypes at earlier (6-month-old) and advanced (15-18-month-old) stages of disease, which expressed normal (~100%) and elevated (~200%) levels of BACE1, respectively. BACE1(+/-) deletion rescued memory deficits as tested by the spontaneous alternation Y-maze task in 5XFAD mice at the earlier stage and prevented their septohippocampal cholinergic deficits associated with significant neuronal loss. Importantly, BACE1(+/-) deletion was no longer able to rescue memory deficits or cholinergic neurodegeneration in 5XFAD mice at the advanced stage. Moreover, BACE1(+/-) deletion significantly reduced levels of Aβ42 and the β-secretase-cleaved C-terminal fragment (C99) in 6-month-old 5XFAD mouse brains, while these neurotoxic β-cleavage products dramatically elevated with age and were not affected by BACE1(+/-) deletion in 15-18-month-old 5XFAD brains. Interestingly, although BACE1(+/-) deletion lowered BACE1 expression by ~50% in 5XFAD mice irrespective of age in concordance with the reduction in gene copy number, BACE1 equivalent to wild-type controls remained in BACE1(+/-)·5XFAD mice at the advanced age. In accord, phosphorylation of the translation initiation factor eIF2α, an important mediator of BACE1 elevation, was dramatically increased (~9-fold) in 15-18-month-old 5XFAD mice and remained highly upregulated (~6-fold) in age-matched BACE1(+/-)·5XFAD mice. Together, our results indicate that partial reduction of BACE1 is not sufficient to block the phospho-eIF2α-dependent BACE1 elevation during the progression of AD, thus limiting its abilities to reduce cerebral Aβ/C99 levels and rescue memory deficits and cholinergic neurodegeneration.  相似文献   

13.
14.
Cognitive impairment in Alzheimer's disease (AD) patients is associated with a decline in the levels of growth factors, impairment of axonal transport and marked degeneration of basal forebrain cholinergic neurons (BFCNs). Neurogenesis persists in the adult human brain, and the stimulation of regenerative processes in the CNS is an attractive prospect for neuroreplacement therapy in neurodegenerative diseases such as AD. Currently, it is still not clear how the pathophysiological environment in the AD brain affects stem cell biology. Previous studies investigating the effects of the β-amyloid (Aβ) peptide on neurogenesis have been inconclusive, since both neurogenic and neurotoxic effects on progenitor cell populations have been reported. In this study, we treated pluripotent human embryonic stem (hES) cells with nerve growth factor (NGF) as well as with fibrillar and oligomeric Aβ1-40 and Aβ1-42 (nM-μM concentrations) and thereafter studied the differentiation in vitro during 28-35 days. The process applied real time quantitative PCR, immunocytochemistry as well as functional studies of intracellular calcium signaling. Treatment with NGF promoted the differentiation into functionally mature BFCNs. In comparison to untreated cells, oligomeric Aβ1-40 increased the number of functional neurons, whereas oligomeric Aβ1-42 suppressed the number of functional neurons. Interestingly, oligomeric Aβ exposure did not influence the number of hES cell-derived neurons compared with untreated cells, while in contrast fibrillar Aβ1-40 and Aβ1-42 induced gliogenesis. These findings indicate that Aβ1-42 oligomers may impair the function of stem cell-derived neurons. We propose that it may be possible for future AD therapies to promote the maturation of functional stem cell-derived neurons by altering the brain microenvironment with trophic support and by targeting different aggregation forms of Aβ.  相似文献   

15.
Dysregulated cholinergic signaling is an early hallmark of Alzheimer disease (AD), usually ascribed to degeneration of cholinergic neurons induced by the amyloid-β peptide (Aβ). It is now generally accepted that neuronal dysfunction and memory deficits in the early stages of AD are caused by the neuronal impact of soluble Aβ oligomers (AβOs). AβOs build up in AD brain and specifically attach to excitatory synapses, leading to synapse dysfunction. Here, we have investigated the possibility that AβOs could impact cholinergic signaling. The activity of choline acetyltransferase (ChAT, the enzyme that carries out ACh production) was inhibited by ~50% in cultured cholinergic neurons exposed to low nanomolar concentrations of AβOs. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction, lactate dehydrogenase release, and [(3)H]choline uptake assays showed no evidence of neuronal damage or loss of viability that could account for reduced ChAT activity under these conditions. Glutamate receptor antagonists fully blocked ChAT inhibition and oxidative stress induced by AβOs. Antioxidant polyunsaturated fatty acids had similar effects, indicating that oxidative damage may be involved in ChAT inhibition. Treatment with insulin, previously shown to down-regulate neuronal AβO binding sites, fully prevented AβO-induced inhibition of ChAT. Interestingly, we found that AβOs selectively bind to ~50% of cultured cholinergic neurons, suggesting that ChAT is fully inhibited in AβO-targeted neurons. Reduction in ChAT activity instigated by AβOs may thus be a relevant event in early stage AD pathology, preceding the loss of cholinergic neurons commonly observed in AD brains.  相似文献   

16.
Summary Nerve terminals forming typical synapses with adrenal chromaffin tissues have been examined in the goldfish, frog (Rana pipiens), hamster and rat. Presumptive secretory inclusions present in the terminals are of two distinct types. Electron-lucent synaptic vesicles 30–50 nm in diameter are densely clustered adjacent to membrane thickenings and presumably discharge their contents into the synaptic clefts. Secretory granules (i.e. large dense-cored vesicles) 60–100 nm in diameter are more abundant in other parts of the terminals. Sites of granule exocytosis have been observed in each of the animals investigated. They are usually encountered within apparently undifferentiated areas of plasmalemma and only rarely occur within synaptic thickenings. Granule exocytosis from within synaptic terminals and chromaffin gland cells is most readily observed in specimens exposed, prior to fixation, to saline solutions containing both tannic acid, and 4-aminopyridine and/or elevated levels of K+. These findings show that the pattern of secretory discharge, involving both synaptic and non-synaptic release, which is widespread in invertebrate central nervous systems, is also characteristic of vertebrate, peripheral cholinergic terminals.  相似文献   

17.
18.
Cell suspension cultures of Capsicum frutescens accumulated digoxin, purpureaglycoside A and other unknown derivatives when digitoxin, a cardiac glycoside, was used as a precursor. The feeding of digitoxin complexed with &#103 -cyclodextrin increased the accumulation of digoxin, purpureaglycoside A and other unknown derivatives. Control cultures (without digitoxin) did not produce any of these metabolites. The growth of cells was affected by both digitoxin as well as digitoxin- &#103 -cyclodextrin. The accumulation of purpureaglycoside A and digoxin reached a maximum of 1241 and 374 &#119 g 100 ml &#109 1 culture on the 6th and 2nd day, respectively, which was 3.9 and 4.5 fold higher than cultures treated with digitoxin alone (sampled on the 13th day). The other unknown derivatives formed in digitoxin- &#103 -cyclodextrin fed cultures were 15 times higher than digitoxin alone fed C. frutescens cultures. The addition of glucose to digitoxin- &#103 -cyclodextrin treated cultures increased the accumulation of purpureaglycoside A which reached a maximum of 3589 &#119 g 100 ml &#109 1 culture after 12 h incubation, which was a 2.9 fold increase over cultures treated with digitoxin- &#103 -cyclodextrin alone.  相似文献   

19.
Previous work suggests that young women who smoke cigarettes regularly, or did so in the past, manifest a neurocognitive profile that is characterized by small but significant impairments of response inhibition and attention. The present study sought to determine whether variation in nicotinic cholinergic receptor (nAchR) genes impacts upon cognitive function in these domains by overall or differential effects on the performance of current, former and non-smokers. The study sample consisted of 100 female college students, current or past smokers, and 144 who had never smoked. All performed a computerized neurocognitive test battery and were genotyped for 39 single nucleotide polymorphisms in 11 nAchR genes. The results, derived from linear or logistic regression, show significant direct and interactive relationships between single nucleotide polymorphisms and haplotypes in several nAchR genes and performance on the Matching Familiar Figures Test (MFFT) Stroop test, Continuous Performance Task (CPT) and Tower of London (TOL) test. Response inhibition (MFFT, Stroop, CPT Loading Phase, TOL) was associated with variants in CHRNA2, CHRNA4, CHRNA5, CHRNA7, CHRNA9, CHRNA10, CHRNB2 and CHRNB3. Selective attention (Stroop) was associated with CHRNA4, CHRNA5, CHRNA9 and CHRNB2. Sustained attention (CPT Boring Phase) was associated with CHRNA4, CHRNA5, CHRNA7, CHRNA10 and CHRNB3. Up to 37% of the variance among the smokers and up to 47% of the variance among the non-smokers on the test measures was explained. Differences between smokers and non-smokers in neurocognitive function, putatively implicated in susceptibility to nicotine dependence, may be modulated by variants in nAchR genes, with potential implications for prevention and treatment.  相似文献   

20.
Whole-brain neural connectivity to cholinergic neurons in the nucleus basalis of Meynert (Published in JNC 166.2 issue) https://onlinelibrary.wiley.com/doi/10.1111/jnc.15873  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号